首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morin (3,5,7,2′,4′-pentahydroxyflavone), a plant-derived flavonoid belonging to the subclass of flavonol is believed to play a role in chemoprevention and cancer chemotherapy. In this study, we found that the cotreatment of morin (500 ppm in diet) for 16 weeks to N-nitosodiethylamine-induced (200 mg/kg bodyweight in drinking water) rats provides protection against the oxidative stress caused by the carcinogen and thereby prevents hepatocellular carcinogenesis. On administration of the carcinogen, the level of lipid peroxidation increased markedly, but was found to be significantly lowered by morin treatment. On the contrary, the antioxidant levels in both liver and serum were decreased in carcinogen-administered animals, which was improved to normalcy upon morin administration. Cotreatment with morin prevented the elevation of marker enzymes induced by N-nitrosodiethylamine. The body weight of the animals decreased and their relative liver weight increased significantly on N-nitrosodiethylamine administration when compared to control group. However, cotreatment with morin significantly prevented the decrease of the body weight and increase in relative liver weight caused by DEN. Histological observations of liver tissue too correlated with the biochemical observations. In conclusion, these findings indicate that morin prevents lipid peroxidation, hepatic cell damage and protects the antioxidant system in N-nitrosodiethylamine-induced hepatocellular carcinogenesis.  相似文献   

2.
In general, oxidative stress resulting from an imbalance between prooxidant and antioxidant systems plays an important role in the pathogenesis of cancer. Morin (3,5,7,2',4'-pentahydroxyflavone), a member of the flavanol group, has been shown to possess chemopreventive potential against hepatocellular and colon cancer in experimental animals. Given the demonstrated importance of morin, aim of the present study was to evaluate the effect of morin on antiproliferative and anticarcinogenic effect against DMBA-induced experimental mammary carcinogenesis. Oral administration of 7,12-dimethylbenz(a)-anthracene (25 mg/kg body weight) to rats resulted in significant reduction of body weight, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and nonenzymic antioxidants (reduced glutathione, vitamin C, and vitamin E). The levels of lipid peroxidation markers (thiobarbituric acid reactive substances and hydroperoxides) and tumor markers such as CA 15-3, AFP and CEA in serum were increased significantly in cancer-induced animals as compared to control rats. Oral supplementation of morin at a dose of 50 mg/kg body weight significantly improved the body weight, enzymic, and nonenzymic antioxidants and considerably decreased the lipid peroxidation marker and tumor markers levels. Histological observations also correlated with the biochemical parameters. Tumor bearing animals showed marked increase in proliferating cell nuclear antigen-positive cells and also the number of AgNOR/nuclei compared with control rats while this expression levels were significantly reduced upon morin treatment. Thus, this study reveals the possible beneficial effect of morin as chemopreventive agent against the oxidative stress induced during mammary carcinogenesis.  相似文献   

3.
The metabolic effect of intravenous infusion of ammonium chloride (60 mumol/(kg body weight.min] was compared in five sheep before and after adrenal denervation. Adrenal denervation completely abolished the hyperglycemic effect of ammonium chloride, diminished the rise of pyruvate and lactate concentration, and failed to influence the lipolytic effect of NH4Cl. It is suggested that the metabolic effects of ammonia are in a different degree related to the action of ammonia on the central nervous system and (i) the hyperammonemic effect of ammonia completely depends on the neurogenic increase of adrenal medullary hormones; (ii) the rise of blood lactate and pyruvate level observed during hyperammonemia is only partially mediated by adrenaline; and (iii) the lipolytic effect of ammonia ion does not depend on the nerve-controlled secretion of adrenal medullary hormones.  相似文献   

4.
Circadian variations of lipid peroxidation products: thiobarbituric acid and reactive substances (TBARS), antioxidants: reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and liver marker enzymes such as transaminases (aspartate transaminase (AST) and alanine transaminase (ALT), alkaline phosphatase (ALP) and γ-Glutamyl transpeptidase (GGT) in circulation were analysed in control and ammonium chloride (AC) induced (100 mg/kg bodyweight) hyperammonemic rats. Elevated lipid peroxidation and liver marker enzymes (increased mesor of TBARS, AST, ALT, ALP and GGT) associated with decreased activities of antioxidants (decreased mesor of GPx, GSH, SOD and CAT) were found in hyperammonemic rats. Variations in acrophase, amplitude and r values were also found in between the control and hyperammonemic rats. These alterations clearly indicate that temporal liver marker enzymes and redox status are modulated during hyperammonemic conditions, which may also play a crucial role in disease development.  相似文献   

5.
Cisplatin is a widely used chemotherapeutic drug; however, it induces damage on kidney and liver at clinically effective higher doses. Morin hydrate possesses antioxidant, anti‐inflammatory, and anticancer properties. Therefore, we aimed to investigate the effects of morin hydrate (50 and 100 mg/kg, orally) against the renohepatic toxicity induced by a high dose of cisplatin (20 mg/kg, intraperitoneally). Renal and hepatic function, oxidative/nitrosative stress, and inflammatory markers along with histopathology were evaluated. Morin hydrate ameliorated cisplatin‐induced renohepatic toxicity significantly at 100 mg/kg as evidenced from the significant reversal of cisplatin‐induced body weight loss, mortality, functional and structural alterations of kidney, and liver. The protective role offered by morin hydrate against cisplatin‐induced renohepatic toxicity is by virtue of its free radical scavenging property, thereby abating the depletion of cellular antioxidant defense components and through modulation of inflammatory cytokines. We speculate morin hydrate as a protective candidate against renohepatic toxicity of cisplatin.  相似文献   

6.
Rats were fed for 15 days a diet containing ammonium acetate (20% w/w) and then injected i. p. with ammonium acetate (7 mmol/Kg). Only 1 out of 18 control rats but 9 of 18 rats fed ammonium survived, indicating a protective effect of ammonium ingestion against an acute ammonia challenge. Blood ammonia returned to normal levels sooner in hyperammonemic rats, suggesting more rapid detoxication. In controls, blood urea levels rose immediately reaching a maximum at 15 min, however in hyperammonemic rats urea levels did not change during the first hour, then rose slowly up to 3 hours. These results suggest that in the ammonium fed rats ammonia is initially sequestered and finally eliminated as urea.  相似文献   

7.
Ingestion of an ammonium containing diet produces hyperammonemia and protects rats against acute ammonium intoxication. Acute ammonium toxicity has been attributed to the depletion of energy metabolite intermediates. We show here that hyperammonemia affords considerable protection against depletion of hepatic energy metabolites evoked by ammonium acetate injection. In control rats there were marked decreases in the content of acetoacetate, beta-hydroxybutyrate, ATP, 2-oxoglutarate, lactate, and pyruvate while phosphoenolpyruvate increased markedly. In hyperammonemic rats beta-hydroxybutyrate, ATP, 2-oxoglutarate, and lactate were not significantly affected while pyruvate increased markedly and phosphoenolpyruvate slightly. These results suggest that in controls the activity of pyruvate kinase is inhibited after ammonium injection while in hyperammonemic rats it is not inhibited. The content of alanine (an inhibitor of pyruvate kinase) reached 2.8 mumol/g in controls and 1.6 mumol/g in hyperammonemic rats, 15 min after ammonium injection. This could explain the different effects of ammonium injection on control and hyperammonemic rats.  相似文献   

8.
Abstract

Altered mitochondrial function and free radical-mediated tissue damage have been suggested as an important pathological event in isoproterenol (ISO)-induced cardiotoxicity. This study was undertaken to know the preventive effect of morin on mitochondrial damage in ISO-induced cardiotoxicity in male Wistar rats. Myocardial infarction (MI) in rats was induced by ISO (85 mg/kg) at an interval of 24 hours for 2 days. Morin was given to rats as pre-treatment for 30 days orally using an intragastric tube. ISO-treated rats showed a significant elevation of mitochondrial thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (HP) level and pre-treatment with morin significantly prevented the increase of TBARS and HP level to near normality. The level of enzymic and non-enzymic antioxidants was decreased significantly in ISO-treated rats and pre-treatment with morin significantly increased the levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and reduced glutathione to normality. The activities of mitochondrial enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase were decreased significantly in ISO-treated myocardial ischemic rats and upon pre-treatment with morin restored these enzymes activity to normality. In addition, the decreased activities of cytochrome-C oxidase and NADH-dehydrogenases were observed in ISO-treated rats and pre-treatment with morin prevented the activities of cytochrome-C oxidase and NADH-dehydrogenase to normality. Pre-treatment with morin favorably restored the biochemical and functional parameters to near normal indicating morin to be a significant protective effect on cardiac mitochondrial function against ISO-induced MI in rats.  相似文献   

9.
In this study, the influences of Pongamia pinnata, an indigenous medicinal plant used in Ayurvedic and traditional Medicine in India, on the circadian variations of liver marker enzymes in ammonium chloride (AC) induced hyperammonemic rats were studied. Experimental rats (160 - 180 g) were divided into control, AC (daily i.p. injection of AC (100 mg kg-1 body weight)) treated, AC + P. pinnata ethanolic leaf extract (PPEt) (300 mg kg-1 body weight) treated and PPEt treated groups. Temporal characteristics (acrophase, amplitude and mesor) of liver marker enzymes; alkaline phosphatase (ALP), aspartate and alanine transaminases (ALT and AST) and γ-glutamyl transferase (GGT) were analyzed. Elevated liver marker enzymes (increased mesor and delayed acrophase of AST, ALT, ALP and GGT) were found in hyperammonemic rats. Administration of PPEt significantly alters these changes. Variations in acrophase, amplitude and r values were also found in control and experimental rats. The detectable circadian rhythms of hepatic marker enzymes and their alterations during AC/PPEt treatments, in the present study, deserve further investigation for the diagnosis and for the therapeutic efficacy of hyperammonemia.  相似文献   

10.
KBrO3-mediated renal injury and hyperproliferative response in Wistar rats. In this communication, we report the efficacy of Nymphaea alba on KBrO3 (125 mg/kg body weight, intraperitoneally) caused reduction in renal glutathione content, renal antioxidant enzymes and phase-II metabolising enzymes with enhancement in xanthine oxidase, lipid peroxidation, gamma-glutamyl transpeptidase and hydrogen peroxide (H202). It also induced blood urea nitrogen, serum creatinine and tumor promotion markers, viz., ornithine decarboxylase (ODC) activity and DNA synthesis. Treatment of rats with Nymphaea alba (100 and 200 mg/kg body weight) one hour before KBrO3 (125 mg/kg body weight, i.p.) resulted in significant decreases in xanthine oxidase (P < 0.05), lipid peroxidation, gamma-glutamyl transpeptidase, H202 generation, blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Renal glutathione content, glutathione metabolizing enzymes and antioxidant enzymes were also recovered to significant levels (P < 0.001). These results show that Nymphaea alba acts as chemopreventive agent against KBrO3-mediated renal injury and hyperproliferative response.  相似文献   

11.
In the post-absorptive state, ammonia is produced in equal amounts in the small and large bowel. Small intestinal synthesis of ammonia is related to amino acid breakdown, whereas large bowel ammonia production is caused by bacterial breakdown of amino acids and urea. The contribution of the gut to the hyperammonemic state observed during liver failure is mainly due to portacaval shunting and not the result of changes in the metabolism of ammonia in the gut. Patients with liver disease have reduced urea synthesis capacity and reduced peri-venous glutamine synthesis capacity, resulting in reduced capacity to detoxify ammonia in the liver.The kidneys produce ammonia but adapt to liver failure in experimental portacaval shunting by reducing ammonia release into the systemic circulation. The kidneys have the ability to switch from net ammonia production to net ammonia excretion, which is beneficial for the hyperammonemic patient. Data in experimental animals suggest that the kidneys could have a major role in post-feeding and post-haemorrhagic hyperammonemia.During hyperammonemia, muscle takes up ammonia and plays a major role in (temporarily) detoxifying ammonia to glutamine. Net uptake of ammonia by the brain occurs in patients and experimental animals with acute and chronic liver failure. Concomitant release of glutamine has been demonstrated in experimental animals, together with large increases of the cerebral cortex ammonia and glutamine concentrations. In this review we will discuss interorgan trafficking of ammonia during acute and chronic liver failure. Interorgan glutamine metabolism is also briefly discussed, since glutamine synthesis from glutamate and ammonia is an important alternative pathway of ammonia detoxification. The main ammonia producing organs are the intestines and the kidneys, whereas the major ammonia consuming organs are the liver and the muscle.  相似文献   

12.
We report the modulatory effect of coumarin (1,2-benzopyrone) on potassium bromate (KBrO(3)) mediated nephrotoxicity in Wistar rats. KBrO(3) (125 mg/kg body weight, i.p.) enhances gamma-glutamyl transpeptidase, renal lipid peroxidation, xanthine oxidase and hydrogen peroxide (H(2)O(2)) generation with reduction in renal glutathione content and antioxidant enzymes. It also enhances blood urea nitrogen, serum creatinine, ornithine decarboxylase (ODC) activity and [(3)H]-thymidine incorporation into renal DNA. Treatment of rats orally with coumarin (10 mg/kg body weight and 20 mg/kg body weight) resulted in a significant decrease in gamma-glutamyl transpeptidase, lipid peroxidation, xanthine oxidase, H(2)O(2) generation, blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Renal glutathione content (P < 0.01) and antioxidant enzymes were also recovered to significant level (P < 0.001). These results show that coumarin may be used as an effective chemopreventive agent against KBrO(3)-mediated renal oxidative stress, toxicity and tumor promotion response in Wistar rats.  相似文献   

13.
Manna P  Sinha M  Sil PC 《Amino acids》2009,36(3):417-428
The present study has been carried out to investigate the role of taurine (2-aminoethanesulfonic acid), a conditionally essential amino acid, in ameliorating cadmium-induced renal dysfunctions in mice. Cadmium chloride (CdCl2) has been selected as the source of cadmium. Intraperitoneal administration of CdCl2 (at a dose of 4 mg/kg body weight for 3 days) caused significant accumulation of cadmium in renal tissues and lessened kidney weight to body weight ratio. Cadmium administration reduced intracellular ferric reducing/antioxidant power (FRAP) of renal tissues. Levels of serum marker enzymes related to renal damage, creatinine and urea nitrogen (UN) have been elevated due to cadmium toxicity. Cadmium exposure diminished the activities of enzymatic antioxidants, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PD) as well as non-enzymatic antioxidant, reduced glutathione (GSH) and total thiols. On the other hand, the levels of oxidized glutathione (GSSG), lipid peroxidation, protein carbonylation, DNA fragmentation, concentration of superoxide radicals and activities of cytochrome P450 enzymes (CYP P450s) have been found to increase due to cadmium intoxication. Treatment with taurine (at a dose of 100 mg/kg body weight for 5 days) before cadmium intoxication prevented the toxin-induced oxidative impairments in renal tissues. The beneficial role of taurine against cadmium-induced renal damage was supported from histological examination of renal segments. Vitamin C, a well-established antioxidant was used as the positive control in the study. Experimental evidence suggests that both taurine and vitamin C provide antioxidant defense against cadmium-induced renal oxidative injury. Combining all, results suggest that taurine protects murine kidneys against cadmium-induced oxidative impairments, probably via its antioxidative property.  相似文献   

14.
In the present study, the protective effect of curcumin against sodium fluoride-induced nephrotoxicity was evaluated in rats. Renal injury was induced by daily administration of 600 ppm sodium fluoride in drinking water for 1 week. One week before the administration of fluoride, the animals selected as study group were given curcumin (10 and 20 mg/kg body weight, intraperitoneally). After 1 week, lipid peroxidation level, activities of superoxide dismutase, catalase, and level of glutathione in kidney homogenate were measured. Blood serum samples were examined for creatinine, serum urea, and blood urea nitrogen levels. Another group of rats received vitamin C (10 mg/kg) as standard antioxidant. The results show that curcumin and vitamin C treatment prior to fluoride administration normalized the levels of serum creatinine, serum urea, and blood urea nitrogen. Moreover, curcumin and vitamin C administrations prevented the antioxidant enzyme decreasing and lipid peroxidation levels imbalance. In conclusion, curcumin treatment at the doses of 10 and 20 mg/kg (intraperitoneally) showed significant nephroprotective effects.  相似文献   

15.
Ferric nitrilotriacetate (Fe-NTA) is a known potent nephrotoxic agent. In this communication, we report the chemopreventive effect of soy isoflavones on renal oxidative stress, toxicity and cell proliferation response in Wistar rats. Fe-NTA (9 mg Fe/kg body weight, intraperitoneally) enhances gamma-glutamyl transpeptidase, renal lipid peroxidation, xanthine oxidase and hydrogen peroxide (H2O2) generation with reduction in renal glutathione content, antioxidant enzymes, viz., glutathione peroxidase, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase and phase-II metabolising enzymes such as glutathione-S-transferase and quinone reductase. Fe-NTA treatment also induced tumor promotion markers, viz., ornithine decarboxylase (ODC) activity and thymidine [3H] incorporation into renal DNA. A sharp elevation in the levels of blood urea nitrogen and serum creatinine has also been observed. Treatment of rats orally with soy isoflavones (5 mg/kg body weight and 10 mg/kg body weight) resulted in significant decreases in gamma-glutamyl transpeptidase, lipid peroxidation, xanthine oxidase, H2O2 generation, blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Renal glutathione content (P < 0.01), glutathione metabolizing enzymes (P < 0.001) and antioxidant enzymes were also returned to normal levels (P < 0.001). Thus, our data suggest that soy isoflavones may be used as an effective chemopreventive agent against Fe-NTA-mediated renal oxidative stress, toxicity and cell proliferation response in Wistar rats.  相似文献   

16.
This study was designed to evaluate and compare the effect of melatonin, vitamin E and L-carnitine on brain and liver oxidative stress and liver damage. Oxidative stress and hepatic failure were produced by a single dose of thioacetamide (TAA) (150 mg kg(-1)) in Wistar rats. A dose of either melatonin (3 mg kg(-1)) vitamin E (20 mg kg(-1) ) or L-carnitine (100 mg kg(-1)) was used. Blood samples were taken from the neck vasculature in order to determine ammonium, blood urea nitrogen (BUN) and liver enzymes. Lipid peroxidation products, glutathione (GSH) content and antioxidative enzymes were determined in cerebral and hepatic homogenates. The results showed a decrease in BUN and in the antioxidant enzymes activities and GSH in the brain and liver. Likewise, TAA induced significant enhancement of lipid peroxidation products levels in both liver and brain, as well as in ammonia values. Melatonin, vitamin E and L-carnitine, although melatonin more significantly, decreased the intensity of the changes produced by the administration of TAA alone. Furthermore melatonin combined with TAA, decreased the ammonia levels and increased the BUN values compared with TAA animals. Also it was more effective than vitamin E or L-carnitine in these actions. These data show the protective effect of these agents, especially melatonin, against oxidative stress and hepatic damage present in fulminant hepatic failure.  相似文献   

17.
Lupeol, isolated from Crataeva nurvala stem bark in doses 40 and 80 mg/kg body weight, po, for 10 days, decreased the concentration of blood urea nitrogen, creatinine and lipid peroxidation and increased glutathione and catalase activities in cisplatin (5 mg/kg body weight, ip) induced nephrotoxicity in rats. The increased glutathione and catalase activities are indicative of antioxidant properties of lupeol.  相似文献   

18.
Chronic liver failure leads to hyperammonemia, a central component in the pathogenesis of hepatic encephalopathy (HE); however, a correlation between blood ammonia levels and HE severity remains controversial. It is believed oxidative stress plays a role in modulating the effects of hyperammonemia. This study aimed to determine the relationship between chronic hyperammonemia, oxidative stress, and brain edema (BE) in two rat models of HE: portacaval anastomosis (PCA) and bile-duct ligation (BDL). Ammonia and reactive oxygen species (ROS) levels, BE, oxidant and antioxidant enzyme activities, as well as lipid peroxidation were assessed both systemically and centrally in these two different animal models. Then, the effects of allopurinol (xanthine oxidase inhibitor, 100mg/kg for 10days) on ROS and BE and the temporal resolution of ammonia, ROS, and BE were evaluated only in BDL rats. Similar arterial and cerebrospinal fluid ammonia levels were found in PCA and BDL rats, both significantly higher compared to their respective sham-operated controls (p<0.05). BE was detected in BDL rats (p < 0.05) but not in PCA rats. Evidence of oxidative stress was found systemically but not centrally in BDL rats: increased levels of ROS, increased activity of xanthine oxidase (oxidant enzyme), enhanced oxidative modifications on lipids, as well as decreased antioxidant defense. In PCA rats, a preserved oxidant/antioxidant balance was demonstrated. Treatment with allopurinol in BDL rats attenuated both ROS and BE, suggesting systemic oxidative stress is implicated in the pathogenesis of BE. Analysis of ROS and ammonia temporal resolution in the plasma of BDL rats suggests systemic oxidative stress might be an important "first hit", which, followed by increases in ammonia, leads to BE in chronic liver failure. In conclusion, chronic hyperammonemia and oxidative stress in combination lead to the onset of BE in rats with chronic liver failure.  相似文献   

19.
Mitochondrial dysfunction in acute hyperammonemia   总被引:5,自引:0,他引:5  
Acute hyperammonemia resulting from congenital urea cycle disorders, Reye syndrome or acute liver failure results in severe neuronal dysfunction, seizures and death. Increasing evidence suggests that acute hyperammonemia results in alterations of mitochondrial and cellular energy function resulting from ammonia-induced inhibition of the tricarboxylic acid cycle enzyme alpha-ketoglutarate dehydrogenase and by activation of the NMDA receptor. Antagonists of this receptor and NOS inhibitors prevent acute ammonia-induced seizures and mortality and prevent acute ammonia-induced changes in mitochondrial calcium homeostasis and cellular energy metabolism. Acute hyperammonemia also results in decreased activities of free radical scavenging enzymes and again, free radical formation due to ammonia exposure is prevented by either NMDA receptor antagonists or NOS inhibitors. Acute hyperammonemia also results in activation of "peripheral-type" benzodiazepine receptors and monoamine oxidase-B, enzymes which are localized on the mitochondrial membranes of astrocytes in the CNS. Activation of these receptors results in mitochondrial swelling and in increased degradation of monoamines, respectively. Alterations of mitochondrial function could contribute to the neuronal dysfunction characteristic of acute hyperammonemic syndromes.  相似文献   

20.
The present study was carried out to assess the effect of chloroform insoluble fraction of ethanolic extract of Tridax procumbens (TP) against D-Galactosamine/Lipopolysaccharide (D-GalN/LPS)-induced hepatitis in rats. Induction of rats with D-GalN/LPS (300 mg/kg body weight/30 microg/kg body weight) led to a marked increase in lipid peroxidation as measured by thiobarbituric acid reactive substances (TBARS) in liver. Further there was a decline in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione s-transferase and the levels of non-enzymic antioxidants namely reduced glutathione, vitamin C and vitamin E. These biochemical alterations were normalised upon pretreatment with TP extract. Thus, the above results suggest that TP (300 mg/kg body weight orally for 10 days) is very effective in allievating the D-GalN/LPS-induced oxidative stress suggesting its antioxidant property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号