首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transient receptor potential vanilloid subtype 1 (TRPV1) is a Ca2+-permeable channel primarily expressed in dorsal root ganglion neurons. Besides its function in thermogenic nociception and neurogenic inflammation, TRPV1 is involved in cell migration, cytoskeleton re-organisation and in neuronal guidance. To explore the TRPV1 level and activity during conditions for neuronal maturation, TRPV1-expressing SHSY5Y neuroblastoma cells were differentiated into a neuronal phenotype using all-trans-retinoic acid (RA). We show that RA highly up-regulated the total and cell surface TRPV1 protein expression but the TRPV1 mRNA level was unaffected. The up-regulated receptors were localised to the cell bodies and the developed neurites. Furthermore, RA increased both the basal intracellular free Ca2+ concentration by 30% as well as the relative capsaicin-induced Ca2+ influx. The results show that TRPV1 protein expression increases during RA-induced differentiation in vitro, which generates an altered intracellular Ca2+ homeostasis.  相似文献   

2.
In this study, we performed electrophysiological analysis of Anopheles gambiae Sua-1B cells having “neuron-like” morphologies using the patch clamp method. The recorded cells (n = 79) had processes resembling axons/dendrites, with 63 % unipolar, 22 % bipolar, and 15 % multipolar. While no inward currents were observed following step depolarizations (holding potential = ?80 mV), a slowly activating outward current was observed in 96 % of the cells, especially at depolarized potentials. The amplitude of the current was attenuated nearly 70 % by reducing extracellular Cl? ion concentration, or by incubating with 100 μM DIDS, a known voltage-sensitive chloride channel blocker, suggesting that the current was mediated by chloride ions. No qualitative difference was found between recordings made with Cs+ ions in the intracellular pipette solution (inhibits K+ currents) and those made with normal physiological solution, indicating a deficiency of potassium channels. Additionally, recordings made with Ca2+-free extracellular bath solution eliminated the slowly activating outward current. A subset of cells (n = 3) lacked this current, but had outward currents with voltage-dependent properties similar to those of volume-regulated chloride channels. Taken together, our results suggest that the voltage-sensitive currents observed in the majority of Sua-1B cells are mediated primarily by chloride channels of the calcium-dependent subtype.  相似文献   

3.
Calcium ions (Ca2+) are important second messengers in neurons. Ketamine (KETAM) is an anesthetic and analgesic, with psychotomimetic effects and abuse potential. KETAM modulates the entry of Ca2+ in neurons through glutamate receptors, but its effect on transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels has not been clarified. This study investigated the short-term effects of KETAM on oxidative stress and TRPM2 and TRPV1 channel gating in hippocampal and dorsal root ganglion (DRG) neurons of rats. Freshly isolated hippocampal and DRG neurons were incubated for 24 h with KETAM (0.3 mM). The TRPM2 channel antagonist, N-(p-amylcinnamoyl)anthranilic acid (ACA), inhibited cumene hydroperoxide and ADP-ribose-induced TRPM2 currents in the neurons, and capsazepine (CPZ) inhibited capsaicin-induced TRPV1 currents. The TRPM2 and TRPV1 channel current densities and intracellular free calcium ion concentration of the neurons were lower in the neurons exposed to ACA and CPZ compared to the control neurons, respectively. However, the values were not further decreased by the KETAM + CPZ and KETAM + ACA treatments. KETAM decreased lipid peroxidation levels in the neurons but increased glutathione peroxidase activity. In conclusion, short-term KETAM treatment decreased oxidative stress levels but did not seem to influence TRPM2- and TRPV1-mediated Ca2+ entry.  相似文献   

4.
14,15-epoxyeicosatrienoic acid (14,15-EET) is implicated in regulating physiological functions of endothelial cells (ECs), yet the potential molecular mechanisms underlying the beneficial effects in ECs are not fully understood. In this study, we investigated whether transient receptor potential vanilloid receptor type 1 (TRPV1) is involved in 14,15-EET-mediated Ca2+ influx, nitric oxide (NO) production and angiogenesis. In human microvascular endothelial cells (HMECs), 14,15-EET time-dependently increased the intracellular level of Ca2+. Removal of extracellular Ca2+, pharmacological inhibition or genetic disruption of TRPV1 abrogated 14,15-EET-mediated increase of intracellular Ca2+ level in HMECs or TRPV1-transfected HEK293 cells. Furthermore, removal of extracellular Ca2+ or pharmacological inhibition of TRPV1 decreased 14,15-EET-induced NO production. 14,15-EET-mediated tube formation was abolished by TRPV1 pharmacological inhibition. In an animal experiment, 14,15-EET-induced angiogenesis was diminished by inhibition of TRPV1 and in TRPV1-deficient mice. TRPV1 may play a crucial role in 14,15-EET-induced Ca2+ influx, NO production and angiogenesis.  相似文献   

5.
The transient receptor potential vanilloid subtype 1 (TRPV1) is a Ca2+-permeable channel primarily expressed in dorsal root ganglion neurons. Besides its function in thermogenic nociception and neurogenic inflammation, TRPV1 is involved in cell migration, cytoskeleton re-organisation and in neuronal guidance. To explore the TRPV1 level and activity during conditions for neuronal maturation, TRPV1-expressing SHSY5Y neuroblastoma cells were differentiated into a neuronal phenotype using all-trans-retinoic acid (RA). We show that RA highly up-regulated the total and cell surface TRPV1 protein expression but the TRPV1 mRNA level was unaffected. The up-regulated receptors were localised to the cell bodies and the developed neurites. Furthermore, RA increased both the basal intracellular free Ca2+ concentration by 30% as well as the relative capsaicin-induced Ca2+ influx. The results show that TRPV1 protein expression increases during RA-induced differentiation in vitro, which generates an altered intracellular Ca2+ homeostasis.  相似文献   

6.
In addition to its well-known effects on parturition and lactation, oxytocin (OT) plays an important role in modulation of pain and nociceptive transmission. But, the mechanism of this effect is unclear. To address the possible role of OT on pain modulation at the peripheral level, the effects of OT on intracellular calcium levels ([Ca2+]i) in rat dorsal root ganglion (DRG) neurons were investigated by using an in vitro calcium imaging system. DRG neurons were grown in primary culture following enzymatic and mechanical dissociation of ganglia from 1- or 2-day-old neonatal Wistar rats. Using the fura-2-based calcium imaging technique, the effects of OT on [Ca2+]i and role of the protein kinase C (PKC)-mediated pathway in OT effect were assessed. OT caused a significant increase in basal levels of [Ca2+]i after application at the doses of 30 nM (n?=?34, p?<?0.01), 100 nM (n?=?41, p?<?0.001) and 300 nM (n?=?46, p?<?0.001). The stimulatory effect of OT (300 nM) on [Ca2+]i was persistent in Ca2+-free conditions (n?=?56, p?<?0.01). Chelerythrine chloride, a PKC inhibitor, significantly reduced the OT-induced increase in [Ca2+]i (n?=?28, p?<?0.001). We demonstrated that OT activates intracellular calcium signaling in cultured rat primary sensory neurons in a dose- and PKC-dependent mechanism. The finding of the role of OT in peripheral pain modification may serve as a novel target for the development of new pharmacological strategies for the management of pain.  相似文献   

7.
Abstract: Rilmenidine, a ligand for imidazoline and α2-adrenergic receptors, is neuroprotective following focal cerebral ischemia. We investigated the effects of rilmenidine on cytosolic free Ca2+ concentration ([Ca2+]i) in rat astrocytes. Rilmenidine caused concentration-dependent elevation of [Ca2+]i, consisting of a transient increase (1–100 µM rilmenidine) or a transient increase followed by sustained elevation above basal levels (1–10 mM rilmenidine). A similar elevation in [Ca2+]i was induced by the imidazoline ligand cirazoline. The transient response to rilmenidine was observed in Ca2+-free medium, indicating that rilmenidine evokes release of Ca2+ from intracellular stores. However, the sustained elevation of Ca2+ was completely dependent on extracellular Ca2+, consistent with rilmenidine activating Ca2+ influx.Pretreatment with thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, abolished the response to rilmenidine, confirming the involvement of intracellular stores and suggesting that rilmenidine and thapsigargin activate a common Ca2+ influx pathway. The α2-adrenergic antagonist rauwolscine attenuated the increase in [Ca2+]i induced by clonidine (a selective α2 agonist), but not the response to rilmenidine. These results indicate that rilmenidine stimulates both Ca2+ release from intracellular stores and Ca2+ influx by a mechanism independent of α2-adrenergic receptors. In vivo, rilmenidine may enhance uptake of Ca2+ from the extracellular fluid by astrocytes, a process that may contribute to the neuroprotective effects of this agent.  相似文献   

8.
9.
《Cell calcium》2014,55(4):208-218
Merkel cells (MCs) have been proposed to form a part of the MC-neurite complex with sensory neurons. Many transient receptor potential (TRP) channels have been identified in mammals; however, the activation properties of these channels in oral mucosal MCs remain to be clarified. We investigated the biophysical and pharmacological properties of TRP vanilloid (TRPV)-1, TRPV2, TRPV4, TRP ankyrin (TRPA)-1, and TRP melastatin (TRPM)-8 channels, which are sensitive to osmotic and mechanical stimuli by measurement of intracellular free Ca2+ concentration ([Ca2+]i) using fura-2. We also analyzed their localization patterns through immunofluorescence. MCs showed immunoreaction for TRPV1, TRPV2, TRPV4, TRPA1, and TRPM8 channels. In the presence of extracellular Ca2+, the hypotonic test solution evoked Ca2+ influx. The [Ca2+]i increases were inhibited by TRPV1, TRPV2, TRPV4, or TRPA1 channel antagonists, but not by the TRPM8 channel antagonist. Application of TRPV1, TRPV2, TRPV4, TRPA1, or TRPM8 channel selective agonists elicited transient increases in [Ca2+]i only in the presence of extracellular Ca2+. The results indicate that membrane stretching in MCs activates TRPV1, TRPV2, TRPV4, and TRPA1 channels, that it may be involved in synaptic transmission to sensory neurons, and that MCs could contribute to the mechanosensory transduction sequence.  相似文献   

10.
Alloxan is widely used to induce diabetes mellitus in experimental animals. Recent studies have provided evidence that alloxan has direct actions on cardiac muscle contraction. The aim of this study was to further investigate the mechanisms underlying the effects of alloxan on ventricular myocyte shortening and intracellular Ca2+ transport. Amplitude of myocyte shortening was reduced in a dose-dependent manner as the concentration of alloxan was increased in the range 10?7–10?4 M. Amplitude of shortening was reduced (56.8 ± 6.6%, n = 27) by 10?6 M alloxan and was partially reversed during a 10 min washout. Amplitude of the Ca2+ transient was also reduced (79.7 ± 2.9%, n = 29) by 10?6 M alloxan. Caffeine-evoked sarcoplasmic reticulum Ca2+ release, fractional release of Ca2+, assessed by comparing the amplitude of electrically evoked with that of caffeine-evoked Ca2+ transients, and fura-2-cell length trajectory during the late stages of relaxation of myocyte twitch contraction were not significantly altered by alloxan. The amplitude of L-type Ca2+ current was not altered by alloxan. Alterations in sarcoplasmic reticulum Ca2+ transport, myofilament sensitivity to Ca2+, and L-type Ca2+ current do not appear to underlie the negative inotropic effects of alloxan.  相似文献   

11.
The purpose of this study was to determine the role of Ang-II in buffalo spermatozoa; localize angiotensin type 1 (AT1) receptors on the sperm surface and understand the signaling mechanisms involved therein. Immunoblotting and immunocytochemistry using polyclonal Rabbit anti-AT1 (N-10) IgG were performed to confirm the presence of AT1 receptors. Intracellular levels of cyclic adenosine monophosphate (cAMP) were determined by non-radioactive enzyme immunoassay, while that of Calcium [Ca2+] were estimated by fluorimetry using Fura2AM dye. The results obtained showed that AT1 receptors were found on the post-acrosomal region, neck and tail regions. Immunoblotting revealed a single protein band with molecular weight of 40 kDa. Ang-II treated cells produced significantly higher level of cAMP compared to untreated cells (22.66 ± 2.4 vs. 10.8 ± 0.98 pmol/108 cells, p < 0.01). The mean levels of Ca2+ were also higher in Ang-II treated cells compared to control (117.4 ± 6.1 vs. 61.15 ± 4.2 nmol/108 cells; p < 0.01). The stimulatory effect of Ang-II in both the cases was significantly inhibited in the presence of Losartan (AT1 antagonist; p < 0.05) indicating the involvement of AT1 receptors. Further, presence of neomycin (protein kinase C inhibitor) inhibited significantly the Ang-II mediated rise in Ca2+ indicating the involvement of PKC pathway. These findings confirm the presence of AT1 receptors in buffalo spermatozoa and that Ang-II mediates its actions via the activation of these receptors. Ang-II stimulates the rise in intracellular levels of cAMP and Ca2+ during capacitation.  相似文献   

12.
Patch-clamp studies carried out on the tonoplast of the moss Physcomitrella patens point to existence of two types of cation-selective ion channels: slowly activated (SV channels), and fast-activated potassium-selective channels. Slowly and instantaneously saturating currents were observed in the whole-vacuole recordings made in the symmetrical KCl concentration and in the presence of Ca2+ on both sides of the tonoplast. The reversal potential obtained at the KCl gradient (10 mM on the cytoplasmic side and 100 mM in the vacuole lumen) was close to the reversal potential for K+ (E K), indicating K+ selectivity. Recordings in cytoplasm-out patches revealed two distinct channel populations differing in conductance: 91.6 ± 0.9 pS (n = 14) at ?80 mV and 44.7 ± 0.7 pS (n = 14) at +80 mV. When NaCl was used instead of KCl, clear slow vacuolar SV channel activity was observed both in whole-vacuole and cytoplasm-out membrane patches. There were no instantaneously saturating currents, which points to impermeability of fast-activated potassium channels to Na+ and K+ selectivity. In the symmetrical concentration of NaCl on both sides of the tonoplast, currents have been measured exclusively at positive voltages indicating Na+ influx to the vacuole. Recordings with different concentrations of cytoplasmic and vacuolar Ca2+ revealed that SV channel activity was regulated by both cytoplasmic and vacuolar calcium. While cytoplasmic Ca2+ activated SV channels, vacuolar Ca2+ inhibited their activity. Dependence of fast-activated potassium channels on the cytoplasmic Ca2+ was also determined. These channels were active even without Ca2+ (2 mM EGTA in the cytosol and the vacuole lumen), although their open probability significantly increased at 0.1 μM Ca2+ on the cytoplasmic side. Apart from monovalent cations (K+ and Na+), SV channels were permeable to divalent cations (Ca2+ and Mg2+). Both monovalent and divalent cations passed through the channels in the same direction—from the cytoplasm to the vacuole. The identity of the vacuolar ion channels in Physcomitrella and ion channels already characterised in different plants is discussed.  相似文献   

13.
Cyclopiazonic acid has been reported to inhibit the Ca2+-ATPase of intracellular calcium stores in some nonexcitable cell types, such as myeloid cells and lymphocytes. The present study examines the effects of cyclopizonic acid on rat basophilic leukemia (RBL) cells, a mucosal mast cell line. Addition of cyclopiazonic acid to fura-2-loaded RBL cells evoked a biphasic increase in free ionized intracellular calcium. Release of stored calcium accounted for the first phase of this response. The second phase was determined to be calcium entering through an influx pathway activated by cyclopiazonic acid. The influx pathway was selective for calcium, But was somewhat permeable to manganese. However, in a Ca2+-free solution containing EGTA, sodium ions permeated freely. This influx pathway appears to be identical to that which is activated by antigen, the physiological stimulus to the cells. Cyclopiazonic acid also induced secretion when combined with the phorbol ester 12-0-tetradecanoyl phorbol 13-acetate, which activates protein kinae C. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel involved in pain sensation and in a wide range of non-pain-related physiological and pathological conditions. The aim of the present study was to explore the effects of selected heavy metal cations on the function of TRPV1. The cations ranked in the following sequence of pore-blocking activity: Co2+ [half-maximal inhibitory concentration (IC50)?=?13 μM]?>?Cd2+ (IC50?=?38 μM)?>?Ni2+ (IC50?=?62 μM)?>?Cu2+?(IC50?=?200 μM). Zn2+ proved to be a weak (IC50?=?27 μM) and only partial inhibitor of the channel function, whereas Mg2+, Mn2+ and La3+ did not exhibit any substantial effect. Co2+, the most potent channel blocker, was able not only to compete with Ca2+ but also to pass with it through the open channel of TRPV1. In response to heat activation or vanilloid treatment, Co2+ accumulation was verified in TRPV1-transfected cell lines and in the TRPV1+ dorsal root ganglion neurons. The inhibitory effect was also demonstrated in vivo. Co2+ applied together with vanilloid agonists attenuated the nocifensive eye wipe response in mice. Different rat TRPV1 pore point mutants (Y627W, N628W, D646N and E651W) were created that can validate the binding site of previously used channel blockers in agonist-evoked 45Ca2+ influx assays in cells expressing TRPV1. The IC50 of Co2+ on these point mutants were determined to be reasonably comparable to those on the wild type, which suggests that divalent cations passing through the TRPV1 channel use the same negatively charged amino acids as Ca2+.  相似文献   

15.
The extracellular Ca2+-sensing receptor (CaR) is a key-player in plasma Ca2+ homeostasis. It is essentially expressed in the parathyroid glands and along the kidney nephron. The distal convoluted tubules (DCT) and connecting tubules (CNT) in the kidney are involved in active Ca2+ reabsorption, but the function of the CaR has remained unclear in these segments. Here, the Ca2+-selective Transient Receptor Potential Vanilloid-subtype 5 channel (TRPV5) determines active Ca2+ reabsorption by forming the apical entry gate. In this study we show that the CaR and TRPV5 co-localize at the luminal membrane of DCT/CNT. Furthermore, by patch-clamp and Fura-2-ratiometric measurements we demonstrate that activation of the CaR leads to elevated TRPV5-mediated currents and increases intracellular Ca2+ concentrations in cells co-expressing TRPV5 and CaR. Activation of CaR initiated a signaling cascade that activated phorbol-12-myristate-13-acetate (PMA)-insensitive protein kinase C (PKC) isoforms. Importantly, mutation of two putative PKC phosphorylation sites, S299 and S654, in TRPV5 prevented the stimulatory effect of CaR activation on channel activity, as did a dominant negative CaR construct, CaRR185Q. Interestingly, the activity of TRPV6, TRPV5′ closest homologue, was not affected by the activated CaR. We conclude that activation of the CaR stimulates TRPV5-mediated Ca2+ influx via a PMA-insensitive PKC isoform pathway.  相似文献   

16.
The endothelin (ET) isoforms ET-1, ET-2 and ET-3 applied at 100 nM triggered a transient increase in [Ca2+]i in Bergmann glial cells in cerebellar slices acutely isolated from 20–25 day-old mice. The intracellular calcium concentration ([Ca2+]i) was monitored using Fura-2-based ([Ca2+]i) microfluorimetry. The ET-triggered ([Ca2+]i) transients were mimicked by ET, receptor agonist BO-3020 and were inhibited by ETB receptor antagonist BQ-788. ET elevated [Ca2+]i in Ca2+-free extracellular solution and the ET-triggered [Ca2+]i elevation was blocked by 500 nM thapsigargin indicating that the [Ca2+]i was released from InsP3 sensitive intracellular pools. The ET-triggered [Ca2+]i increase in Ca2+-free solution was shorter in duration. Restoration of normal extracellular [Ca2+] briefly after the ET application induced a second [Ca2+]i increase indicating the presence of a secondary Ca2+ influx which prolongs the Ca2+ signal. Pre-application of 100 μM ATP or 10 μM noradrenaline blocked the ET response suggesting the involvement of a common Ca2+ depot. The expression of ETB receptor mRNAs in Bergmann glial cells was revealed by single-cell RT-PCR. The mRNA was also found in Purkinje neurones, but no Ca2+ signalling was triggered by ET. We conclude that Bergmann glial cells are endowed with functional ETB receptors which induce the generation of intracellular [Ca2+]i signals by activation of Ca2+ release from InsP3-sensitive intracellular stores followed by a secondary Ca2+ influx.  相似文献   

17.
Transient receptor potential vanilloid 6 (TRPV6) channels are key players in calcium metabolism of healthy and cancerous cells. Nevertheless, the mechanisms controlling abundance of these channels in plasma membrane of the cells to regulate Ca2+ transport is still poorly understood. In this study, we provide the first evidence that TRPV6 calcium channels and Ca 2+ influx in Jurkat T cell line are modulated by cholesterol, a main lipid component of the plasma membrane. Using patch‐clamp technique, we found that activity of TRPV6 channels decreased by cholesterol sequestration with methyl‐β‐cyclodextrin (MβCD). Continuous measurement of intracellular Ca2+ revealed a reduction of Ca2+ influx into Jurkat cells following cholesterol depletion. Immunofluorescence and immunoelectron microscopy analyses of MβCD‐treated cells detected the lower surface expression of the TRPV6 proteins in comparison with control cells. In general, our data showed that cholesterol regulates TRPV6 channel activity and TRPV6‐mediated Ca2+ influx in cells, apparently affecting the localization and density of the calcium channels in the plasma membrane of Jurkat T cells.  相似文献   

18.
We have used the patch clamp technique to study the effects of inhibiting the apical Na+ transport on the basolateral small-conductance K+ channel (SK) in cell-attached patches in cortical collecting duct (CCD) of the rat kidney. Application of 50 μM amiloride decreased the activity of SK, defined as nP o (a product of channel open probability and channel number), to 61% of the control value. Application of 1 μM benzamil, a specific Na+ channel blocker, mimicked the effects of amiloride and decreased the activity of the SK to 62% of the control value. In addition, benzamil reduced intracellular Na+ concentration from 15 to 11 mM. The effect of amiloride was not the result of a decrease in intracellular pH, since addition 50 μM 5-(n-ethyl-n-isopropyl) amiloride (EIPA), an agent that specifically blocks the Na/H exchanger, did not alter the channel activity. The inhibitory effect of amiloride depends on extracellular Ca2+ because removal of Ca2+ from the bath abolished the effect. Using Fura-2 AM to measure the intracellular Ca2+, we observed that amiloride and benzamil significantly decreased intracellular Ca2+ in the Ca2+-containing solution but had no effect in a Ca2+-free bath. Furthermore, raising intracellular Ca2+ from 10 to 50 and 100 nM with ionomycin increased the activity of the SK in cell-attached patches but not in excised patches, suggesting that changes in intracellular Ca2+ are responsible for the effects on SK activity of inhibition of the Na+ transport. Since the neuronal form of nitric oxide synthase (nNOS) is expressed in the CCD and the function of the nNOS is Ca2+ dependent, we examined whether the effects of amiloride or benzamil were mediated by the NO-cGMP–dependent pathways. Addition of 10 μM S-nitroso-n-acetyl-penicillamine (SNAP) or 100 μM 8-bromoguanosine 3′:5′-cyclic monophosphate (8Br-cGMP) completely restored channel activity when it had been decreased by either amiloride or benzamil. Finally, addition of SNAP caused a significant increase in channel activity in the Ca2+-free bath solution. We conclude that Ca2+-dependent NO generation mediates the effect of inhibiting the apical Na+ transport on the basolateral SK in the rat CCD.  相似文献   

19.
The basal 45Ca2+ influx in human red blood cells (RBC) into intact RBC was measured. 45Ca2+ was equilibrated with cells with t1/2=15-20 s and the influx reached the steady state value in about 90-100 s and the steady state level was 1.5±0.2 μmol/lpacked cells (n=6) at 37 °C. The average value of the Ca2+ influx rate was 43.2±8.9 μmol/lpacked cells hour. The rate of the basal influx was pH-dependent with a pH optimum at pH 7.0 and on the temperature with the temperature optimum at 25 °C. The basal Ca2+ influx was saturable with Ca2+ up to 5 mmol/l but at higher extracellular Ca2+ concentrations caused further increase of basal Ca2+ influx. The 45Ca2+ influx was stimulated by addition of submicromolar concentrations of phorbol esters (phorbol 12-myristate-13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu)) and forskolin. Uncoupler (3,3′,4′,5-tetrachloro-salicylanilide (TCS) 10−6-10−5 mol/l) inhibited in part the Ca2+ influx. The results show that the basal Ca2+ influx is mediated by a carrier and is under control of intracellular regulatory circuits. The effect of uncoupler shows that the Ca2+ influx is in part driven by the proton-motive force and indicates that the influx and efflux of Ca2+ are coupled via the RBC H+ homeostasis.  相似文献   

20.
《Life sciences》1996,60(3):PL57-PL62
In isolated rat cardiomyocytes, exogenous lysophosphatidylcholine (LPC) (15 μM) increased the intracellular Ca2+ concentration ([Ca2+]i) from 72 ± 5 to 3042 ± 431 nM accompanied by cell injury as indicated by the hypercontracture of the cells and the increase in creatine phosphokinase (CPK) release. In order to understand whether the cell injury induced by LPC was a consequence of the elevation of [Ca2+]i, the effect of LPC was examined in the Ca2+-free solution containing EGTA. Under the Ca2+ -free conditions, LPC did not increase [Ca2+]i, whereas it still inflicted injury on the cells in terms of cell-shape change and CPK release to the same degree as that under the Ca2+-present condition. Addition of ryanodine (10 μM) failed to prevent the changes in cell-shape and CPK release induced by LPC under both Ca2+-free and Ca2+ -present conditions. Preincubation of the myocytes with d-propranolol (50 μM) inhibited the LPC-induced changes in cell-shape and CPK release under both Ca2+ -free and Ca2+ -present conditions (p < 0.05). Our study provides clear evidence that the cellular injury induced by LPC could be independent of the increase in [Ca2+]i, and the Ca2+ -independent cellular injury induced by LPC could be attenuated by d-propranolol, although the mechanism remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号