首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ulcerative colitis is an inflammatory bowel disease characterized by acute inflammation, ulceration, and bleeding of the colonic mucosa. Its cause remains unknown. Increases in adhesion molecules in vascular endothelium, and activated neutrophils releasing injurious molecules such as reactive oxygen species, are reportedly associated with the pathogenesis of dextran sodium sulfate (DSS)-induced colitis. Nitric oxide (NO) production derived from inducible NO synthase (iNOS) via activation of nuclear factor κB (NF-κB) has been reported. It is also reported that stimulation of Toll-like receptor 4 (TLR4) by lipopolysaccharide can activate NF-κB. In this study, we investigated the involvement of NO production in activation of the TLR4/NF-κB signaling pathway in mice with DSS-induced colitis. The addition of 5% DSS to the drinking water of male ICR mice resulted in increases in TLR4 protein in colon tissue and NF-κB p65 subunit in the nuclear fraction on day 3, increases in colonic tumor necrosis factor-α on day 4, and increases in P-selectin, intercellular adhesion molecule-1, NO2/NO3, and nitrotyrosine in colonic mucosa on day 5. These activated inflammatory mediators and pathology of colitis were completely suppressed by treatment with a NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, as well as an iNOS inhibitor, aminoguanidine. Conversely, a NO-releasing compound, NOC-18, increased TLR4 levels and nuclear translocation of NF-κB p65 and exacerbated mucosal damage induced by DSS challenge. These data suggest that increases in TLR4 expression induced by drinking DSS-treated water might be directly or indirectly associated with NO overproduction.  相似文献   

2.
目的:采用2.5%葡聚糖硫酸钠(DSS)定量灌胃诱导小鼠溃疡性结肠炎(UC),观察小鼠结肠通透性改变与肿瘤坏死因子α(TNF-α)及NF-κB p65的关系。方法:48只ICR小鼠随机分为2组(n=24):对照组和模型组。模型组小鼠给予2.5% DSS定量灌胃诱发小鼠急性UC,对照组小鼠予同体积的蒸馏水灌胃代替。记录两组小鼠疾病活动指数(DAI),9 d后测定两组小鼠结肠组织病理学评分、结肠通透性、TNF-α及NF-κB p65。统计分析DAI、结肠通透性、TNF-α与NF-κB p65之间的相关性。结果:与对照组比较,模型组小鼠DAI、结肠病理学评分、结肠通透性、TNF-α、NF-κB p65均显著增高(P均<0.01)。小鼠DAI增高与结肠通透性密切相关(P均<0.01),结肠通透性增高与TNF-α、NF-κB p65密切相关(P均<0.01)。结论:与对照组小鼠相比,DSS造模小鼠的结肠通透性显著增高,并与TNF-α、NF-κB p65增高呈正相关。TNF-α、NF-κB p65增高导致结肠通透性增高,进而导致炎症免疫反应过度增强,可能是UC发病的重要环节。  相似文献   

3.
AimsWe investigated the effects of globin digest (GD) and its active ingredient Trp-Thr-Gln-Arg (WTQR) on galactosamine/lipopolysaccharide (GalN/LPS)-induced liver injury in imprinting control region (ICR) mice.Main methodsThe effects of WTQR and GD on the liver injury were examined by measuring the survival rate, serum aminotransferase activities, hepatic components, antioxidant enzyme activities, histopathological analysis, serum levels and hepatic gene expression of tumor necrosis factor-alpha (TNF-α), macrophage inflammatory protein-2 (MIP-2), and nitric oxide (NO) or inducible nitric oxide synthase (iNOS), and nuclear factor-kappa B (NF-κB) p65 content in GalN/LPS-treated ICR mice. RAW264 mouse macrophages were used to confirm the anti-inflammatory effects of WTQR and GD on the macrophages.Key findingsWTQR and GD increased the survival rate, suppressed the serum aminotransferase activities, serum levels and hepatic gene expression of TNF-α, MIP-2, and NO or iNOS, and nuclear NF-κB p65 content in GalN/LPS-treated mice; decreased the oxidized glutathione content, increased the superoxide dismutase activity, and decreased the histopathological grade values of the hepatocyte necrosis and lobular inflammation in GalN/LPS-injured liver; and suppressed the release levels and gene expression of TNF-α, MIP-2, and NO or iNOS, and nuclear NF-κB p65 content in LPS-stimulated RAW264 macrophages. WTQR and GD may improve the antioxidant defense system and inflammatory status in GalN/LPS-injured liver.SignificanceThese findings indicate that WTQR and GD have hepatoprotective effects on GalN/LPS-induced liver injury in ICR mice.  相似文献   

4.
Inflammatory bowel disease (IBD) is a disease caused by a dysregulated immune with unknown etiology. Hericium erinaceus (H. erinaceus) is a Chinese medicinal fungus, with the effect of prevention and treatment of gastrointestinal disorders. In this study, we have tested the anti-inflammatory effect of polysaccharide of H. erinaceus (HECP, Mw: 86.67 kDa) in the model of dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice. Our data indicated that HECP could improve clinical symptoms and down-regulate key markers of oxidative stresses, including nitric oxide (NO), malondialdehyde (MDA), total superoxide dismutase (T-SOD), and myeloperoxidase (MPO). HECP also suppressed the secretion of interleukin (IL)-6, interleukin (IL)-1β, tumor necrosis factor (TNF)-α and the expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and decreased the expression of related mRNA. Meanwhile, HECP blocked phosphorylation of nuclear factor-κB (NF-κB) p65, NF-κB inhibitor alpha (IκB-α), mitogen-activated protein kinases (MAPK) and Protein kinase B (Akt) in DSS-treated mice. Moreover, HECP reversed DSS-induced gut dysbiosis and maintained intestinal barrier integrity. In conclusion, HECP ameliorates DSS-induced intestinal injury in mice, which suggests that HECP can serve as a protective dietary nutrient against IBD.  相似文献   

5.
The biological activity of Mastixia arborea (MA) relates to inflammation, but the underlying mechanisms are largely unknown. We confirmed the anti-inflammatory effects of a methanol extract of MA extract on lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells and carrageenan-induced mice paw edema. The MA extract significantly inhibited nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and IL-6 production in LPS-stimulated RAW264.7 cells. In vitro expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was suppressed by the extract. The extract attenuated acute inflammatory responses in carrageenan-induced mice paw edema. A mechanism study indicated that translocation of the NF-κB (p65) subunit into the nucleus and phosphorylation of ERK and JNK were inhibited by the extract. These results indicate that the extract is an effective suppressor of the inflammatory response, blocking the phosphorylation of ERK and JNK and the translocation of NF-κB in macrophages, thereby producing an anti-inflammatory effect in vivo.  相似文献   

6.
7.
The spice-derived phenolic, malabaricone C (mal C), has recently been shown to accelerate healing of the indomethacin-induced gastric ulceration in mice. In this study, we explored its anti-inflammatory activity and investigated the underlying mechanism of the action. Mal C suppressed the microvascular permeability and the levels of tumor necrosis factor-α, interleukin-1β, and nitric oxide in the lipopolysaccharide (LPS)-administered mice. At a dose of 10 mg/kg, it showed anti-inflammatory activity comparable to that of omeprazole (5 mg/kg) and dexamethasone (50 mg/kg). It also reduced the expression and activities of inducible nitric oxide synthase, cyclooxygenase-2, as well as the pro- vs anti-inflammatory cytokine ratio in the LPS-treated RAW macrophages. Mal C was found to inhibit LPS-induced NF-kB activation in RAW 264.7 cells by blocking the MyD88-dependent pathway. Mal C suppressed NF-κB activation and iNOS promoter activity, which correlated with its inhibitory effect on IκB phosphorylation and degradation, and NF-κB nuclear translocation, in the LPS-stimulated macrophages. It also inhibited LPS-induced phosphorylation of p38 and JNK, which are also upstream activators of NF-κB, without affecting Akt phosphorylation. Mal C also effectively blocked the PKR-mediated activation of NF-κB. These findings indicate that mal C exerts an anti-inflammatory effect through NF-κB-responsive inflammatory gene expressions by inhibiting the p38 and JNK-dependent canonical NF-κB pathway as well as the PKR pathway, and is a potential therapeutic agent against acute inflammation.  相似文献   

8.
The present study was performed to investigate the anti-allergy potentials of glycoprotein (90 kDa) isolated from Opuntia ficus-indica var. saboten MAKINO (OFI glycoprotein) in vivo (ICR mice) and in vitro (RBL-2H3 cells). At first, to know whether the OFI glycoprotein has an inhibitory ability for allergy in vivo, we evaluated the activities of allergy-related factors such as histamine and β-hexosaminidase release, lactate dehydrogenase (LDH), and interleukin 4 (IL-4) in compound 48/80 (8 ml/kg BW)-treated ICR mice. After that, we studied to found the effect for anti-allergy in vitro such as nuclear factor kappa B (NF-κB) and inducible nitric oxide synthase (iNOS), extracellular signal-regulated kinase (ERK) 1/2, arachidonic acid, and cyclooxygenase-2 (COX-2) in compound 48/80 (5 μg/ml)-treated RBL-2H3 cells. Our results showed that the OFI glycoprotein (5 mg/kg) inhibited histamine and β-hexosaminidase release, lactate dehydrogenase (LDH), and interleukin 4 (IL-4) in mice serum. Also OFI glycoprotein (25 μg/ml) has suppressive effects on the expression of MAPK (ERK1/2), and on protein expression of anti-allergic proteins (iNOS and COX-2). Thus, we speculate that the OFI glycoprotein is an example of natural compound that blocks anti-allergic signal transduction pathways.  相似文献   

9.
10.
The anti-inflammatory properties of soyasaponins (especially soyasaponins with different chemical structures) have scarcely been investigated. We investigated the inhibitory effects of five structural types of soyasaponins (soyasaponin A1, A2, I and soyasapogenol A, B) on the induction of nitric oxide (NO) and inducible NO synthase (iNOS) in murine RAW 264.7 cells activated with lipopolysaccharide (LPS). Soyasaponin A1, A2 and I (25-200 μg/mL) dose-dependently inhibited the production of NO and tumor necrosis factor α (TNF-α) in LPS-activated macrophages, whereas soyasapogenol A and B did not. Furthermore, soyasaponin A1, A2 and I suppressed the iNOS enzyme activity and down-regulated the iNOS mRNA expression both in a dose-dependent manner. The reporter gene assay revealed that soyasaponin A1, A2 and I decreased LPS-induced nuclear factor kappa B (NF-κB) activity. Soyasaponin A1, A2 and I exhibit anti-inflammatory properties by suppressing NO production in LPS-stimulated RAW 264.7 cells through attenuation of NF-κB-mediated iNOS expression. It is proposed that the sugar chains present in the structures of soyasaponins are important for their anti-inflammatory activities. These results have important implication for using selected soyasaponins towards the development of effective chemopreventive and anti-inflammatory agents.  相似文献   

11.
We identified a chalcone, 2',4'-dihydroxy-6'-methoxy-3'-methylchalcone (stercurensin), as an active compound isolated from the leaves of Syzygium samarangense. In the present study, the anti-inflammatory effects and underlying mechanisms of stercurensin were examined using lipopolysaccharide (LPS)-stimulated RAW264.7 cells and mice. To determine the effects of stercurensin in vitro, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were analyzed by RT-PCR and immunoblotting. Nuclear factor-κB (NF-κB) activation and its upstream signaling cascades were also investigated using a dual-luciferase reporter assay, electrophoretic mobility shift assay, immunoblotting, immunofluorescence, and immunoprecipitation. To verify the effects of stercurensin in vivo, the mRNA expression levels of iNOS and COX-2 were evaluated in isolated mouse peritoneal macrophages by quantitative real-time PCR, and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β were assessed in serum samples from mice using a Luminex system. Pretreatment with stercurensin reduced LPS-induced iNOS and COX-2 expression, thereby inhibiting nitric oxide (NO) and prostaglandin E(2) production, respectively. In addition, an inhibitory effect of stercurensin on NF-κB activation was shown by the recovery of LPS-induced inhibitor of κB (I-κB) degradation after blocking the transforming growth factor-β-activated kinase 1 (TAK1)/I-κB kinase signaling pathway. In mouse models, stercurensin negatively regulated NF-κB-dependent pro-inflammatory mediators and cytokines. These results demonstrate that stercurensin modulates NF-κB-dependent inflammatory pathways through the attenuation of TAK1-TAB1 complex formation. Our findings demonstrating the anti-inflammatory effects of stercurensin in vitro and in vivo will aid in understanding the pharmacology and mode of action of stercurensin.  相似文献   

12.

Aims

Ursolic acid (UA), a natural pentacyclic triterpenoid acid, has been reported to show immunomodulatory activity. This study investigated the effects of UA on nuclear factor-kappa B (NF-κB) signaling in cells and experimental murine colitis.

Main methods

Human intestinal epithelial cells (IECs) COLO 205 and peritoneal macrophages from IL-10-deficient (IL-10−/−) mice were pretreated with UA and then stimulated with tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS), respectively. The expression of pro-inflammatory cytokines was determined by real-time RT-PCR and ELISA. The effect of UA on NF-κB signaling was examined by immunoblot analysis to detect IκBα phosphorylation/degradation and electrophoretic mobility shift assay to assess the DNA binding activity of NF-κB. For in vivo studies, dextran sulfate sodium (DSS)-induced acute colitis in C57BL/6 wild-type mice and chronic colitis in IL-10−/− mice were treated with or without UA. Colitis was quantified by histopathologic evaluation. Immunohistochemical staining for phosphorylated IκBα was performed in the colonic tissue.

Key findings

UA significantly inhibited the production of pro-inflammatory cytokines, IκBα phosphorylation/degradation and NF-κB DNA binding activity in both IEC and IL-10−/− peritoneal macrophages stimulated with TNF-α and LPS, respectively. UA significantly reduced the severity of DSS-induced murine colitis, as assessed by the disease activity index, colon length, and histopathology. UA also significantly ameliorated the severity of colitis in IL-10−/− mice. Furthermore, UA suppressed IκBα phosphorylation in the colonic tissue.

Significance

UA inhibits NF-κB activation in both IECs and macrophages, and attenuates experimental murine colitis. These results suggest that UA is a potential therapeutic agent for inflammatory bowel disease.  相似文献   

13.
Ligation of the lymphotoxin-β receptor (LTβR) by LIGHT (lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpes virus entry mediator on T cells (TNFSF14)) activates the noncanonical (NC) NF-κB (nuclear factor-κB) pathway and up-regulates CXCL12 gene expression by human umbilical vein endothelial cells (HUVEC). In contrast, TNF only activates classical NF-κB signaling and does not up-regulate CXCL12. To determine whether cross-talk between the classical and NC pathways affects CXCL12 expression, we investigated the effects of TNF on LIGHT signaling in HUVEC. We show here that TNF inhibits both basal and LIGHT-induced CXCL12 expression. Negative regulation by TNF requires the classical NF-κB pathway as inhibition of basal and induced CXCL12 was reversed in HUVEC-expressing dominant negative IκB (inhibitor of NF-κB) kinase (IKK)β (IKKβ(K44M)). TNF did not inhibit the NC NF-κB pathway activation as LIGHT-induced p100 processing to p52 was intact; however, TNF either alone or together with LIGHT up-regulated p100 and RelB expression and induced the nuclear localization of p100-RelB complexes. Enhanced p100 and RelB expression was inhibited by IKKβ(K44M), which led us to question whether the IκB function of elevated p100 mediates the inhibition of CXCL12 expression by TNF. We retrovirally transduced HUVEC to express p100 at a level similar to that up-regulated by TNF; however, basal and LIGHT-induced CXCL12 expression was normal in the transduced cells. In contrast, ectopic RelB expression recapitulated the effects of TNF on NC signaling and inhibited basal and LIGHT-induced CXCL12 expression by HUVEC. Our findings therefore demonstrate that TNF-induced classical NF-κB signaling up-regulates RelB expression that inhibits both basal and NC NF-κB-dependent CXCL12 expression.  相似文献   

14.
15.
Chrysin (5,7-dihydroxyflavone) is a natural flavone commonly found in many plants. It has previously been shown to be an anti-tumor agent. In this study, we investigated whether chrysin could alleviate the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice and whether chrysin has an inhibitory effect on nuclear factor (NF)-κB activation in vitro. A significant blunting of weight loss and clinical signs was observed in DSS-exposed, chrysin-treated mice when compared to vehicle-treated mice. This was associated with a remarkable amelioration of the disruption of the colonic architecture, a significant reduction in colonic myeloperoxidase (MPO) activity, and a decrease in the production of inflammatory mediators such as nitric oxide (NO), prostaglandin (PG) E2, and pro-inflammatory cytokines. In addition, chrysin inhibited tumor necrosis factor (TNF)-α-induced activation of NF-κB in IEC-6 cells. These findings suggest that chrysin exerts potentially clinically useful anti-inflammatory effects mediated through the suppression of NF-κB activation.  相似文献   

16.
This study was carried out to investigate the apoptotic effects of glycine- and proline-rich glycoprotein [Solanum nigrum Linne (SNL) glycoprotein, 150-kDa] isolated from SNL, which has been used as an antipyretic and anticancer agent in Korean herbal medicine. We found that SNL glycoprotein has obviously cytotoxic and apoptotic effects at 80 microg/ml of SNL glycoprotein for 4 h in Hep3B cells (hepatocellular carcinoma cells). In mitochondria-mediated apoptosis pathway, SNL glycoprotein has abilities to stimulate release of mitochondrial cytochrome c, activations of caspase-9 and caspase-3, cleavage of poly(ADP-ribose)polymerase and production of intracellular reactive oxygen species in Hep3B cells. In nuclear factor-kappa B (NF-kappaB)-mediated apoptosis pathway, the results showed that SNL glycoprotein dose-dependently blocked DNA binding activity of NF-kappaB, activity of inducible nitric oxide synthase (iNOS) and production of inducible nitric oxide (NO). Interestingly, pyrrolidine dithiocarbamate (for NF-kappaB inhibitor) and Nomega-nitro-l-arginine methylester hydrochloride (for NO inhibitor) effectively stimulated the caspase-3 activation and induced apoptosis in Hep3B cells. These results indicate that SNL glycoprotein transfers its cell death signal from cytochrome c to caspase 3 by inhibiting NF-kappaB and iNOS activation in Hep3B cells. Here, we speculate that SNL glycoprotein is one of the chemotherapeutic agents to modulate mitochondria-mediated apoptosis signals in Hep3B cells.  相似文献   

17.
(7R,8S)-Dehydrodiconiferyl alcohol (DDA), a lignan isolated from the dried stems of Clematis armandii, has been found to exert potential anti-inflammatory activity in vitro. In the present study, we investigated the effects and possible mechanisms of DDA on lipopolysaccharide (LPS)-mediated inflammatory response in murine BV2 microglia. Our results revealed that non-toxic concentrations (6.25–25 μM) of DDA markedly suppressed LPS-induced production of nitric oxide, expression of inducible nitric oxide synthase and cyclooxygenase-2, and release of inflammatory factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in a concentration dependent manner. In addition, DDA time- and concentration-dependently attenuated LPS-induced phosphorylation of c-Jun N-terminal kinase 1/2 (JNK), but not protein kinase B, p38, or extracellular signal-regulated kinase 1/2. Moreover, DDA significantly suppress LPS-mediated nuclear factor-κB (NF-κB) activation by inhibiting phosphorylation and nuclear translocation of NF-κB p65. Collectively, our results demonstrated that DDA inhibited LPS-stimulated inflammatory response in BV2 cell, at least in part, through inhibition of NF-κB activation and modulation of JNK signaling.  相似文献   

18.
The Tiaopi Huxin recipe (TPHXR) is widely used in traditional Chinese medicine for the clinical treatment of coronary heart disease. However, the mechanism of TPHXR treatment of atherosclerosis (AS) has not been fully elucidated. In this study, we have aimed to explore the potential antiatherosclerotic effect of TPHXR and its underlying mechanisms. Male ApoE knockout (ApoE−/−) mice were fed a high-fat diet for 12 weeks and were randomly divided into four groups: the control group, and the low-dose, medium-dose, and high-dose TPHXR groups. The nitric oxide (NO) levels in arterial tissue and human umbilical vein endothelial cells (HUVECs) were measured by diaminofluorescein-2 diacetate staining. Vasorelaxation of mice aorta was performed by wire myograph. Inflammatory cytokines, including tumor necrosis factor-α (TNF-α), hs-CRP, IL-6, and IL-1β, in mice plasma were analyzed by enzyme-linked immunosorbent assay. Western blot analysis was applied to observe protein expression. Oil Red O staining was utilized for the quantification of atherosclerotic plaques. Results showed that 4 weeks of high- and medium-dose TPHXR treatment by oral gavage reduced atheromatous lesions in ApoE −/− mice. The high- and medium-dose TPHXR treatment, but not the low-dose treatment, promoted eNOS phosphorylation, increased NO levels and improved endothelium-dependent vasorelaxation in ApoE −/− mice. High- and medium-dose TPHXR, but not low-dose TPHXR, decreased the expression of cav-1, NF-κB p50, NF-κB p65, ICAM1, VCAM-1, TNF-α, IL-6, and IL-1β in the vasculature of ApoE −/− mice. Enzyme-linked immunosorbent assay analysis indicated that high- and medium-dose TPHXR decreased the levels of TNF-α, IL-6, hs-CRP, and IL-1β. In conclusion, our findings show that TPHXR improved the endothelial function and reduced atheromatous lesions in ApoE −/− mice. This result may be due to the decreased expression of caveolin-1 and NF-κB and, hence, the attenuated inflammatory response in AS mice vasculature. TPHXR may represent a promising intervention in patients with AS.  相似文献   

19.
20.
A germacranolide sesquiterpene lactone, 2α,5-epoxy-5,10-dihydroxy-6α-angeloyloxy-9β-(3-methylbutyloxy)-germacran-8α,12-olide (EDAG), isolated from Carpesium triste var. manshuricum, showed inhibitory activity in the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) mRNA and protein in LPS-activated macrophage cells. Molecular analysis reveals that these suppressive effects are correlated with the inhibition of NF-κB activation by EDAG. Immunoblotting showed that EDAG suppressed the LPS-induced degradation of I-κBα and decreased nuclear translocation of p65. Furthermore, EDAG showed reduced phosphorylation of ERK1/2 and p38 MAPK, whereas activation of JNK was not changed. These data suggest, at least in part, that EDAG utilizes the signal cascades of ERK1/2, p38 MAPK, and NF-κB for the suppression of iNOS gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号