首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria.

Results

Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent.

Conclusions

Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.  相似文献   

2.
Ivleva  N. B.  Sidoruk  K. V.  Pakrasi  H. B.  Shestakov  S. V. 《Microbiology》2002,71(4):433-437
To understand the functional role of CtpB and CtpC proteins, which are similar to the C-terminal processing CtpA peptidase, the effect of the insertional inactivation of the ctpB and ctpCgenes on the phenotypic characteristics of Synechocystis sp. PCC 6803 was studied. The inactivation of the ctpC gene was found to be lethal to the cyanobacterium, which indicates a vital role of the CtpC protein. The mutant with the inactivated ctpB gene had the same photosynthetic characteristics as the wild-type strain. The double mutant ctpActpB with the two deleted genes was identical, in the phenotypic characteristics, to the mutant with a knock-out mutation in the ctpAgene, which was unable to grow photoautotrophically. The data obtained suggest that, in spite of the high similarity of the Ctp proteins, they serve different functions in Synechocystis sp. PCC 6803 cells and cannot compensate for each other.  相似文献   

3.
4.
Compensating changes in the pigment apparatus of photosynthesis that resulted from a complete loss of phycobilisomes (PBS) were investigated in the cells of a PAL mutant of cyanobacterium Synechocystis sp. PCC 6803. The ratio PBS/chlorophyll calculated on the basis of the intensity of bands in the action spectra of photosynthetic activity of two photosystems in the wild strain was 1: 70 for PSII and 1: 300 for PSI. Taking into consideration the number of chlorophyll molecules per reaction center in each photosystem, these ratios could be interpreted as association of PBS with dimers of PSII and trimers of PSI as well as greater dependence of PSII as compared with PSI on light absorption by PBS. The ratio PSI/PSII determined by photochemical cross-section of the reactions of two photosystems was 3.5: 1.0 for wild strain of Synechocystis sp. PCC 6803 and 0.7: 1.0 for the PAL mutant. A fivefold increase in the relative content of PSII in pigment apparatus corresponds to a 5-fold increase in the intensity of bands at 685 and 695 nm as related to the band of PSI at 726 nm recorded in low-temperature fluorescence spectrum of the PAL mutant. Inhibition of PSII with diuron resulted in a pronounced stimulation of chlorophyll fluorescence in the PAL mutant as compared to the wild strain of Synechocystis sp. PCC 6803; these data suggested an activation of electron transfer between PSII and PSI in the mutant cells. Thus, the lack of PBS in the mutant strain of Synechocystis sp. PCC 6803 was compensated for by the higher relative content of PSII in the pigment apparatus of photosynthesis and by a rise in the rate of linear electron transport.  相似文献   

5.
The gene encoding subunit IV of the cytochrome b6/f complex (petD) has been isolated from a genomic library of the unicellular cyanobacterium Synechocystis sp. PCC 6803. The coding region consists of 480 nucleotides and can code for a polypeptide with a molecular weight of 17.5 kDa. The deduced amino acid sequence shows high identity with the corresponding sequences of both the photoautotrophic prokaryote Nostos sp. PCC 7906 as well as of lower and higher photoautotrophic eukaryotes (e.g. Chlorella protothecoides, Nicotiana tabacum). Transformation of Synechocystis sp. PCC 6803 with a plasmid containing the cloned petD gene in which the coding sequence is interrupted by the aminoglycoside 3-phosphotransferase gene (aph) from Tn903 resulted in the formation of km resistant transformants. The molecular analysis of independent transformants revealed that all clones were merodiploid containing both uninterrupted wild-type as well as interrupted mutant petD copies. Approaches to segregate these two genomes were unsuccessful implying an essential function of the petD gene product in Synechocystis sp. PCC 6803.Abbreviations aph aminoglycoside 3-phosphotransferase - cpDNA chloroplast DNA - km kanamycin - PSI photosystem I - PSII photosystem II  相似文献   

6.
Part of the chlL gene encoding a component involved in light-independent protochlorophyllide reduction was deleted in wild type and in a photosystem I-less strain of Synechocystis sp. PCC 6803. In resulting mutants, chlorophyll biosynthesis was fully light-dependent. When these mutants were propagated under light-activated heterotrophic growth conditions (in darkness except for 15 min of weak light a day) for several weeks, essentially no chlorophyll was detectable but protochlorophyllide accumulated. Upon return of the chlL - mutant cultures to continuous light, within the first 6 h chlorophyll was synthesized at the expense of protochlorophyllide at a rate independent of the presence of photosystem I. Chlorophyll biosynthesized during this time gave rise to a 685 nm fluorescence emission peak at 77 K in intact cells. This peak most likely originates from a component different from those known to be directly associated with photosystems II and I. Development of 695 and 725 nm peaks (indicative of intact photosystem II and photosystem I, respectively) required longer exposures to light. After 6 h of greening, the rate of chlorophyll synthesis slowed as protochlorophyllide was depleted. In the chlL - strain, greening occurred at the same rate at two different light intensities (5 and 50 E m-2s-1), indicating that also at low light intensity the amount of light is not rate-limiting for protochlorophyllide reduction. Thus, in this system the rate of chlorophyll biosynthesis is limited neither by biosynthesis of photosystems nor by the light-dependent protochlorophyllide reduction. We suggest the presence of a chlorophyll-binding chelator protein (with 77 K fluorescence emission at 685 nm) that binds newly synthesized chlorophyll and that provides chlorophyll for newly synthesized photosynthetic reaction centers and antennae.  相似文献   

7.
8.
RSF1010-derived plasmids are most efficiently transferred by conjugation to the unicellular cyanobacteriaSynechocystis strains sp. PCC6803 and PCC6714 andSynechococcus strains sp. PCC7942 and PCC6301, where they replicate autonomously, even though they contain no cyanobacterial DNA. These results are especially important in the case of the facultative heterotrophic strainSynechocystis PCC6714, which is not transformable [Mol Gen Genet 204:185, 1986]  相似文献   

9.

Synechocystis sp. PCC 6803 is an attractive host for bio-ethanol production due to its ability to directly convert atmospheric carbon dioxide into ethanol using photosystems. To enhance ethanol production in Synechocystis sp. PCC 6803, metabolic engineering was performed based on in silico simulations, using the genome-scale metabolic model. Comprehensive reaction knockout simulations by flux balance analysis predicted that the knockout of NAD(P)H dehydrogenase enhanced ethanol production under photoautotrophic conditions, where ammonium is the nitrogen source. This deletion inhibits the re-oxidation of NAD(P)H, which is generated by ferredoxin-NADP+ reductase and imposes re-oxidation in the ethanol synthesis pathway. The effect of deleting the ndhF1 gene, which encodes NADH dehydrogenase subunit 5, on ethanol production was experimentally evaluated using ethanol-producing strains of Synechocystis sp. PCC 6803. The ethanol titer of the ethanol-producing ∆ndhF1 strain increased by 145%, compared with that of the control strain.

  相似文献   

10.
11.
The genome of cyanobacterium Synechocystis sp. PCC 6803 contains the sll0136 (pepP) gene encoding the putative homolog of proline aminopeptidase PII (AMPPII) of the heterotrophic bacterium Escherichia coli. AMPPII is known to cleave the N-terminal amino acid residue of peptides and proteins only in the case of a penultimate proline position. The Synechocystis sp. PCC 6803 insertion mutant with inactivated pepP gene is characterized by the reduced content of phycobiliproteins and also proteins of photosystem II, which may be related to the reduced synthesis or stability of corresponding proteins. A possible involvement of PepP in biogenesis of proteins of the photosynthetic apparatus is discussed.  相似文献   

12.
An isolated 25 kDa protein of Synechocystis sp. PCC 6803 was N-terminally sequenced and assigned to a protein encoded by the ORF slr0924. This ORF shows a certain degree of sequence similarity to a subunit from the protein Translocon at the Inner envelope of pea Chloroplasts (Tic22). The deduced amino acid sequence of Slr0924 has a N-terminal extension, that contains two possible translational start points and two possible cleavage sites for leader peptidases. Immunostaining with an antibody raised to the over-produced protein revealed two cross-reacting forms, which probably correspond to a larger intermediate and the mature protein. Immunogold labelling of thin sections showed that the protein is located mainly in the thylakoid region. This result was verified by thylakoid membrane fractionation indicating that Slr0924 is a lumenal protein. The slr0924 gene product is essential for the viability of Synechocystis sp. PCC 6803 as shown by interposon mutagenesis. The merodiploid strain showed reduced photosynthetic activity compared to the wild-type. Furthermore, growth of the merodiploid strain was found to be completely inhibited after cultivation with glucose. Accordingly, the amount of the slr0924 gene product was regulated by glucose and light intensities in wild-type cells. The potential function of the protein in Synechocystis sp. PCC 6803 will be discussed.  相似文献   

13.
Cyanobacteria have a tremendous activity to adapt to environmental changes of their growth conditions. In this study, Synechocystis sp. PCC 6803 was used as a model organism to focus on the alternatives of cyanobacterial energy metabolism. Glucose oxidation in Synechocystis sp. PCC6803 was studied by inactivation of slr1843, encoding glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the oxidative pentose phosphate pathway (OPPP). The resulting zwf strain was not capable of glucose supported heterotrophic growth. Growth under autotrophy and under mixotrophy was similar to that of the wild-type strain, even though oxygen evolution and uptake rates of the mutant were decreased in the presence of glucose. The organic acids citrate and succinate supported photoheterotrophic growth of both WT and zwf. Proteome analysis of soluble and membrane fractions allowed identification of four growth condition-dependent proteins, pentose-5-phosphate 3-epimerase (slr1622), inorganic pyrophosphatase (sll0807), hypothetical protein (slr2032) and ammonium/methylammonium permease (sll0108) revealing details of maintenance of the cellular carbon/nitrogen/phosphate balance under different modes of growth.  相似文献   

14.
Cyanophycin or cyanophycin granule peptide is a protein that results from non-ribosomal protein synthesis in microorganisms such as cyanobacteria. The amino acids in cyanophycin can be used as a feedstock in the production of a wide range of chemicals such as acrylonitrile, polyacrylic acid, 1,4-butanediamine, and urea. In this study, an auxotrophic mutant (Rhizopus oryzae M16) of the filamentous fungus R. oryzae 99-880 was selected to express cyanophycin synthetase encoding genes. These genes originated from Synechocystis sp. strain PCC6803, Anabaena sp. strain PCC7120, and a codon optimized version of latter gene. The genes were under control of the pyruvate decarboxylase promoter and terminator elements of R. oryzae. Transformants were generated by the biolistic transformation method. In only two transformants both expressing the cyanophycin synthetase encoding gene from Synechocystis sp. strain PCC6803 was a specific enzyme activity detected of 1.5 mU/mg protein. In one of these transformants was both water-soluble and insoluble cyanophycin detected. The water-soluble fraction formed the major fraction and accounted for 0.5% of the dry weight. The water-insoluble CGP was produced in trace amounts. The amino acid composition of the water-soluble form was determined and constitutes of equimolar amounts of arginine and aspartic acid.  相似文献   

15.
To study the function of soluble NAD(P)H:quinone oxidoreductase of the cyanobacterium Synechocystis sp. PCC 6803 encoded by drgA gene, recombinant DrgA protein carrying 12 histidine residues on the C-terminal end was expressed in Escherichia coli and purified. Recombinant DrgA is a flavoprotein that exhibits quinone reductase and nitroreductase activities with NAD(P)H as the electron donor. Using EPR spectroscopy, it was demonstrated that addition of recombinant DrgA protein and NADPH to DCMU-treated isolated thylakoid membranes of the cyanobacterium increased the dark rereduction rate of the photosystem I reaction center (P700+). Thus, DrgA can participate in electron transfer from NADPH to the electron transport chain of the Synechocystis sp. PCC 6803 thylakoid membrane.  相似文献   

16.
Oxygenic phototrophs are vulnerable to damage by reactive oxygen species (ROS) that are produced in photosystem I (PSI) by excess photon energy over the demand of photosynthetic CO2 assimilation. In plant leaves, repetitive short-pulse (rSP) illumination produces ROS to inactivate PSI. The production of ROS is alleviated by oxidation of the reaction center chlorophyll in PSI, P700, during the illumination with the short-pulse light, which is supported by flavodiiron protein (FLV). In this study, we found that in the cyanobacterium Synechocystis sp. PCC 6803 P700 was oxidized and PSI was not inactivated during rSP illumination even in the absence of FLV. Conversely, the mutant deficient in respiratory terminal oxidases was impaired in P700 oxidation during the illumination with the short-pulse light to suffer from photo-oxidative damage in PSI. Interestingly, the other cyanobacterium Synechococcus sp. PCC 7002 could not oxidize P700 without FLV during rSP illumination. These data indicate that respiratory terminal oxidases are critical to protect PSI from ROS damage during rSP illumination in Synechocystis sp. PCC 6803 but not Synechococcus sp. PCC 7002.  相似文献   

17.
Galkin  A. N.  Mikheeva  L. E.  Shestakov  S. V. 《Microbiology》2003,72(1):52-57
Synechocystis sp. PCC 6803 mutants, in which one of the eukaryotic-type serine/threonine protein kinase genes pknD, pknE, pknG, and pknH was inactivated, were obtained by insertion mutagenesis. None of these mutants differed phenotypically from the wild-type strain, indicating that the pknD, pknE, pknG, and pknHgenes are not of crucial importance for the photoautotrophically grown cyanobacterium. The mutant with the inactivatedpknE gene was resistant to L-methionine-D,L-sulfoximine and especially to methylamine. The resistance was due neither to the impaired transport of these compounds nor to the inhibition of the production of toxic -glutamylmethylamide from methylamine. The data presented suggest that resistance to methylamine may be associated with alterations in the regulation of the glutamine synthetase system and that the PknE protein kinase may be involved in the regulation of nitrogen metabolism in the cyanobacterium studied.  相似文献   

18.
Ammonium is one of the major nutrients for plants, and a ubiquitous intermediate in plant metabolism, but it is also known to be toxic to many organisms, in particular to plants and oxygenic photosynthetic microorganisms. Although previous studies revealed a link between ammonium toxicity and photodamage in cyanobacteria under in vivo conditions, ammonium‐induced photodamage of photosystem II (PSII) has not yet been investigated with isolated thylakoid membranes. We show here that ammonium directly accelerated photodamage of PSII in Synechocystis sp. strain PCC6803, rather than affecting the repair of photodamaged PSII. Using isolated thylakoid membranes, it could be demonstrated that ammonium‐induced photodamage of PSII primarily occurred at the oxygen evolution complex, which has a known binding site for ammonium. Wild‐type Synechocystis PCC6803 cells can tolerate relatively high concentrations of ammonium because of efficient PSII repair. Ammonium tolerance requires all three psbA genes since mutants of any of the three single psbA genes are more sensitive to ammonium than wild‐type cells. Even the poorly expressed psbA1 gene, whose expression was studied in some detail, plays a detectable role in ammonium tolerance.  相似文献   

19.
A mutant strain of the cyanobacterium Synechocystis sp. PCC (Pasteur Culture Collection) 6803 has been developed in which psbB, the gene coding for the chlorophyl a-binding protein CP47 in Photosystem II (PSII), has been deleted. This deletion mutant can be used for the reintroduction of modified psbB into the cyanobacterium. To study the role of a large hydrophilic region in CP47, presumably located on the lumenal side of the thylakoid membrane between the fifth and sixth membrane-spanning regions, specific deletions have been introduced in psbB coding for regions within this domain. One psbB mutation leads to deletion of Gly-351 to Thr-365 in CP47, another psbB mutation was targeted towards deletion of Arg-384 to Val-392 in this protein. The deletion from Gly-351 to Thr-365 results in a loss of PSII activity and of photoautotrophic growth of the mutant, but the deletion between Arg-384 and Val-392 retains PSII activity and the ability to grow photoautotrophically. The mutant strain with the deletion from Gly-351 to Thr-365 does not assemble a stable PSII reaction center complex in its thylakoid membranes, and exhibits diminished levels of CP47 and of the reaction center proteins D1 and D2. In contrast to the Arg-384 to Val-392 portion of this domain, the region between Gly-351 and Thr-365 appears essential for the normal structure and function of photosystem II.  相似文献   

20.
A collection of 17 salt-sensitive mutants of the cyanobacterium Synechocystis sp. strain PCC 6803 was obtained by random cartridge mutagenesis. The genes coding for proteins essential for growth at high salt concentrations were mapped on the completely known genome sequence of this strain. The two genes coding for enzymes involved in biosynthesis of the osmolyte glucosylglycerol were affected in nine mutants. Two mutants defective in a glycoprotease encoding gene gcp showed a reduced salt resistance. Four genes were identified not previously known to be essential for salt tolerance in cyanobacteria. These genes (slr1799, slr1087, sll1061, and sll1062) code for proteins not yet functionally characterized. Received: 21 May 2001 / Accepted: 27 June 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号