首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of a cold-sensitive step in the mechanism of modeccin action   总被引:7,自引:0,他引:7  
Modeccin is a toxic lectin that arrests protein synthesis in mammalian cells by catalytically inactivating 60 S ribosomes. To interact with 60 S ribosomes, the catalytic subunit of modeccin must pass through a membrane and enter the cytosol. Two known steps in the mechanism of modeccin action are the receptor-mediated internalization of the toxin into vesicles and a second step that requires a low pH within the vesicles. We report here another step required for modeccin to arrest protein synthesis, identified because this step was blocked at 15 degrees C. Modeccin traveling from cell surface receptors to the cytosol at 37 degrees C passed the low pH step within vesicles in a minimum time of 15 min after endocytosis and reached the cold-sensitive step 15 min later. There was no effect on protein synthesis until about 45 min after modeccin had passed the cold-sensitive step, suggesting that the toxin was still within vesicles at the time of the cold-sensitive event. The low temperature at which modeccin failed to reach the cytosol correlated with an apparent low temperature block in the transfer of endocytosed modeccin to lysosomes. The possibility is discussed that modeccin does not penetrate to the cytosol directly from endocytic vesicles.  相似文献   

2.
Modeccin inhibits polypeptide-chain elongation catalysed by Artemia salina (brine shrimp) ribosomes by inactivating the 60 S ribosomal subunit. Among the individual steps of elongation, peptide-bond formation, catalysed by 60 S peptidyltransferase, is unaffected by the toxin, whereas the binding of EF 2 (elongation factor 2) to ribosomes is strongly inhibited. Modeccin does not affect the poly(U)-dependent non-enzymic binding of either deacylated tRNAPhe or phenylalanyl-tRNA to ribosomes. The inhibitory effect of modeccin on the EF 1 (elongation factor 1)-dependent binding of phenylalanyl-tRNA is discussed, since it is decreased by tRNAPhe, which stimulates the binding reaction. The analysis of the distribution of ribosome-bound radioactivity during protein synthesis shows that modeccin consistently inhibits the radioactivity bound as long-chain peptides, but depending on the experimental conditions, can leave unchanged or even greatly stimulates the radioactivity bound as phenylalanyl-tRNA and/or short-chain peptides. It is concluded that, during the complete elongation cycle, modeccin does not affect the binding of the first aminoacyl-tRNA to ribosomes, but inhibits some step in the subsequent repetitive activity of either EF 1 or EF 2. The results obtained indicate that the mechanism of action of modeccin is very similar to that of ricin and related plant toxins such as abrin and crotin.  相似文献   

3.
In pulse-chase experiments in which log-phase cells of Chlamydomonas reinhardtii were labeled in vivo for 5 min with H2(35)SO4, fluorographs of immunoprecipitates from whole cell extracts revealed that chloroplast ribosomal proteins L-2, L-6, L-21, and L-29, which are made in the cytosol and imported, appeared in their mature forms. However, in the case of chloroplast ribosomal protein L-18, which is also made in the cytoplasm and imported, a prominent precursor with an apparent molecular weight of 17,000 was found at the end of a 5-min pulse. This precursor was processed to its mature size (apparent molecular weight of 15,500) within the first 5 min of the subsequent chase. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the precursor to L-18 formed in vivo was 1.5 kilodaltons smaller than the primary product detected in translations of Chlamydomonas polyadenylated RNA in vitro. Upon a 10-min incubation with a postribosomal supernatant from Chlamydomonas, the 18,500-dalton precursor detected in vitro could be partially converted into a polypeptide that comigrated with the 17,000-dalton precursor detected in extracts of cells labeled in vivo. Under conditions in which the total amounts of chloroplast proteins had been reduced and cells were made to synthesize ribosomes rapidly, the apparent half-life of the 17,000-dalton precursor was extended over that seen in log-phase cells. When chloroplast protein synthesis was inhibited with lincomycin for 3 h before labeling under these conditions, the 17,000-dalton L-18 precursor but not the mature form was found, and the precursor was slowly degraded during a 60-min chase. When cells were placed in the dark for 3 h before labeling, processing of this precursor to the mature form appeared unaffected, but the chloroplast-synthesized ribosomal protein L-26 was detected, indicating that chloroplast protein synthesis was still occurring. We interpret these results to indicate that the maturation of protein L-18 in vivo involves at least two processing steps, one of which depends on a protein made on chloroplast ribosomes.  相似文献   

4.
Ribosomal protein methylation has been well documented but its function remains unclear. We have examined this phenomenon using an Escherichia coli mutant (prmB2), which fails to methylate glutamine residue number 150 of ribosomal protein L3. This mutant exhibits a cold-sensitive phenotype: its growth rate at 22 degrees C is abnormally low in complete medium. In addition, strains with this mutation accumulate abnormal and unstable ribosomal particles; 50-S and 30-S subunits are formed, but at a lower rate. Once assembled, ribosomes with unmethylated L3 are fully active by several criteria. (a) Protein synthesis in vitro with purified 70-S prmB2 ribosomes is as active as wild-type using either a natural (R17) or an artificial [poly(U)] messenger. (b) The induction of beta-galactosidase in vivo exhibits normal kinetics and the enzyme has a normal rate of thermal denaturation. (c) These ribosomes are standard when exposed in vitro to a low magnesium concentration or increasing molarities of LiCl. Efficient methylation of L3 in vitro requires either unfolded ribosomes or a mixture of ribosomal protein and RNA. We suggest that the L3-specific methyltransferase may qualify as one of the postulated 'assembly factors' of the E. coli ribosome.  相似文献   

5.
The long-term effects (up to 12 h) of low dose in vivo actinomycin D treatment, which selectively inhibits rRNA synthesis, on the activity of rat liver for the synthesis of ribosomal proteins relative to that for the synthesis of total protein were investigated. The effects of actinomycin D treatment in vivo and in vitro on the template activity of poly(A)-containing mRNA of rat liver for ribosomal proteins were examined by using a wheat germ cell-free system. The following results were obtained. 1. The activity of rat liver for synthesizing total protein observed in vivo and in vitro was inhibited by actinomycin D treatment even at a small dose. 2. A double-labeling technique using [3H] and [14C]leucine in vivo showed that the rate of synthesis of the ribosomal protein fraction relative to that of total protein in actinomycin-treated rat liver (6 + 6 h) was 1.45 times higher than that in the control rat. 3. By using a wheat germ cell-free system, it was shown that the template activity of poly(A)-containing mRNA for the synthesis of total protein was increased slightly by actinomycin D treatment in vivo. Furthermore, the template activity for the ribosomal protein fraction relative to that for total protein was increased. This increase was observed in most of the ribosomal proteins separated on two-dimensional acrylamide gel electrophoresis, although the extents of increase were different among individual ribosomal proteins examined. On the other hand, the selective increase of the template activity for the ribosomal protein fraction was not observed when poly(A)-containing mRNA was incubated with actinomycin D in vitro, although the template activity for total protein was increased slightly.  相似文献   

6.
Weanling (23-day-old) rats were fed on either a low-protein diet (6% casein) or a diet containing an adequate amount of protein (18% casein) for 28 days. Hepatic cells from animals fed on the deficient diet were characterized by markedly lower concentrations of protein and RNA in all cellular fractions as compared with cells from control rats. The bound rRNA fraction was decreased to the greatest degree, whereas the free ribosomal concentrations were only slightly less than in control animals. A good correlation was observed between the rate of hepatic protein synthesis in vivo and the cellular protein content of the liver. Rates of protein synthesis both in vivo and in vitro were directly correlated with the hepatic concentration of individual free amino acids that are essential for protein synthesis. The decreased protein-synthetic ability of the ribosomes from the liver of protein-deprived rats was related to a decrease in the number of active ribosomes and heavy polyribosomes. The lower ribosomal content of the hepatocytes was correlated with the decreased concentration of essential free amino acids. In the protein-deprived rats, the rate of accumulation of newly synthesized cytoplasmic rRNA was markedly decreased compared with control animals. From these results it was concluded that amino acids regulate protein synthesis (1) by affecting the number of ribosomes that actively synthesize protein and (2) by inhibiting the rate of synthesis of new ribosomes. Both of these processes may involve the synthesis of proteins with a rapid rate of turnover.  相似文献   

7.
Rats poisoned with abrin (2.5 micrograms/100 g body weight) died within 36 h with severe necrosis of acinar pancreatic cells. Incorporation in vivo of labelled amino acids into pancreatic protein was greatly impaired 6 h after poisoning. Microsomes isolated from the pancreas of poisoned rats at 6 h had a reduced capacity for protein synthesis in vitro. Incorporation in vivo of orotic acid into pancreatic RNA was decreased 12 h after poisoning.  相似文献   

8.
In the posterior silk gland of Bombyx mori, ribosomal protein S1, homologous to S6 in mammals, is partially phosphorylated in a normally fed animal. Before the first meal of the fifth larval instar, S1 is completely dephosphorylated. Likewise, starvation induces rapid dephosphorylation of the protein in both free and membrane-bound ribosomes. Upon refeeding after 48 h of starvation, S1 becomes phosphorylated again, first on membrane-bound ribosomes, then on free ribosomes, with a lag time of about 3 h. Following 48 h of refeeding, the most highly phosphorylated form of S1 predominates in both populations of ribosomes. These variations in phosphorylation are correlated with the level of protein synthesis in the posterior silk gland, 70% of the ribosomes occurring in polysomes upon feeding and only 30% upon starvation [Prudhomme, J.-C. & Couble, P. (1979) Biochimie (Paris) 61, 215-227]. After in vivo 32P labelling, the phosphopeptides of S1 from free and membrane-bound ribosomes were found to be identical and phosphoserine (only) was found in each S1. These results suggest the involvement of S1 phosphorylation in the regulation of protein synthesis at the translational level and the existence of at least two different pathways controlling this phosphorylation: one for the free ribosomes, the other for the membrane-bound ribosomes.  相似文献   

9.
Dry wheat embryos contain large quantities of ribosomes, synthesized and assembled during embryogenesis. When messenger RNA isolated from dry embryos is translated, in vitro, a significant proportion of the total translation products (approx. 10%) is identifiable as ribosomal proteins, by electrophoresis in two distinct two-dimensional polyacrylamide gel electrophoretic systems. When germinating embryos are labelled with [35S]methionine, during the first 24 h of imbibition, the appearance of newly synthesized ribosomal proteins in the cytosolic fraction is barely detectable. However, this low level (< 1% of total cytosolic protein synthesis) of observed ribosomal protein synthesis is not correlated with a correspondingly low level of ribosomal protein mRNA. Ribosomal proteins constitute at least 10% of the products of translation, in vitro, of mRNA isolated from germinating wheat embryos. Ribosomal proteins are also conspicuous products of translation when polyribosomes isolated from imbibing embryos are used to direct protein synthesis in a cell-free ‘run-off’ system, and newly synthesized ribosomal proteins can be detected in the nuclei isolated from germinating embryos. It is proposed that their absence from the cytosolic fraction is a consequence of post-translational regulatory events.  相似文献   

10.
Carbon tetrachloride (CCl4) treatment of rats produces an early defect in methylation of hepatocyte ribosomal RNA, which occurs concurrently with a defect in the protein synthetic capacity of isolated ribosomes. The CCl4-induced methylation defect is specific for the 2'-O-ribose position, and a corresponding proportional increase in m7G base methylation occurs in vivo. Undermethylated ribosomal subunits (rRNA) from CCl4-treated preparations can be methylated in vitro to a much greater extent than those from control preparations, and in vitro methylation restores their functional capacity. In vitro methylation of treated ribosomal subunits (which restores functional capacity) occurs at 2'-O-ribose positions (largely G residues). In contrast, in vitro methylation of control ribosomal subunits (which does not affect functional activity) represents base methylation as m7G, sites which are apparently methylated in treated preparations in vivo. Methylation/demethylation of 2'-O-ribose sites in rRNA exposed on the surface of cytoplasmic ribosomal subunits may represent an important cellular mechanism for controlling protein synthesis in quiescent hepatocytes, and it appears that CCl4 disrupts protein synthesis by inhibiting this 2'-O-ribose methylation.  相似文献   

11.
Protein kinase associated with ribosomes of streptomycetes phosphorylates 11 ribosomal proteins. Phosphorylation activity of protein kinase reaches its maximum at the end of exponential phase of growth. When (32)P-labeled cells from the end of exponential phase of growth were transferred to a fresh medium, after 2 h of cultivation ribosomal proteins lost more than 90% of (32)P and rate of polypeptide synthesis increases twice. Protein kinase cross-reacting with antibody raised against protein kinase C was partially purified from 1 M NH(4)Cl wash of ribosomes and used to phosphorylation of ribosomes. Phosphorylation of 50S subunits (L2, L3, L7, L16, L21, L23, and L27) had no effect on the integrity of subunits but affects association with 30 to 70S monosomes. In vitro system derived from ribosomal subunits was used to examine the activity of phosphorylated 50S at poly(U) translation. Replacement unphosphorylated 50S with 50S possessed of phosphorylated r-proteins leads to the reduction of polypeptide synthesis of about 52%. The binding of N-Ac[(14)C]Phe-tRNA to A-site of phosphorylated ribosomes is not affected but the rate of peptidyl transferase is more than twice lower than that in unphosphorylated ribosomes. These results provide evidence that phosphorylation of ribosomal proteins is involved in mechanisms regulating the translational system of Streptomyces collinus.  相似文献   

12.
Mitotic HeLa cells (M cells) synthesize protein at about 25% of the rate of S phase cells. This decrease in protein synthesis is due to a reduction in the rate of initiation. However, extracts prepared from M cells are almost as active in protein synthesis as S cell extracts. Both cell extracts are quite active in in vitro initiation of protein synthesis. Moreover, two steps in initiation, binding of Met-tRNAf to 40S ribosomal subunits and binding of mRNA to ribosomes, show similar activity in both extracts. The difference in protein synthesizing activity observed in vivo is largely eliminated in the preparation of cell-free systems. The ribosomes of M cells contain small mol wt RNA, which inhibits protein synthesis in vitro. This RNA, which has possibly a nuclear origin, may be a cause of the reduction in the rate of protein synthesis in M cells.  相似文献   

13.
The phosphorylation of eukaryotic ribosomal protein S6 by protein kinase C   总被引:9,自引:0,他引:9  
Purified Ca2+-dependent and phospholipid-dependent protein kinase (protein kinase C) from bovine brain catalysed the phosphorylation of ribosomal protein S6 when incubated with 40S ribosomal subunits from rat liver or from hamster fibroblasts. The phosphorylation was dependent on Ca2+ and phospholipid, and occurred under ionic conditions similar to those which support protein biosynthesis in vitro. Protein kinase C phosphorylated at least three sites on ribosomal protein S6 when incubated with unphosphorylated ribosomes, and increased the extent of phosphorylation of ribosomes previously phosphorylated predominantly on two sites by cyclic-AMP-dependent protein kinase, converting some molecules to the tetraphosphorylated or pentaphosphorylated form. This indicates that protein kinase C can phosphorylate sites on ribosomal protein S6 other than those phosphorylated by the cyclic-AMP-dependent protein kinase, and this conclusion was confirmed by analysis of tryptic phosphopeptides. These results strengthen the possibility that protein kinase C might be involved in catalysing the multisite phosphorylation of ribosomal protein S6 in certain circumstances in vivo.  相似文献   

14.
Cyclic nucleotide-independent protein kinase (EC 2.7.1.37) activity was found in the nuclear cap organelle, within which ribosomes of zoospores of Blastocladiella emersonii are sequestered. Two protein kinase activities were resolved from the high-salt wash fraction of zoospore ribosomes by selective adsorption to DEAE-cellulose. Both enzymes phosphorylated in vitro a 32,000 Mr protein of the 40S ribosomal subunit. Phosphorylation of this ribosomal protein, which exhibits electrophoretic properties similar to those of mammalian ribosomal protein S6, was also observed in vivo in 32P-labeled zoospores.  相似文献   

15.
A functional ribosomal protein mRNA, encoding the 60 S subunit protein L1, has been synthesized in vitro using bacteriophage SP6 RNA polymerase. This mRNA directs the synthesis of a product indistinguishable from L1 protein purified from Xenopus ovarian ribosomes. Our results show that L1 synthesis in stage VI oocytes increases in response to microinjection of exogenous SP6-L1 mRNA, but excess L1 protein is not stably accumulated. These results indicate that dosage compensation does not occur at the translational level for this ribosomal protein mRNA and that the abundance of this protein in fully grown oocytes is subject to post-translational regulation.  相似文献   

16.
In the Saccharomyces cerevisiae double-stranded RNA virus, programmed -1 ribosomal frameshifting is responsible for translation of the second open reading frame of the essential viral RNA. A typical slippery site and downstream pseudoknot are necessary for this frameshifting event, and previous work has demonstrated that ribosomes pause over the slippery site. The translational intermediate associated with a ribosome paused at this position is detected, and, using in vitro translation and quantitative heelprinting, the rates of synthesis, the ribosomal pause time, the proportion of ribosomes paused at the slippery site, and the fraction of paused ribosomes that frameshift are estimated. About 10% of ribosomes pause at the slippery site in vitro, and some 60% of these continue in the -1 frame. Ribosomes that continue in the -1 frame pause about 10 times longer than it takes to complete a peptide bond in vitro. Altering the rate of translational initiation alters the rate of frameshifting in vivo. Our in vitro and in vivo experiments can best be interpreted to mean that there are three methods by which ribosomes pass the frameshift site, only one of which results in frameshifting.  相似文献   

17.
Disruption of the external sheath of Streptomyces granaticolor aerial spores and subsequent cultivation in a rich medium result in a synchronous germination. This method was used to analyze RNA and protein patterns during the germination. The germination process took place through a sequence of time-ordered events. RNA and protein synthesis started during the first 5 min and net DNA synthesis at 60-70 min of germination. Within the first 10 min of germination, synthesis of RNA was not sensitive to the inhibitory effect of rifamycin. During this period rRNA and other species including 4-5-S RNA were synthesized. Dormant spores contained populations of ribosomes or ribosomal precursors that were structurally and functionally defective. The ribosomal particles bound a sporulation pigment(s) of the melanine type. The ribosomal proteins complexed to the pigments formed insoluble aggregates which were easily removed from the ribosomes by one wash with 1 M NH4Cl. During the first 10 min of germination, pigment(s) were liberated from the complexes with the ribosomes and protein extracts of the washed ribosomes had essentially the same pattern as the extracts of ribosomes of vegetative cells. These structural alterations were accompanied by enhancement of the ribosome activities in polypeptide synthesis in vivo and in vitro. When the spores were incubated with a 14C-labelled amino acid mixture in the presence of rifamycin, only three proteins (GS1, GL1 and GS9) were identified to be radiolabelled in the extracts from the washed ribosomes. These experiments indicate that liberation of the sporulation pigment(s) from the complexes with ribosomal proteins and assembly of de novo synthesized proteins and proteins from a preexisting pool in the spore are involved in the reactivation of the ribosomes of dormant spores of S. granaticolor.  相似文献   

18.
Biochemical and radioautographic data show that protein synthesis is increased markedly at the morula stage of rabbit development (60 h embryo). In the late morula an increase in cytoplasmic ribosomes is observed, suggesting that ribosome availability may be rate-limiting for protein synthesis during cleavage. Incorporated 3H-amino acids become highly localized within the nucleoli of late morulae which have been pulse-labelled for 10 min. This localization suggests that ribosomal protein synthesis is increased at the same time as ribosomal RNA synthesis has been shown to increase. Changes in both the incorporation of 3H-amino acids and cytoplasmic ribosome density were found to occur 'synchronously' in all embryonic cells during the cleavage and early blastocyst period (84 h of development). Between 84 h and 108 h, considerable differences in the number of ribosomes per unit area of cytoplasm become apparent among the cells of the blastocyst.  相似文献   

19.
Assembly of 30S ribosomal subunits from Escherichia coli has been dissected in detail using an in vitro system. Such studies have allowed characterization of the role for ribosomal protein S15 in the hierarchical assembly of 30S subunits; S15 is a primary binding protein that orchestrates the assembly of ribosomal proteins S6, S11, S18, and S21 with the central domain of 16S ribosomal RNA to form the platform of the 30S subunit. In vitro S15 is the sole primary binding protein in this cascade, performing a critical role during assembly of these four proteins. To investigate the role of S15 in vivo, the essential nature of rpsO, the gene encoding S15, was examined. Surprisingly, E. coli with an in-frame deletion of rpsO are viable, although at 37 degrees C this DeltarpsO strain has an exaggerated doubling time compared to its parental strain. In the absence of S15, the remaining four platform proteins are assembled into ribosomes in vivo, and the overall architecture of the 30S subunits formed in the DeltarpsO strain at 37 degrees C is not altered. Nonetheless, 30S subunits lacking S15 appear to be somewhat defective in subunit association in vivo and in vitro. In addition, this strain is cold sensitive, displaying a marked ribosome biogenesis defect at low temperature, suggesting that under nonideal conditions S15 is critical for assembly. The viability of this strain indicates that in vivo functional populations of 70S ribosomes must form in the absence of S15 and that 30S subunit assembly has a plasicity that has not previously been revealed or characterized.  相似文献   

20.
A spontaneously occurring thiostrepton-resistant mutant of Bacillus megaterium has been shown to yield ribosomes lacking protein BM-L11, a protein immunologically related to Escherichia coli ribosomal protein L11. Here we have demonstrated that the mutant strain has acquired the relaxed phenotype and is unable to synthesise guanosine tetraphosphate and pentaphosphate in vivo. Ribosomes from the mutant strain are unable to support the synthesis of these two compounds in vitro, but this deficiency can be overcome by re-addition of purified protein BM-L11 to the ribosomes. Thus protein BM-L11 appears to be indispensable for the synthesis of guanosine tetraphosphate and pentaphosphate; the implications of this observation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号