首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Renal effects of Dopamine (DA, subpressor dosage 0.1 microgram X kg -1 X min -1) during hypotonic polyuria in moderate hydro-saline retention are variously modified by either d- or l-Sulpiride isomers. In the presence of d-Sulpiride, DA effects, such as an increase in diuresis, free water clearance (CH20) and kaliuresis are suppressed, while increases of saluresis and natriuresis are significantly blunted. In the presence of l-Sulpiride no changes are observed in both saluresis and natriuresis, while decreases occur in diuresis, CH20 and kaliuresis. The inhibitory DA effects on isosmotic sodium reabsorption as a percentage of sodium filtered load are prevented by either isomer as well. A possible role of ineffective renal vascular DA action can be involved in such defective tubular inhibition. However is also suggested a pharmacological blockade of proximal tubular specific DA receptors.  相似文献   

2.
We have observed that in the presence of salt retention (DOCA pretreatment) dopamine (DA) promoted a hydro-natriuretic effect; in contrast in salt depletion (natriuretic pretreatment) the changes in sodium tubular reabsorption and in urinary flow were non significant. The present study was designed to identify the possible mechanisms underlying the hydro-natriuretic effect. DA was infused at a subpressor rate (0,1 microgram/kg . min) during induced hypotonic polyuria. 19 healthy human subjects at different degree of salt retention were studied. The results demonstrate that the tubular inhibitory effects produced by DA on the % sodium reabsorptions (total as % of sodium filtered load, anisosmotic as % of sodium distal load) are the higher the lower are the control values of these reabsorptions. Hence DA appears to act by enhancing the inhibitory tubular response elicited by salt retention. Moreover these inhibitory effects are positively related with the simultaneous DA-induced haemodynamic effects. This suggests that the decrease in sodium reabsorptions during DA infusion is haemodynamically mediated.  相似文献   

3.
Interaction of sulpiride - both 1- and d- isomers as well as racemic- - with Dopamine (DA, subpressor dosage 0.1 microgram X kg -1 X min -1), on the renal hemodynamic, was studied in DOCA-pretreated men during hypotonic polyuria. P.A.H. and creatinine clearance and renal vascular resistances were determined. In the presence of d-Sulpiride, DA - induced renal vasodilation is carried out gradually and finally reaches similar levels as in the absence of d-Sulpiride. However no glomerular filtration rate increase is produced by DA. In the presence of 1-Sulpiride, DA vasodilating effect is suppressed. On the contrary a trend toward ischemia and a reduction in glomerular filtration rate becomes finally apparent. Stronger binding of 1- than d-Sulpiride with vascular DA receptors in suggested. When both isomers are simultaneously administered (at the nearly total dosage) much less inhibitory effect on DA vasodilator action is observed: it seems that each isomer decreases the affinity on the other isomer for vascular DA receptors.  相似文献   

4.
Atrial natriuretic factor (ANF) and dopamine (DA) are both important regulators of sodium and water transport across renal proximal tubules. Many evidences suggest that some of ANF inhibitory effects on sodium and water reabsorption are mediated by dopaminergic mechanisms. We have previously reported that ANF stimulates extraneuronal DA uptake in external renal cortex by activation of NPR-A receptors coupled to cGMP signal and PKG. Moreover, ANF enhanced DA-induced inhibition of Na(+)-K(+) ATPase activity. The aim of the present study was to evaluate if ANF could alter also renal DA release, catabolism and turn over. The results indicate that ANF did not affect basal secretion of the amine in external renal cortex or its KCl-induced release, but diminished DA turn over. Moreover, ANF diminished COMT and did not alter MAO activity. In conclusion, present results as well as previous findings show that ANF modifies DA metabolism in rat external renal cortex by enhancing DA uptake and decreasing COMT activity. All those effects, taken together, may favor DA accumulation into renal cells and increase its endogenous content and availability. This would permit D1 receptor recruitment and stimulation and in turn, Na(+), K(+)-ATPase activity over inhibition that results in decreased sodium reabsorption. Therefore, ANF and DA could act via a common pathway to enhance natriuresis and diuresis.  相似文献   

5.
The renal function in healthy man with salt and water depletion (natriuretic pretreatment) associated with adrenergic blocking agents administration was explored during steady hypotonic polyuria. Four 15 min clearance (cl.) periods, before, during and after dopamine (DA) infusion in a subpressor dose, were performed. The 9 subjects treated with prazosin showed different renal hemodynamic responses in the early stage of DA infusion i.e. hyperemic (6 subjects, subgroup A) or ischemic (3 subjects, subgroup B). The whole group of 6 subjects treated with propranolol showed an hyperemic response DA infusion. A natriuretic effect and a trend towards tubular sodium reabsorption inhibition, in particular at the diluting segment level, were associated with the DA vasodilatory responses. The ischemic responses to DA occurred in the presence of incomplete alpha-adrenergic receptors blockade; nevertheless in the same circumstances DA failed to increase the diluting segment sodium reabsorption.  相似文献   

6.
Renal function was studied in unanaesthetized fetal sheep aged 112-120 and 126-132 days and in adult nonpregnant ewes. The clearance of lithium was used to measure proximal and distal fractional sodium reabsorption. In five nonpregnant adult sheep, 80.6 +/- 1.7% (SE) of the filtered sodium load was reabsorbed proximally and 18.2 +/- 1.53% distally. This was different from all groups of fetal sheep (p less than 0.001). In younger fetuses, proximal fractional sodium reabsorption was less (51.3 +/- 2.3% (SE), p less than 0.05) and distal fractional sodium reabsorption greater (42.4 +/- 2.3% (SE), p less than 0.05) than older fetuses (126-132 days old) in which 61.4 +/- 2.4% (SE) was reabsorbed proximally and 33.6 +/- 2.5% (SE) distally. In another group of fetuses aged 125-137 days, in which proximal tubular sodium reabsorption was measured after distal tubular blockade, proximal fractional sodium reabsorption was 57.8 +/- 2.95% (SE) and distal fractional sodium reabsorption, 38.7 +/- 2.64% (SE). In adult sheep there was no relationship between distal tubular sodium reabsorption and glomerular filtration rate, i.e., proximal tubular function was responsible for glomerulotubular balance. However, in the fetuses, both proximal and distal tubular sodium reabsorption contributed to glomerulotubular balance. Thus in fetal life, the proximal tubule participates to a lesser extent in reabsorbing the filtered sodium load possibly because its function is suppressed by its relatively "volume-expanded" state or because it is functionally immature. Therefore, a greater proportion is reabsorbed distally and the distal nephron participates under physiological conditions in glomerulotubular balance.  相似文献   

7.
The renal response to volume expansion with sodium chloride or sodium bicarbonate was studied in 15 newborn and 13 adult dogs. Proximal and distal nephron function were estimated using the technique of distal nephron blockade. Fractional sodium reabsorption was 99.0 +/- 0.3% in newborn and 96.6 +/- 0.06% in adult during the NaCl expansion (P less than 0.01) and 98.1 +/- 0.7% in the newborn and 93.2 +/- 0.7% in the adult during NaHCO3 expansion (P less than 0.001). With either anion the higher fractional sodium reabsorption in the newborn was due to reabsorption of a greater fraction of the load presented to the distal nephron segment. The percent of the distal sodium load that was reabsorbed was 98.0 +/- 0.6% in the newborn and 92.2 +/- 1.0% in the adult during NaCl expansion, and 96.1 +/- 1.3% in the newborn and 81.5 +/- 2.4% in the adult during NaHCO3 expansion. Differences in distal nephron chloride, potassium and bicarbonate reabsorption among the groups support the hypothesis that the enhanced distal sodium reabsorption in the newborn occurred largely in the ascending loop of Henle with NaCl expansion, while it occurred in the late distal and cortical collecting tubules with NaHCO3 expansion. There was no difference between the natriuretic responses to NaCl or NaHCO3 in the newborn (P greater than 0.20); however, the natriuretic response to NaCl was less than that to NaHCO3 in the adult (P less than 0.001). This suggests that the bulk of the sodium that escaped reabsorption in Henle's loop during NaHCO3 expansion was reabsorbed in the late distal tubule in the newborn, but not in the adult.  相似文献   

8.
Both dopamine (DA) and atrial natriuretic peptide (ANP) have been postulated to exert similar effects on the kidney, participating in the regulation of body fluid and sodium homeostasis. In the present study, experiments were performed in anesthetized and isotonic sodium chloride volume expanded rats. After acute volume expansion at 15 % of body weight during 30 min, glomerular filtration rate, urine output, sodium excretion, fractional sodium excretion, proximal and distal sodium excretion and blood pressure were measured. In additional groups we administered ANP or haloperidol or the combination of both to volume expanded animals. Blockade of DA receptors with haloperidol, attenuated diuretic and natriuretic responses to volume load. Proximal sodium excretion was not modified by haloperidol in all experimental groups of rats. Reduction in distal tubular excretion was induced by haloperidol in saline infusion expanded rat but not in ANP treated expanded animals. In conclusion, when exaggerated volume expansion is provoked, both DA and ANP exert renal tubular events, but ANP have a major central role in the regulation of renal sodium handling.  相似文献   

9.
To determine the effects of atrial natriuretic factor (ANF) on renal dopamine (DA) metabolism, 3H-DA and 3H-L-DOPA uptake by renal tubular cells was measured in experiments carried out in vitro in Sprague-Dawley rats. The receptor type involved was also analyzed. The results indicate that ANF increased at 30 min, DA uptake in a concentration-response fashion having 10 pM ANF as the threshold concentration. Conversely, the uptake of the precursor L-DOPA was not modified by the peptide. ANF effects were observed in tissues from external and juxtamedullar cortex and inner medulla. On this basis, 100 nM ANF was used to continue the studies in external cortex tissues. DA uptake was characterized as extraneuronal uptake, since 100 microM hydrocortisone blocked ANF-induced increase of DA uptake. Renal DA uptake was decreased at 0 degrees C and in sodium-free medium. The effects of ANF in these conditions were not present, confirming that renal DA uptake is mediated by temperature- and sodium-dependent transporters and that the peptide requires the presence of the ion to exhibit its actions on DA uptake. The biological natriuretic peptide type A receptor (NPR-A) mediates ANF effects, since 100 nM anantin, a specific blocker, reversed ANF-dependent increase of DA uptake. The natriuretic peptide type C receptor (NPR-C) is not involved, since the specific analogous 100 nM 4-23 ANF amide has no effect on renal DA uptake and does not alter the effects of 100 nM ANF. In conclusion, ANF stimulates DA uptake by kidney tubular cells. ANF effects are mediated by NPR-A receptors coupled to guanylate cyclase and cGMP as second messenger. The process involved was characterized as a typical extraneuronal uptake, and characterized as temperature- and sodium-dependent. This mechanism could be related to DA effects on sodium reabsorption and linked to ANF enhanced natriuresis in the kidney. The increment of endogenous DA into tubular cells, as a consequence of increased DA uptake, would permit D1 receptor recruitment and Na+,K+-ATPase activity inhibition, which results in decreased sodium reabsorption and increased natriuresis.  相似文献   

10.
During hydrostatic pulmonary edema, active Na(+) transport and alveolar fluid reabsorption are decreased. Dopamine (DA) and isoproterenol (ISO) have been shown to increase active Na(+) transport in rat lungs by upregulating Na(+)-K(+)-ATPase in the alveolar epithelium. We studied the effects of DA and ISO in isolated rat lungs with increased left atrial pressure (Pla = 15 cmH(2)O) compared with control rats with normal Pla (Pla = 0). Alveolar fluid reabsorption decreased from control value of 0.51 +/- 0.02 to 0.27 +/- 0.02 ml/h when Pla was increased to 15 cmH(2)O (P < 0.001). DA and ISO increased the alveolar fluid reabsorption back to control levels. Treatment with the D(1) antagonist SCH-23390 inhibited the stimulatory effects of DA (0.30 +/- 0.02 ml/h), whereas fenoldopam, a specific D(1)-receptor agonist, increased alveolar fluid reabsorption in rats exposed to Pla of 15 cmH(2)O (0.47 +/- 0.04 ml/h). Propranolol, a beta-adrenergic-receptor antagonist, blocked the stimulatory effects of ISO; however, it did not affect alveolar fluid reabsorption in control or DA-treated rats. Amiloride (a Na(+) channel blocker) and ouabain (a Na(+)-K(+)-ATPase inhibitor), either alone or together, inhibited the stimulatory effects of DA. Colchicine, which disrupts the cellular microtubular transport of ion-transporting proteins to the plasma membrane, inhibited the stimulatory effects of DA, whereas the isomer beta-lumicolchicine did not block the stimulatory effects of DA. These data suggest that DA and ISO increase alveolar fluid reabsorption in a model of increased Pla by regulating active Na(+) transport in rat alveolar epithelium. The effects of DA and ISO are mediated by the activation of dopaminergic D(1) receptors and the beta-adrenergic receptors, respectively.  相似文献   

11.
In experiments on non-anesthetized rats with administration into stomach of water (5 ml/100 g body mass) direct correlation has been found between an increase of diuresis and excretion of solute free water (r = 0.98, p < 0.01), while after injection to these animals of 5 x 10(-11) M arginine-vasotocin - between an increase of diuresis and simultaneous rise reabsorption of solute free water (r = 0.8, p < 0.01). The rise of diuresis after the vasotocin injection is due to inhibition of sodium re- absorption, with the solute excretion fraction increasing from 2.6 +/- 0.2 % to 11.9 +/- 1.2, p < 0.001. A similar physiological paradox - an increase of diuresis with the simultaneous increase of reabsorption of solute free water - has been revealed at night hours in children with tendency for nocturnal enuresis (r = 0.64, p < 0.01). Mechanism responsible for this phenomenon consists in a rise of diuresis due to a decrease of sodium ion reabsorption in the ascending Henle loop limb. A problem is discussed of the homeostatic significance of a decrease of sodium reabsorption combined with an increase of solute-free water reabsorption; it is suggested that this phenomenon is based on a redistribution of reabsorption inside the nephron - a decrease of ion and water reabsorption in the initial parts of the nephron distal segment and an increase of solute free water reabsorption with the antidiuretic hormone-stimulated high osmotic permeability of terminal parts of renal tubules. An intraperitoneal injection of V1-anatagonist (OPC-21268) decreased the natriuretic component of response to arginine-vasotocin, while injection of V2-antagonist (OPC-31260) eliminated the antidiuretic component.  相似文献   

12.
The objectives of the present study were to examine the involvement of GABA and cholinergic receptors within the nucleus accumbens (ACB) on feedback regulation of somatodendritic dopamine (DA) release in the ventral tegmental area (VTA). Adult male Wistar rats were implanted with ipsilateral dual guide cannulae for in vivo microdialysis studies. Activation of the feedback system was accomplished by perfusion of the ACB with the DA uptake inhibitor GBR 12909 (GBR; 100 microm). To assess the involvement of GABA and cholinergic receptors in regulating this feedback system, antagonists (100 microm) for GABAA (bicuculline, BIC), GABAB (phaclofen, PHAC), muscarinic (scopolamine, SCOP), and nicotinic (mecamylamine, MEC) receptors were perfused through the probe in the ACB while measuring extracellular DA levels in the ACB and VTA. Local perfusion of the ACB with GBR significantly increased (500% of baseline) the extracellular levels of DA in the ACB and produced a concomitant decrease (50% of baseline) in the extracellular DA levels in the VTA. Perfusion of the ACB with BIC or PHAC alone produced a 200-400% increase in the extracellular levels of DA in the ACB but neither antagonist altered the levels of DA in the VTA. Co-perfusion of either GABA receptor antagonist with GBR further increased the extracellular levels of DA in the ACB to 700-800% of baseline. However, coperfusion with BIC completely prevented the reduction in the extracellular levels of DA in the VTA produced by GBR alone, whereas PHAC partially prevented the reduction. Local perfusion of the ACB with either MEC or SCOP alone had little effect on the extracellular levels of DA in the ACB or VTA. Co-perfusion of either cholinergic receptor antagonist with GBR markedly reduced the extracellular levels of DA in the ACB and prevented the effects of GBR on reducing DA levels in the VTA. Overall, the results of this study suggest that terminal DA release in the ACB is under tonic GABA inhibition mediated by GABAA (and possibly GABAB) receptors, and tonic cholinergic excitation mediated by both muscarinic and nicotinic receptors. Activation of GABAA (and possibly GABAB) receptors within the ACB may be involved in the feedback inhibition of VTA DA neurons. Cholinergic interneurons may influence the negative feedback system by regulating terminal DA release within the ACB.  相似文献   

13.
14.
The N-methyl-D-aspartate (NMDA) receptor-mediated regulation of the release of newly synthesized [3H]dopamine [( 3H]DA) was studied in vitro, both on rat striatal slices using a new microsuperfusion device and on rat striatal synaptosomes. Under Mg2(+)-free medium conditions, the NMDA (5 X 10(-5) M)-evoked release of [3H]DA from slices was found to be partly insensitive to tetrodotoxin (TTX). This TTX-resistant stimulatory effect of NMDA was blocked by either Mg2+ (10(-3) M) or the noncompetitive antagonist MK-801 (10(-6) M). In addition, the TTX-resistant NMDA-evoked response could be potentiated by glycine (10(-6) M) in the presence of strychnine (10(-6) M). The coapplication of NMDA (5 X 10(-5) M) and glycine (10(-6) M) stimulated the release of [3H]DA from striatal synaptosomes. This effect was blocked by Mg2+ (10(-3) M) or MK-801 (10(-5) M). These results indicate that some of the NMDA receptors involved in the facilitation of DA release are located on DA nerve terminals. These presynaptic receptors exhibit pharmacological properties similar to those described in electrophysiological studies for postsynaptic NMDA receptors.  相似文献   

15.
Effects of angiotensin on proximal tubular reabsorption   总被引:1,自引:0,他引:1  
Effects of angiotensin II on rat, rabbit, and bovine proximal tubular reabsorption have been demonstrated with a variety of techniques, including in vivo microperfusion, free-flow micropuncture of surface and juxtamedullary nephrons, perfusion of isolated tubules in vitro, and cell culture. Blockade of endogenous angiotensin production in vivo with converting-enzyme inhibition, or of receptors with saralasin, consistently inhibits proximal reabsorption of fluid in both superficial and juxtamedullary proximal tubules. Angiotensin effects on the proximal tubule are not neurally mediated, for they persist in denervated kidneys and are seen in nerve-free isolated tubules. Physiological concentrations of angiotensin (10(-11)-10(-9) M) stimulate electroneutral sodium transport from the basolateral membrane, whereas pharmacological doses (10(-7) M and above) inhibit reabsorption. The stimulatory effects appear to be receptor mediated. In addition to these direct effects of angiotensin on the proximal tubule epithelium, endogenous angiotensin may also alter peritubular physical forces to further enhance proximal reabsorption. These effects of angiotensin may represent an important homeostatic mechanism during states of extracellular fluid volume depletion.  相似文献   

16.
We have found the physiological mechanism of intensification of the excessive fluid removal from the body under the action of glucagon-like peptide-1 and its analog exenatide. Under the water load in rats, exenatide significantly increased the clearance of lithium, reduced fluid reabsorption in the proximal tubule of the nephron and intensified reabsorption of sodium ions in the distal parts, which contributed to the formation of sodium-free water and faster recovery of osmotic homeostasis. Blocking this pathway with a selective antagonist of glucagon-like peptide-1 receptors slowed down the elimination of excessive water from the body.  相似文献   

17.
The renal function in healthy man with salt and water depletion induced by natriuretic treatment was explored during steady hypotonic polyuria. Four 15 min clearance (cl.) periods, before, during and after dopamine (DA) infusion in a subpressor dose were performed. The 12 examined subjects showed different renal hemodynamic responses in the early stage of DA infusion, i.e. hyperemic (4 subjects, subgroup A) or ischemic (8 subjects, subgroup B). A decrease in urinary sodium excretion and increase in tubular sodium reabsorption, in particular at the diluting segment level, were induced by DA in both subgroups, at least in the late stage of infusion. During the control cl. period in subgroup A as compared with B the renal plasma flow was lower and the tubular sodium reabsorption higher, suggesting a relatively higher level of renal adrenergic activity.  相似文献   

18.
Abstract: The effect of different psychotropic drugs on the rate of DOPA accumulation after administration of a decarboxylase inhibitor (NSD 1015) was compared in the substantia nigra (SN) and caudate nucleus (CN) by a new radioenzymatic method. Inhibition of monoamine oxidase with pargyline or stimulation of dopamine (DA) receptors with apomorphine, N -n-propyl-norapomorphine or d -amphetamine reduced DOPA formation in the CN and SN to the same extent. Vice versa, both inhibition of DA receptors with haloperidol or (-)sulpiride and depletion of DA concentration with reserpine enhanced DOPA formation to a greater extent in the CN than in the SN. Apomorphine antagonized not only the effect of haloperidol and (-)sulpiride, but also, and even more effectively, that of reserpine. The results indicate that DA synthesis in the SN is controlled by both end-product inhibition and DA receptor-mediated mechanisms.  相似文献   

19.
The actions of cortisol on fetal renal function   总被引:1,自引:0,他引:1  
Renal function was studied in 6 fetal sheep, aged 126-135 days, before and after 3 injection of 15 mg of cortisol given at intervals of 12 h. Cortisol caused a significant rise in both renal blood flow (P less than 0.05) and glomerular filtration rate (P less than 0.005), and in urine flow rate (P less than 0.02) but it did not consistently cause a natriuresis. The urinary pH was unchanged following cortisol treatment, but bicarbonate excretion increased. Urinary phosphate excretion was increased (P less than 0.005) because of a rise in filtered phosphate and a fall in phosphate reabsorption. The titratable acid excretion increased (P less than 0.005) but urinary ammonium excretion did not. The total amount of sodium reabsorbed increased after cortisol but the amount of sodium reabsorbed in the proximal tubule did not increase, so fractional reabsorption in the proximal tubule decreased from 61.7 +/- 4.1% to 47.3 +/- 4.2% (P = 0.01). The total amount of sodium reabsorbed in the distal tubule increased and distal fractional reabsorption increased from 33.3 +/- 2.4% to 47.3 +/- 4.2% (P less than 0.01). Cortisol may increase the capacity of the immature kidney to play a role in fluid and electrolyte homeostasis by increasing glomerular filtration rate and delivering more sodium and water to the distal nephron where the reabsorption of sodium and water can be modified independently and in accordance with need.  相似文献   

20.
The renal and proximal tubule response to contralateral kidney exclusion was studied in a variety of circumstances. Recollection micropuncture studies were performed to assess the response to contralateral kidney clamping in the normal or a remnant kidney of the dog. Acute clamping of the contralateral kidney for a normal and unilateral remnant kidney resulted in marked reduction in proximal TF/P inulin ratios in the experimental kidney reflecting a 15 percent reduction in fluid reabsorption. Mean fractional excretion of sodium, potassium and water increased significantly in remnant kidney dogs but no significant change was observed in normal dogs except for potassium excretion. The marked reduction in proximal reabsorption occurred as soon as 5-15 minutes after contralateral kidney clamping and was compensated by distal reabsorption. Acute obstruction of the contralateral ureter results in a similar markedly reduced proximal tubular reabsorption. The reduction in proximal reabsorption induced by contralateral clamping occurred in the presence of reduced perfusion pressure and volume expansion and to some extent with renal denervation. When prostaglandin E2 or acetycholine were infused prior to contralateral kidney clamping, proximal reabsorption remained at control levels and the contralateral clamping response was blocked. Similar blockade occurred after treatment with indomethacin. Acute reduction in nephron mass causes a marked depression of proximal tubular sodium and fluid absorption not obviously accounted for by hemodynamicphysical factors and humoral factors may be involved. The level of distal reabsorption to increased proximal delivery following contralateral clamping, determines the net urinary excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号