首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclin-dependent kinase 5 (Cdk5) is a brain-specific membrane-bound protein kinase that is activated by binding to the p35 or p39 activator. Previous studies have focused on p35-Cdk5, and little is known regarding p39-Cdk5. The lack of functional understanding of p39-Cdk5 is due, in part, to the labile property of p39-Cdk5, which dissociates and loses kinase activity in nonionic detergent conditions. Here we investigated the structural basis for the instability of p39-Cdk5. p39 and p35 contain N-terminal p10 regions and C-terminal Cdk5 activation domains (AD). Although p35 and p39 show higher homology in the C-terminal AD than the N-terminal region, the difference in stability is derived from the C-terminal AD. Based on the crystal structures of the p25 (p35 C-terminal region including AD)-Cdk5 complex, we simulated the three-dimensional structure of the p39 AD-Cdk5 complex and found differences in the hydrogen bond network between Cdk5 and its activators. Three amino acids of p35, Asp-259, Asn-266, and Ser-270, which are involved in hydrogen bond formation with Cdk5, are changed to Gln, Gln, and Pro in p39. Because these three amino acids in p39 do not participate in hydrogen bond formation, we predicted that the number of hydrogen bonds between p39 and Cdk5 was reduced compared with p35 and Cdk5. Using substitution mutants, we experimentally validated that the difference in the hydrogen bond network contributes to the different properties between Cdk5 and its activators.  相似文献   

2.
The activation of Cdk5 by p35 plays a pivotal role in a multitude of nervous system activities ranging from neuronal differentiation to degeneration. A fraction of Cdk5 and p35 localizes in the nucleus where Cdk5-p35 exerts its functions via protein phosphorylation, and p35 displays a dynamic localization between the cytoplasm and the nucleus. Here, we examined the nuclear import properties of p35. In nuclear import assays, p35 was actively transported into the nuclei of digitonin-permeabilized HeLa cells and cortical neurons by cytoplasmic carrier-mediated mechanisms. Importin-beta, importin-5, and importin-7 were identified to import p35 into the nuclei via a direct interaction with it. An N-terminal region of p35 was defined to interact with the above importins, serving as a nuclear localization signal. Finally, we show that the nuclear localization of p35 does not require the association of Cdk5. Furthermore, Cdk5 and importin-beta/5/7 are mutually exclusive in binding to p35. These results suggest that p35 employs pathways distinct from that used by Cdk5 for transport to the nucleus.  相似文献   

3.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective loss of motor neurons in the brain and spinal cord. Neurotoxicity mediated by glutamate is thought to play a role in the neuronal death through intracellular calcium-dependent signaling cascades. Cyclin-dependent kinase 5 (Cdk5) has been proposed as one of the calcium-dependent mediators that may cause neuronal death observed in this disease. Cdk5 is activated in neurons by the association with its activators, p35 or p39. The calcium-activated protease calpain cleaves p35 to its truncated product, p25, which eventually causes the cellular mislocalization and prolonged activation of Cdk5. This deregulated Cdk5 induces cytoskeletal disruption and apoptosis. To examine whether inhibition of the calpain-mediated conversion of p35 to p25 can delay the disease progression of ALS, we generated double transgenic mice in which ALS-linked mutant copper/zinc superoxide dismutase 1 (SOD1G93A) was expressed in a p35-null background. The absence of p35 neither affected the onset and progression of motor neuron disease in the mutant SOD1 mice nor ameliorated the pathological lesions in these mice. Our results provide direct evidence that the pathogenesis of motor neuron disease in the mutant SOD1 mice is independent of the Cdk5 activation by p35 or p25.  相似文献   

4.
The involvement of cyclin‐dependent kinase‐5 (Cdk5) and p25, the proteolytic fragment of activator p35, has long been implicated in the development of neuron‐fibrillary tangles (NFTs), a hallmark of Alzheimer's disease (AD). Findings in this area over the past decade have been highly controversial and inconclusive. Here we report unprecedented detection of endogenous p10, the smaller proteolytic fragment of the Cdk5 activator p35 in treated primary cortical neurons that underwent significant apoptosis, triggered by proteasome inhibitors MG132 and lactacystin, and protein kinase inhibitor staurosporine (STS). p10 appeared exclusively in the detergent‐resistant fraction made up of nuclear matrix, membrane‐bound organelles, insoluble membrane proteins, and cytoskeletal components. Intriguingly, transient overexpression of p10 in neural cells induced apoptotic morphologies, suggesting that p10 may play an important role in mediating neuronal cell death in neurodegenerative diseases. We demonstrated for the first time that p10‐mediated apoptosis occurred via a caspases‐independent pathway. Furthermore, as p10 may contain the myristoylation signal for p35 which is responsible for binding p35 to several intracellular components and the membrane, all in all these novel results present that the accumulation of p10 to the detergent‐insoluble fraction may be a crucial pathological event to triggering neuronal cell death. J. Cell. Biochem. 111: 1359–1366, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Cyclin-dependent kinase (Cdk)5 is a proline-directed Ser/Thr protein kinase that functions mainly in neurons and is activated by binding to a regulatory subunit, p35 or p39. Kinase activity is mainly determined by the amount of p35 available, which is controlled by a balance between synthesis and degradation. Kinase activity is also regulated by Cdk5 phosphorylation, but the activity of phosphorylated Cdk5 is in contrast to that of cycling Cdks. Cdk5 is a versatile protein kinase that regulates multiple neuronal activities including neuronal migration and synaptic signaling. Further, Cdk5 plays a role in both survival and death of neurons. Long-term inactivation of Cdk5 triggers cell death, and the survival activity of Cdk5 is apparent when neurons suffer from stress. In contrast, hyper-activation of Cdk5 by p25 promotes cell death, probably by reactivating cell-cycle machinery in the nucleus. The pro-death activity is suppressed by membrane association of Cdk5 via myristoylation of p35. Appropriate activity, localization, and regulation of Cdk5 may be critical for long-term survival of neurons, which is more than 80 years in the case of humans.  相似文献   

6.
The neuronal Cdk5 kinase is composed of the catalytic subunit Cdk5 and the activator protein p35(nck5a) or its isoform, p39(nck5ai). To identify novel p35(nck5a)- and p39(nck5ai)-binding proteins, fragments of p35(nck5a) and p39(nck5ai) were utilized in affinity isolation of binding proteins from rat brain homogenates, and the isolated proteins were identified using mass spectrometry. With this approach, the nuclear protein SET was shown to interact with the N-terminal regions of p35(nck5a) and p39(nck5ai). Our detailed characterization showed that the SET protein formed a complex with Cdk5/p35(nck5a) through its binding to p35(nck5a). The p35(nck5a)-interacting region was mapped to a predicted alpha-helix in SET. When cotransfected into COS-7 cells, SET and p35(nck5a) displayed overlapping intracellular distribution in the nucleus. The nuclear co-localization was corroborated by immunostaining data of endogenous SET and Cdk5/p35(nck5a) from cultured cortical neurons. Finally, we demonstrated that the activity of Cdk5/p35(nck5a), but not that of Cdk5/p25(nck5a), was enhanced upon binding to the SET protein. The tail region of SET, which is rich in acidic residues, is required for the stimulatory effect on Cdk5/p35(nck5a).  相似文献   

7.
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed Ser/Thr kinase that plays important roles in various neuronal activities, including neuronal migration, synaptic activity, and neuronal cell death. Cdk5 is activated by association with a neuron-specific activator, p35 or its isoform p39, but little is known about the kinase activity of Cdk5--p39. In fact, kinase-active Cdk5--p39 was not prepared from rat brain extracts nor from HEK293 cells expressing Cdk5 and p39 by immunoprecipitation in the presence of non-ionic detergent, under conditions with which active Cdk5--p35 could be isolated. p39 dissociated from Cdk5 in the presence of detergent, indicating that p39 has a lower binding affinity for Cdk5 than p35. We developed a method for purifying kinase-active Cdk5--p39 from Sf9 cells infected with baculovirus encoding Cdk5 and p39. The purified Cdk5--p39 complex showed similar substrate specificity to that of Cdk5--p35, but with opposite sensitivity to detergent. Cdk5--p39 was inactivated by Triton X-100, whereas Cdk5--p35 was activated. The N-terminal deletion from p35 and p39, the amino acid sequences of which are different, did not change the stability or substrate specificity of either Cdk5 complex. The different stability between Cdk5--p35 and Cdk5--p39 suggests their distinct roles under different regulation mechanisms in neurons.  相似文献   

8.
Hisanaga S  Saito T 《Neuro-Signals》2003,12(4-5):221-229
Cyclin-dependent kinase 5 (Cdk5) displays kinase activity predominantly in post-mitotic neurons and its physiological roles are unrelated to cell cycle progression. Cdk5 is activated by its binding to a neuron-specific activator, p35 or p39. The protein amount of p35 or p39 is a primary determinant of the Cdk5 activity in neurons, with the amount of p35 or p39 being determined by its synthesis and degradation. The expression of p35 is induced in differentiated neurons and is enhanced by extracellular stimuli such as neurotrophic factors or extracellular matrix molecules, specifically those acting on the ERK/Erg pathway. p35 is a short-lived protein and its degradation determines the life span. Degradation is mediated by the ubiquitin/proteasome system, similar to that for cyclins in proliferating cells. Autophosphorylation of p35 by Cdk5 is a signal for ubiquitination/degradation, and the degradation of p35 is triggered by glutamate treatment in cultured neurons. p35 is cleaved to p25 by calpain at the time of neuronal cell death, and this limited cleavage is suggested to be the cause of neurodegenerative diseases such as Alzheimer's disease. Active Cdk5 changes the cellular localization by cleavage of p35 to p25; p35/Cdk5 is associated with membrane or cytoskeletons, but p25/Cdk5 is a soluble protein. Cleavage also increases the life span of p25 and changes the activity or substrate specificity of Cdk5. p25/Cdk5 shows higher phosphorylating activity to tau than p35/Cdk5 in a phosphorylation site-specific manner. Phosphorylation of p35 suppresses cleavage by calpain. Thus, phosphorylation of p35 modulates its proteolytic pattern, stimulates proteasomal degradation and suppresses calpain cleavage. Phosphorylation is age dependent, as p35 is phosphorylated in foetal brains, but unphosphorylated in adult brains. Therefore, foetal phosphorylated p35 is turned over rapidly, whereas adult unphosphorylated p35 has a long life and is easily cleaved to p25 when calpain is activated. p39 is also a short-lived protein and cleaved to the N-terminal truncation form of p29 by calpain. How the metabolism of p39 is regulated, however, is a future problem to be investigated.  相似文献   

9.
10.
11.
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine protein kinase that requires association with a regulatory protein, p35 or p39, to form an active enzyme. Munc18-1 plays an essential role in membrane fusion, and its function is regulated by phosphorylation. We report here that both p35 and p39 were expressed in insulin-secreting beta-cells, where they exhibited individual subcellular distributions and associated with membranous organelles of different densities. Overexpression of Cdk5, p35, or p39 showed that Cdk5 and p39 augmented Ca(2+)-induced insulin exocytosis. Suppression of p39 and Cdk5, but not of p35, by antisense oligonucleotides selectively inhibited insulin exocytosis. Transient transfection of primary beta-cells with Munc18-1 templates mutated in potential Cdk5 or PKC phosphorylation sites, in combination with Cdk5 and the different Cdk5 activators, suggested that Cdk5/p39-promoted Ca(2+)-dependent insulin secretion from primary beta-cells by phosphorylating Munc18-1 at a biochemical step immediately prior to vesicle fusion.  相似文献   

12.
The p53 protein is frequently mutated in a very large proportion of human tumors, where it seems to acquire gain-of-function activity that facilitates tumor onset and progression. A possible mechanism is the ability of mutant p53 proteins to physically interact with other proteins, including members of the same family, namely p63 and p73, inactivating their function. Assuming that this interaction might occurs at the level of the monomer, to investigate the molecular basis for this interaction, here, we sample the structural flexibility of the wild-type p53 monomeric protein. The results show a strong stability up to 850 ns in the DNA binding domain, with major flexibility in the N-terminal transactivations domains (TAD1 and TAD2) as well as in the C-terminal region (tetramerization domain). Several stable hydrogen bonds have been detected between N-terminal or C-terminal and DNA binding domain, and also between N-terminal and C-terminal. Essential dynamics analysis highlights strongly correlated movements involving TAD1 and the proline-rich region in the N-terminal domain, the tetramerization region in the C-terminal domain; Lys120 in the DNA binding region. The herein presented model is a starting point for further investigation of the whole protein tetramer as well as of its mutants.  相似文献   

13.
The expression of cyclin-dependent kinase 5 (Cdk5) and its regulatory subunits, p35 and p39, was investigated in rat brain from embryonic day 12 (E12) to postnatal 18 months (18M). The Cdk5 protein levels increased from E12 to postnatal day 7 (P7) and remained at this level until 18M. The Cdk5 kinase activity and the levels of both p35 mRNA and protein were low at E12, became prominent at E18-P14 but then decreased in the adult and aged rat brains of 3M to 18M. In comparison, the expression pattern of p39 appeared to have an inverse relationship to that of Cdk5 and p35. In regional distribution studies, p35 protein levels and Cdk5 kinase activity were significantly higher in the cerebral cortex and hippocampus, but lower in the cerebellum and striatum. These results suggested that Cdk5, p35 and p39 might have region-specific and developmental stage-specific functions in rat brain.  相似文献   

14.
Cdk5 (cyclin-dependent kinase 5) activity is dependent upon association with one of two neuron-specific activators, p35 or p39. Genetic deletion of Cdk5 causes perinatal lethality with severe defects in corticogenesis and neuronal positioning. p35(-/-) mice are viable with milder histological abnormalities. Although substantial evidence implicates Cdk5 in synaptic plasticity, its role in learning and memory has not been evaluated using mutant mouse models. We report here that p35(-/-) mice have deficiencies in spatial learning and memory. Close examination of hippocampal circuitry revealed subtle histological defects in CA1 pyramidal cells. Furthermore, p35(-/-) mice exhibit impaired long-term depression and depotentiation of long-term potentiation in the Schaeffer collateral CA1 pathway. Moreover, the Cdk5-dependent phosphorylation state of protein phosphatase inhibitor-1 was increased in 4-week-old mice due to increased levels of p39, which co-localized with inhibitor-1 and Cdk5 in the cytoplasm. These results demonstrate that p35-dependent Cdk5 activity is important to learning and synaptic plasticity. Deletion of p35 may shift the substrate specificity of Cdk5 due to compensatory expression of p39.  相似文献   

15.
Prostate cancer is the most frequently diagnosed male malignancy. The normal prostate development and prostate cancer progression are mediated by androgen receptor (AR). Recently, the roles of cyclin-dependent kinase 5 (Cdk5) and its activator, p35, in cancer biology are explored one after another. We have previously demonstrated that Cdk5 may regulate proliferation of thyroid cancer cells. In addition, we also identify that Cdk5 overactivation can be triggered by drug treatments and leads to apoptosis of prostate cancer cells. The aim of this study is to investigate how Cdk5 regulates AR activation and growth of prostate cancer cells. At first, the data show that Cdk5 enables phosphorylation of AR at Ser-81 site through direct biochemical interaction and, therefore, results in the stabilization of AR proteins. The Cdk5-dependent AR stabilization causes accumulation of AR proteins and subsequent activation. Besides, the positive regulations of Cdk5-AR on cell growth are also determined in vitro and in vivo. S81A mutant of AR diminishes its interaction with Cdk5, reduces its nuclear localization, fails to stabilize its protein level, and therefore, decreases prostate cancer cell proliferation. Prostate carcinoma specimens collected from 177 AR-positive patients indicate the significant correlations between the protein levels of AR and Cdk5 or p35. These findings demonstrate that Cdk5 is an important modulator of AR and contributes to prostate cancer growth. Therefore, Cdk5-p35 may be suggested as diagnostic and therapeutic targets for prostate cancer in the near future.  相似文献   

16.
p8 is a stress-induced protein, biochemically related to the architectural factor HMG-I/Y, overexpressed in many cancers and required for tumor expansion. The molecular mechanisms by which p8 may exert its effect in aspects of growth is unknown. Using immunocytochemistry, we found that p8 presents nuclear localization in sub-confluent cells, but it localizes throughout the whole cell in high density grown cells. Cells arrested in Go/G1, either by serum deprivation or by hydroxyurea treatment, show a nucleo-cytoplasmic localization of p8, whether in the rest of the cell cycle stages of actively dividing cells the localization is nuclear. A comparison of p8 sequences from human to fly predicts a conserved bipartite nuclear localization sequence (NLS). The putative NLS has been demonstrated to be functional, since nuclear import is energy dependent (inhibited by sodium azide plus 2-deoxyglucose), and fusion proteins GFP-p8 and GFP-NLSp8 localize to the nucleus, whereas GFP-p8NLSmut in which with Lys 65, 69, 76, and 77 mutated to Ala localized to the whole cell. p8 localization does not involve the CRM1 transporter, since it is insensitive to leptomycin B. Inhibitors of MAPK pathways did not affect p8 subcellular localization. The inhibition of deacetylation with Trichostatin A promotes cytoplasmic accumulation of p8. The results suggest that p8 growth stage-dependent localization is regulated by acetylation, that p8 is not free within the cell but forming part of a complex and that it may exert a role in both subcellular localizations.  相似文献   

17.
Myristoylation of ARF family GTPases is required for their association with Golgi and endosomal membranes, where they regulate protein sorting and the lipid composition of these organelles. The Golgi-localized ARF-like GTPase Arl3p/ARP lacks a myristoylation signal, indicating that its targeting mechanism is distinct from myristoylated ARFs. We demonstrate that acetylation of the N-terminal methionine of Arl3p requires the NatC N(alpha)-acetyltransferase and that this modification is required for its Golgi localization. Chemical crosslinking and fluorescence microscopy experiments demonstrate that localization of Arl3p also requires Sys1p, a Golgi-localized integral membrane protein, which may serve as a receptor for acetylated Arl3p.  相似文献   

18.
19.
CC Li  TS Wu  CF Huang  LT Jang  YT Liu  ST You  GG Liou  FJ Lee 《PloS one》2012,7(8):e43552
ARL4D, ARL4A, and ARL4C are closely related members of the ADP-ribosylation factor/ARF-like protein (ARF/ARL) family of GTPases. All three ARL4 proteins contain nuclear localization signals (NLSs) at their C-termini and are primarily found at the plasma membrane, but they are also present in the nucleus and cytoplasm. ARF function and localization depends on their controlled binding and hydrolysis of GTP. Here we show that GTP-binding-defective ARL4D is targeted to the mitochondria, where it affects mitochondrial morphology and function. We found that a portion of endogenous ARL4D and the GTP-binding-defective ARL4D mutant ARL4D(T35N) reside in the mitochondria. The N-terminal myristoylation of ARL4D(T35N) was required for its localization to mitochondria. The localization of ARL4D(T35N) to the mitochondria reduced the mitochondrial membrane potential (ΔΨm) and caused mitochondrial fragmentation. Furthermore, the C-terminal NLS region of ARL4D(T35N) was required for its effect on the mitochondria. This study is the first to demonstrate that the dysfunctional GTP-binding-defective ARL4D is targeted to mitochondria, where it subsequently alters mitochondrial morphology and membrane potential.  相似文献   

20.
The activity of the cyclin-dependent kinase inhibitor p27 is controlled by its concentration and subcellular localization. However, the mechanisms that regulate its intracellular transport are poorly understood. Here we show that p27 is phosphorylated on Ser10 in vivo and that mutation of Ser10 to Ala inhibits p27 cytoplasmic relocalization in response to mitogenic stimulation. In contrast, a fraction of wild-type p27 and a p27(S10D)-phospho-mimetic mutant translocates to the cytoplasm in the presence of mitogens. G1 nuclear export of p27 and its Ser10 phosphorylation precede cyclin-dependent kinase 2 (Cdk2) activation and degradation of the bulk of p27. Interestingly, leptomycin B-mediated nuclear accumulation accelerates the turnover of endogenous p27; the p27(S10A) mutant, which is trapped in the nucleus, has a shorter half-life than wild-type p27 and the p27(S10D) mutant. In summary, p27 is efficiently degraded in the nucleus and phosphorylation of Ser10 is necessary for the nuclear to cytoplasmic redistribution of a fraction of p27 in response to mitogenic stimulation. This cytoplasmic localization may serve to decrease the abundance of p27 in the nucleus below a certain threshold required for activation of cyclin-Cdk2 complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号