首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yu Y  Yuan S  Yu Y  Huang H  Feng K  Pan M  Huang S  Dong M  Chen S  Xu A 《Glycobiology》2007,17(7):774-783
A novel F4-carbohydrate recognition domain (CRD)-linker-F3-CRD-type bi-CRD Branchiostoma belcheri tsingtauense galectin (BbtGal)-L together with its alternatively spliced mono-CRD isoform BbtGal-S from amphioxus intestine was encoded by a 9488-bp unique gene with eight exons and seven introns. The recombinant proteins of BbtGal were found to have beta-galactoside-binding activity, indicating that BbtGal was a member of the galectin family. Phylogenetic analysis of this gene along with its splicing form and genome structure suggested that the BbtGal gene was the primitive form of the chordate galectin family. Real-time polymerase chain reaction analyses (PCR) indicated that BbtGal mRNA was expressed during all stages of embryonic development. In terms of tissue distribution, BbtGal-L mRNA was mainly expressed in the immunity-related organs, such as hepatic diverticulum, intestine, and gill, but BbtGal-S was ubiquitously expressed in all tissues. The expression of BbtGal-L mRNA was elevated after acute challenge with various microorganisms, but BbtGal-L only bound to specific bacteria. The immune function of BbtGal was consistent with its localization both outside and inside the cell. Our study on amphioxus galectin may help further understanding of the evolution of chordate galectin in terms of host-pathogen interaction in the immune system.  相似文献   

2.
Galectin-8 has two different carbohydrate recognition domains (CRDs), the N-terminal Gal-8N and the C-terminal Gal-8C linked by a peptide, and has various effects on cell adhesion and signaling. To understand the mechanism for these effects further, we compared the binding activities of galectin-8 in solution with its binding and activation of cells. We used glycan array analysis to broaden the specificity profile of the two galectin-8 CRDs, as well as intact galectin-8s (short and long linker), confirming the unique preference for sulfated and sialylated glycans of Gal-8N. Using a fluorescence anisotropy assay, we examined the solution affinities for a subset of these glycans, the highest being 50 nM for NeuAcalpha2,3Lac by Gal-8N. Thus, carbohydrate-protein interactions can be of high affinity without requiring multivalency. More importantly, using fluorescence polarization, we also gained information on how the affinity is built by multiple weak interactions between different fragments of the glycan and its carrier molecule and the galectin CRD subsites (A-E). In intact galectin-8 proteins, the two domains act independently of each other in solution, whereas at a surface they act together. Ligands with moderate or weak affinity for the isolated CRDs on the array are bound strongly by intact galectin-8s. Also galectin-8 binding and signaling at cell surfaces can be explained by combined binding of the two CRDs to low or medium affinity ligands, and their highest affinity ligands, such as sialylated galactosides, are not required.  相似文献   

3.
4.
We have identified members of the Xenopus cortical granule lectin (xCGL) family as candidate target glycoproteins of Xenopus galectin-VIIa (xgalectin-VIIa) in Xenopus embryos. In addition to the original xCGL, we also identified a novel member of the xCGL family, xCGL2. Expression of the mRNAs of xCGL and xCGL2, as well as that of xgalectin-VIIa, was observed throughout early embryogenesis. Two and three potential N-glycosylation sites were deduced from the amino acid sequences of xCGL and xCGL2, respectively, and xgalectin-VIIa recognizes N-glycans linked to a common site in xCGL and xCGL2 and also recognizes N-glycans linked to a site specific to xCGL2. However, interaction between xgalectin-Ia and xCGLs was not detectable. We also obtained consistent results on surface plasmon resonance analysis involving xCGLs as ligands and xgalectins as analytes. The Kd value of the interaction between xgalectin-VIIa and xCGLs was calculated to be 35.9 nM. The structures of the N-glycans of xCGLs, which were recognized by xgalectin-VIIa, were analyzed by the two-dimensional sugar map method, and three kinds of N-acetyllactosamine type, biantennary N-glycans were identified as the major neutral N-glycans. The binding specificity of oligosaccharides for xgalectin-VIIa was analyzed by frontal affinity chromatography (FAC). The oligosaccharide specificity pattern of xgalectin-VIIa was similar to that of the human homolog galectin-3, and it was also shown that the N-acetyllactosamine type, biantennary N-glycans exhibit high affinity for xgalectin-VIIa (Kd = 11 microM). These results suggest that xgalectin-VIIa interacts with xCGLs through binding to N-acetyllactosamine type N-glycans and that this interaction might make it possible to organize a lectin network involving members of different lectin families.  相似文献   

5.
Previous work has demonstrated the ability of the NG2 proteoglycan, a component of microvascular pericytes, to stimulate endothelial cell motility and morphogenesis. This function of NG2 depends on formation of a complex with galectin-3 and alpha3beta1 integrin to stimulate integrin-mediated transmembrane signaling. In addition, the co-expression of galectin-3 and NG2 in A375 melanoma cells suggests that the malignant properties of these cells may be affected by interaction between the two molecules. Here, we extend the theme of co-expression and interaction of NG2 and galectin-3 to human glioma cells. We also establish a molecular basis for the NG2/galectin-3 interaction. The C-terminal carbohydrate recognition domain of galectin-3 is responsible for binding to the NG2 core protein. Within the NG2 extracellular domain, the membrane-proximal D3 segment of the proteoglycan contains the primary binding site for interaction with galectin-3. The interaction between galectin-3 and NG2 is a carbohydrate-dependent one mediated by N-linked rather than O-linked oligosaccharides within the D3 domain of the NG2 core protein. These studies establish a foundation for attempts to reduce the aggressive properties of tumor cells by disrupting the NG2/galectin-3 interaction.  相似文献   

6.
Thrombospondin is a large multifunctional glycoprotein synthesized, secreted and incorporated into the extracellular matrix by several cell types in culture. It is also present in the blood platelet and is secreted following platelet activation. We have previously shown that thrombospondin co-distributes with fibronectin in the extracellular matrix and that it can bind directly to purified fibronectin. In order to elucidate the chemical aspects of thrombospondin incorporation into the extracellular matrix, we studied the interaction of endothelial cell thrombospondin and fibronectin. We find that endothelial cell thrombospondin has two distinct binding domains for fibronectin. One domain is on the 70-kDa core fragment, probably similar to that of platelet thrombospondin. The other domain is on the 27-kDa N-terminal fragment and is unique to endothelial cell thrombospondin. The dissociation constant of the intact endothelial-cell-derived molecule is 0.7 +/- 0.2 x 10(-7) M. Following fragmentation, the separate domains bind with somewhat lower affinity: the core domain binds with a Kd of 3.4 +/- 1.5 x 10(-7) M and the N-terminal domain binds with a Kd of 8.8 +/- 1.8 x 10(-7) M. Binding of the intact molecule is Ca2+-independent. By contrast, following tryptic fragmentation, binding of the 70-kDa fragment is practically lost. It can be restored, however, by removal of Ca2+, indicating that the binding site on this domain is either sequestered or becomes so following fragmentation. Heparin, which also binds to both fragments, competed with fibronectin binding to the 27-kDa fragment but not to the 70-kDa domain. The fact that heparin also competitively inhibits fibronectin binding of the intact molecule further supports sequestration of the fibronectin-binding domain on the 70-kDa core fragment. Our data suggest that endothelial-cell thrombospondin possesses two distinct binding sites for fibronectin, a low-affinity constitutively available one and a high-affinity one, possibly sequestered on the intact unbound molecule.  相似文献   

7.
Delta family proteins are transmembrane molecules that bind Notch receptors and activate downstream signaling events in neighboring cells. In addition to serving as Notch ligands, Notch-independent roles for Delta have been suggested but are not fully understood. Here, we demonstrate a previously unrecognized role for Delta in filopodial actin formation. Delta1 and Delta4, but not Delta3, exhibit filopodial protrusive activity, and this activity is independent of Notch signaling. The filopodial activity of Delta1 does not depend on the PDZ-binding domain at the C-terminus; however, the intracellular membrane-proximal region that is anchored to the plasma membrane plays an important role in filopodial activity. We further identified a Notch-independent role of DeltaD in neuronal cell migration in zebrafish. These findings suggest a possible functional link between Notch-independent filopodial activity of Delta and the control of cell motility.  相似文献   

8.
We have isolated a series of recombinant λCh4A phages containing human histone genes. Histone H2A, H2B, H3 and H4 genes have been found to be clustered, but are not present in any simple repeat pattern. Hybridization of a blot containing phage DNA with S phase polysomal cDNA indicates the presence of additional sequences complementary to HeLa polysomal RNA sequences. Northern blot analysis using these clones as probes has also shown the presence of sequences complementary to non-histone-coding RNAs, some of which accumulate differentially in different stages of the cell cycle. We have also found, by hybridization with appropriate probes, that histone genes are interspersed with several copies of the Alu DNA family; however, not all of the histone genes are associated with an Alu DNA sequence.  相似文献   

9.
10.
C1q/TNF family comprises over thirty secreted multimeric proteins that play diverse and important roles in immune, endocrine, skeletal, neuronal, reproductive, sensory, and vascular systems. Here we describe two novel human C1q/TNF family members, designated as CTRP8 and CTRP9B. Both genes are absent in the mouse genome. CTRP8 is expressed predominantly in lung and testis. In addition to forming homotrimers, CTRP8 also forms heteromeric complexes with C1q-related factor (CRF). CRF is a secreted multimeric protein that forms heteromeric complexes with CTRP1, CTRP9, and CTRP10. Although human CTRRP9A and CTRP9B share 98% amino acid identity, they are encoded by distinct genes and are biochemically distinct. While CTRP9A is robustly secreted as a multimeric protein, CTRP9B requires physical association with CTRP9A or adiponectin for its secretion. We propose here that combinatorial association between C1q/TNF family members is a possible mechanism to generate an expanded repertoire of functionally distinct ligands with altered function and/or receptor specificity.  相似文献   

11.
We report the isolation and characterization of two Arabidopsis homeobox genes highly related to the Athb-8 gene. The full-length cDNAs encode proteins of 841 and 852 amino acids which we have designated Athb-9 and -14, respectively. Athb-8, -9 and -14 are members of a small family of HD-Zip proteins (HD-ZIP III) characterized by a HD-Zip motif confined to the N-terminus of the polypeptide. The spatial organization of the HD-Zip domain of Athb-8, -9 and -14 is different from that of the Athb-1 (a member of the HD-ZIP I family) and Athb-2 (a member of the HD-ZIP II family) HD-Zip domains. DNA binding analysis performed with random-sequence DNA templates showed that the Athb-9 HD-Zip (HD-Zip-9) domain, but not the Athb-9 HD alone, binds to DNA. The HD-Zip-9 domain recognizes a 11 bp pseudopalindromic sequence (GTAAT(G/C)ATTAC), as determined by selecting high-affinity binding sites from random-sequence DNA. Moreover, gel retardation assays demonstrated that the HD-Zip-9 domain binds to DNA as a dimer. These data support the notion that the HD-ZIP III domain interacts with DNA recognition elements in a fashion similar to the HD-ZIP I and II domains.  相似文献   

12.
Insect vitellogenin and yolk protein receptors (VgR/YPR) are newly discovered members of the low-density lipoprotein receptor (LDLR) family, which is characterized by a highly conserved arrangement of repetitive modular elements homologous to functionally unrelated proteins. The insect VgR/YPRs are unique in having two clusters of complement-type cysteine-rich (class A) repeats or modules, with five modules in the first cluster and seven in the second cluster, unlike classical LDLRs which have a single seven-module cluster, vertebrate VgRs and very low density lipoprotein receptors (VLDLR) which have a single eight-module cluster, and LDLR-related proteins (LRPs) and megalins which have four clusters of 2–7, 8, 10, and 11 modules. Alignment of clusters across subfamilies by conventional alignment programs is problematic because of the repetitive nature of the component modules which may have undergone rearrangements, duplications, and deletions during evolution. To circumvent this problem, we ``fingerprinted' each class A module in the different clusters by identifying those amino acids that are both relatively conserved and relatively unique within the cluster. Intercluster reciprocal comparisons of fingerprints and aligned sequences allowed us to distinguish four cohorts of modules reflecting shared recent ancestry. All but two of the 57 modules examined could be assigned to one of these four cohorts designated A, B, C, and D. Alignment of clusters based on modular cohorts revealed that all clusters are derived from a single primordial cluster of at least seven modules with a consensus arrangement of CDCADBC. All extant clusters examined are consistent with this consensus, though none matches it perfectly. This analysis also revealed that the eight-module clusters in vertebrate VgRs, insect VgR/YPRs, and LRP/megalins are not directly homologous with one another. Assignment of modules to cohorts permitted us to properly align 32 class A clusters from all four LDLR subfamilies for phylogenetic analysis. The results revealed that smaller one-cluster and two-cluster members of the family did not originate from the breakup of a large two-cluster or four-cluster receptor. Similarly, the LRP/megalins did not arise from the duplication of a two-cluster insect VgR/YPR-like progenitor. Rather, it appears that the multicluster receptors were independently constructed from the same single-cluster ancestor. Received: 16 January 1997 / Accepted: 21 August 1997  相似文献   

13.
Ruk/CIN85/SETA/CD2BP3 and CD2AP/CMS/METS-1 comprise a new family of proteins involved in such fundamental processes as clustering of receptors and rearrangement of the cytoskeleton in regions of specialised cell-cell contacts, ligand-activated internalisation and targeting to lysosome degradation pathway of receptor tyrosine kinases, and apoptotic cell death. As typical adapter proteins they execute these functions by interacting with other signalling molecules via multiple protein-protein interaction interfaces: SH3 domains, Pro-rich region and coiled-coil domain. It has been previously demonstrated that Ruk is able to interact with the p85alpha regulatory subunit of PI 3-kinase and that the SH3 domain of p85alpha is required for this interaction. However, later observations hinted at a more complex mechanism than simple one-way SH3-Pro-rich interaction. Because interaction with p85alpha was suggested to be important for pro-apoptotic activity of the long isoform of Ruk, Ruk(l)/CIN85, we carried out detailed studies of the mechanism of this interaction and demonstrated that multiple domains are involved; SH3 domains of Ruk are required and sufficient for efficient interaction with full-length p85alpha but the SH3 domain of p85alpha is vital for their "activation" by ousting them from intramolecular interaction with the Pro-rich region of Ruk. Our data also suggest that homodimerisation via C-terminal coiled-coil domain affects both intra- and intermolecular interactions of Ruk proteins.  相似文献   

14.
The serine/threonine with no lysine kinase 3 (WNK3) modulates the activity of the electroneutral cation-coupled chloride cotransporters (CCC) to promote Cl(-) influx and prevent Cl(-) efflux, thus fitting the profile for a putative "Cl(-)-sensing kinase". The Ste20-type kinases, SPAK/OSR1, become phosphorylated in response to reduction in intracellular chloride concentration and regulate the activity of NKCC1. Several studies have now shown that WNKs function upstream of SPAK/OSR1. This study was designed to analyze the role of WNK3-SPAK interaction in the regulation of CCCs with particular emphasis on NCC. In this study we used the functional expression system of Xenopus laevis oocytes to show that different SPAK binding sites in WNK3 ((241, 872, 1336)RFxV) are required for the kinase to have effects on CCCs. WNK3-F1337A no longer activated NKCC2, but the effects on NCC, NKCC1, and KCC4 were preserved. In contrast, the effects of WNK3 on these cotransporters were prevented in WNK3-F242A. The elimination of F873 had no consequence on WNK3 effects. WNK3 promoted NCC phosphorylation at threonine 58, even in the absence of the unique SPAK binding site of NCC, but this effect was abolished in the mutant WNK3-F242A. Thus, our data support the hypothesis that the effects of WNK3 upon NCC and other CCCs require the interaction and activation of the SPAK kinase. The effect is dependent on one of the three binding sites for SPAK that are present in WNK3, but not on the SPAK binding sites on the CCCs, which suggests that WNK3 is capable of binding both SPAK and CCCs to promote their phosphorylation.  相似文献   

15.
Members of the YidC family exist in all three domains of life, where they control the assembly of a large variety of membrane protein complexes that function as transporters, energy devices, or sensor proteins. Recent studies in bacteria have shown that YidC functions on its own as a membrane protein insertase independent of the Sec protein-conducting channel. YidC can also assist in the lateral integration and folding of membrane proteins that insert into the membrane via the Sec pathway.  相似文献   

16.
In the postgenomic era, one of the most interesting and important challenges is to understand protein interactions on a large scale. The physical interactions between protein domains are fundamental to the workings of a cell: in multi-domain polypeptide chains, in multi-subunit proteins and in transient complexes between proteins that also exist independently. To study the large-scale patterns and evolution of interactions between protein domains, we view interactions between protein domains in terms of the interactions between structural families of evolutionarily related domains. This allows us to classify 8151 interactions between individual domains in the Protein Data Bank and the yeast Saccharomyces cerevisiae in terms of 664 types of interactions, between protein families. At least 51 interactions do not occur in the Protein Data Bank and can only be derived from the yeast data. The map of interactions between protein families has the form of a scale-free network, meaning that most protein families only interact with one or two other families, while a few families are extremely versatile in their interactions and are connected to many families. We observe that almost half of all known families engage in interactions with domains from their own family. We also see that the repertoires of interactions of domains within and between polypeptide chains overlap mostly for two specific types of protein families: enzymes and same-family interactions. This suggests that different types of protein interaction repertoires exist for structural, functional and regulatory reasons. Copyright 12001 Academic Press.  相似文献   

17.
Sulfhydryl groups are involved in the interaction of FSH with its receptor   总被引:1,自引:0,他引:1  
FSH has recently been reported to possess thioredoxin-like activity, presumably explained by the homology between a region of FSH-beta subunit and the active site of thioredoxin. The homologous sequence lies within a receptor binding region, which suggests a possible role for sulfhydryl groups in the formation of an active hormone-receptor complex and subsequent signal transduction. In order to determine the relevance of sulfhydryl groups on FSH-receptor interaction, we studied the effect of N-ethylmaleimide (NEM) and glutathione on FSH binding. The results indicate that free sulfhydryl groups, probably derived from the FSH receptor, are involved in ligand-receptor interaction.  相似文献   

18.
In Escherichia coli FtsZ assembles into a Z ring at midcell while assembly at polar sites is prevented by the min system. MinC, a component of this system, is an inhibitor of FtsZ assembly that is positioned within the cell by interaction with MinDE. In this study we found that MinC consists of two functional domains connected by a short linker. When fused to MalE the N-terminal domain is able to inhibit cell division and prevent FtsZ assembly in vitro. The C-terminal domain interacts with MinD, and expression in wild-type cells as a MalE fusion disrupts min function, resulting in a minicell phenotype. We also find that MinC is an oligomer, probably a dimer. Although the C-terminal domain is clearly sufficient for oligomerization, the N-terminal domain also promotes oligomerization. These results demonstrate that MinC consists of two independently functioning domains: an N-terminal domain capable of inhibiting FtsZ assembly and a C-terminal domain responsible for localization of MinC through interaction with MinD. The fusion of these two independent domains is required to achieve topological regulation of Z ring assembly.  相似文献   

19.
Regulators of G protein signaling (RGS) proteins bind to active G alpha subunits and accelerate the rate of GTP hydrolysis and/or block interaction with effector molecules, thereby decreasing signal duration and strength. RGS proteins are defined by the presence of a conserved 120-residue region termed the RGS domain. Recently, it was shown that the G protein-coupled receptor kinase 2 (GRK2) contains an RGS domain that binds to the active form of G alpha(q). Here, the ability of GRK2 to interact with other members of the G alpha(q) family, G alpha(11), G alpha(14), and G alpha(16), was tested. The signaling of all members of the G alpha(q) family, with the exception of G alpha(16), was inhibited by GRK2. Immunoprecipitation of full-length GRK2 or pull down of GST-GRK2-(45-178) resulted in the detection of G alpha(q), but not G alpha(16), in an activation-dependent manner. Moreover, activated G alpha(16) failed to promote plasma membrane (PM) recruitment of a GRK2-(45-178)-GFP fusion protein. Assays with chimeric G alpha(q)(-)(16) subunits indicated that the C-terminus of G alpha(q) mediates binding to GRK2. Despite showing no interaction with GRK2, G alpha(16) does interact with RGS2, in both inositol phosphate and PM recruitment assays. Thus, GRK2 is the first identified RGS protein that discriminates between members of the G alpha(q) family, while another RGS protein, RGS2, binds to both G alpha(q) and G alpha(16).  相似文献   

20.
Apolipoprotein A-V is a potent modulator of plasma triacylglycerol levels. To investigate the molecular basis for this phenomenon we explored the ability of apolipoprotein A-V, in most experiments complexed to disks of dimyristoylphosphatidylcholine, to interact with two members of the low density lipoprotein receptor family, the low density lipoprotein receptor-related protein and the mosaic type-1 receptor, SorLA. Experiments using surface plasmon resonance showed specific binding of both free and lipid-bound apolipoprotein A-V to both receptors. The binding was calcium dependent and was inhibited by the receptor associated protein, a known ligand for members of the low density lipoprotein receptor family. Preincubation with heparin decreased the receptor binding of apolipoprotein A-V, indicating that overlap exists between the recognition sites for these receptors and for heparin. A double mutant, apolipoprotein A-V (Arg210Glu/Lys211Gln), showed decreased binding to heparin and decreased ability to bind the low density lipoprotein receptor-related protein. Association of apolipoprotein A-V with the low density lipoprotein receptor-related protein or SorLA resulted in enhanced binding of human chylomicrons to receptor-covered sensor chips. Our results indicate that apolipoprotein A-V may influence plasma lipid homeostasis by enhancing receptor-mediated endocytosis of triacylglycerol-rich lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号