首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The perilipins are the most abundant proteins at the surfaces of lipid droplets in adipocytes and are also found in steroidogenic cells. To investigate perilipin function, perilipin A, the predominant isoform, was ectopically expressed in fibroblastic 3T3-L1 pre-adipocytes that normally lack the perilipins. In control cells, fluorescent staining of neutral lipids with Bodipy 493/503 showed a few minute and widely dispersed lipid droplets, while in cells stably expressing perilipin A, the lipid droplets were more numerous and tightly clustered in one or two regions of the cytoplasm. Immunofluorescence microscopy revealed that the ectopic perilipin A localized to the surfaces of the tiny clustered lipid droplets; subcellular fractionation of the cells using sucrose gradients confirmed that the perilipin A localized exclusively to lipid droplets. Cells expressing perilipin A stored 6-30-fold more triacylglycerol than control cells due to reduced lipolysis of triacylglycerol stores. The lipolysis of stored triacylglycerol was 5 times slower in lipid-loaded cells expressing perilipin A than in lipid-loaded control cells, when triacylglycerol synthesis was blocked with 6 microm triacsin C. This stabilization of triacylglycerol was not due to the suppression of triacylglycerol lipase activity by the expression of perilipin A. We conclude that perilipin A increases the triacylglycerol content of cells by forming a barrier that reduces the access of soluble lipases to stored lipids, thus inhibiting triacylglycerol hydrolysis. These studies suggest that perilipin A plays a major role in the regulation of triacylglycerol storage and lipolysis in adipocytes.  相似文献   

2.
Regulation of myocardial triacylglycerol synthesis and metabolism   总被引:1,自引:0,他引:1  
Studies showing a correlation of excess myocardial triacylglycerol stores with apoptosis, fibrosis, and contractile dysfunction indicate that dysregulation of triacylglycerol metabolism may contribute to cardiac disease. This review covers the regulation of heart triacylglycerol accumulation at the critical control points of fatty acid uptake, enzymes of triacylglycerol synthesis, lipolysis, and lipoprotein secretion. These pathways are discussed in the context of the central role myocardial triacylglycerol plays in cardiac energy metabolism and heart disease.  相似文献   

3.
4.
Many cells store neutral lipids, as triacylglycerol and sterol esters, in droplets. PAT-domain proteins form a conserved family of proteins that are localized at the surface of neutral lipid droplets. Two mammalian members of this family, Perilipin and adipose differentiation-related protein, are involved in lipid storage and regulate lipolysis. Here, we describe the Drosophila PAT-family member Lsd2. We showed that Lsd2 is predominantly expressed in tissues engaged in high levels of lipid metabolism, the fat body and the germ line of females. Ultrastructural analysis in the germ line showed that Lsd2 localizes to the surface of lipid droplets. We have generated an Lsd2 mutant and described its phenotype. Mutant adults have a reduced level of neutral lipid content compared to wild type, showing that Lsd2 is required for normal lipid storage. In addition, ovaries from Lsd2 mutant females exhibit an abnormal pattern of accumulation of neutral lipids from mid-oogenesis, which results in reduced deposition of lipids in the egg. Consistent with its expression in the female germ line, we showed that Lsd2 is a maternal effect gene that is required for normal embryogenesis. This work demonstrates that Lsd2 has an evolutionarily conserved function in lipid metabolism and establishes Drosophila melanogaster as a new in vivo model for studies on the PAT-family of proteins.  相似文献   

5.
The ability to store energy in the form of energy-dense TAG (triacylglycerol) and to mobilize these stores rapidly during times of low carbohydrate availability (fasting or famine) or during heightened metabolic demand (exercise or cold-stress) is a highly conserved process essential for survival. Today, in the presence of nutrient excess and sedentary lifestyles, the regulation of this pathway is viewed as an important therapeutic target for disease prevention, as elevated circulating fatty acids in obesity contribute to many aspects of the metabolic syndrome including hepatic steatosis, atherosclerosis and insulin resistance. In the present review, we discuss the metabolic regulation and function of TAG lipases with a focus on HSL (hormone-sensitive lipase), ATGL (adipose triacylglycerol lipase) and newly identified members of the lipolytic proteome.  相似文献   

6.
Summary Fatty acids, the preferred substrate in normoxic myocardium, are derived from either exogenous or endogenous triacylglycerols. The supply of exogenous fatty acids is dependent of the rate of lipolysis in adipose tissue and of the lipoprotein lipase activity at the coronary vascular endothelium. A large part of the liberated fatty acids is reesterified with glycerol-3-phosphate and converted to triacylglycerols. Endogenous lipolysis and lipogenesis are intracellular compartmentalized multienzyme processes of which individual hormone-sensitive steps have been demonstrated in adipose tissue. The triacylglycerol lipase is the rate-limiting enzyme of lipolysis and glycerol-3-phosphate acyltransferase and possibly phosphatidate phosphohydrolase are the rate-limiting enzymes of lipogenesis. The hormonal regulation of both processes in heart is still a matter of dispute. Triacylglycerol lipase activity in myocardial tissue has two intracellular sources: 1, the endoplasmic reticular and soluble neutral lipase, and 2. the lysosomal acid lipase. Studies in our laboratory have indicated that whereas lipolysis is enhanced during global ischemia and anoxia, overall lipolytic enzyme activities in heart homogenates were not altered. In addition we were unable to demonstrate alterations in tissue triacylglycerol content and glycerol-3-phosphate acyltransferase activity under these conditions. Lipolysis, is subject to feedback inhibition by product fatty acids. Therefore all processes leading to an increased removal of fatty acids from the catalytic site of the lipase will stimulate lipolysis. These studies will be reviewed. In addition, studies from our department have demonstrated the capacity of myocardial lysosomes to take up and degrade added triacylglycerol-particles in vitro. Such a process, stimulated by Ca2+ and stimulated by acidosis, offers another physiological target for hormone actions.  相似文献   

7.
1. The association between hepatic microsomal enzyme induction and triacylglycerol metabolism was examined in fasting male rabbits (2kg body wt.) injected intra-peritoneally with 50 mg of phenobarbital per kg for 10 days. 2. Occurrence of enzyme induction was established by a significant increase in hepatic aminopyrine N-demethylase activity and cytochrome P-450 content, as well as a doubling of microsomal protein per g of liver and a 54% increase in liver weight. Parallel increments in hepatic gamma-glutamyltransferase (EC 2.3.2.2) activity occurred; these were more pronounced in the whole homogenate than in the microsomes, which only accounted for 12.5% of the total enzyme activity in the controls and 17.0% in the animals given phenobarbital. Increased activity of gamma-glutamyltransferase activity was also observed in the blood serum of the test animals. 3. The rabbits given phenobarbital manifested increased hepatic triacylglycerol content and the triacylglycerol concentration of blood serum was also elevated. These changes were accompanied by a significantly enhanced ability of cell-free fractions of liver from the test animals (postmitochondrial supernatant and microsomal fractions) to synthesize glycerolipids in vitro from sn-[14C] glycerol 3-phosphate and fatty acids, when expressed per whole liver. Relative to the protein content of the fraction, glycerolipid synthesis in vitro was significantly decreased in the microsomes, presumably consequent upon the dramatic increase in their total protein content, whereas no change occurred in the postmitochondrial supernatant, possibly due to the protective effect of cytosolic factors present in this fraction and known to enhance glycerolipid synthesis. 4. Microsomal phosphatidate phosphohydrolase accounted for 85% of the total liver activity of this enzyme and its specific activity was 20-fold higher than that of the cytosolic phosphatidate phosphohydrolase (EC 3.1.3.4), when each was measured under optimal conditions. A significant increase in the activity of both enzymes per whole liver occurred in the rabbits given phenobarbital. A closer correlation between hepatic triacylglycerol content and and microsomal phosphatidate phosphohydrolase, as well as the above observation, suggest that this, rather than the cytosolic enzyme, may be rate-limiting for triacylglycerol synthesis in rabbit liver. 5. Significant correlations were observed between the various factors of hepatic microsomal-enzyme induction (aminopyrine N-demethylase and gamma-glutamyltransferase activity as well as cytochrome P-450 content) and hepatic triacylglycerol content, suggesting that that microsomal enzyme induction may promote hepatic triacylglycerol synthesis and consequently hypertriglyceridaemia in the rabbit.  相似文献   

8.
9.
The placenta plays a major role in transporting lipid to the developing foetus. Since previous studies have suggested that placental lipid transport involves intermediate esterification steps, we investigated selected microsomal and lysosomal enzymes of triacylglycerol metabolism in rat placenta. Between gestational days 10 and 14, microsomal phosphatidic acid phosphatase specific activity was 6-fold greater than the activity in adult rat liver. Phosphatidic acid phosphatase activity decreased 50% on day 15. Studies employing several different phosphorylated substrates indicated a high degree of substrate specificity. Lysosomal triacylglycerol lipase and cholesterol esterase activities decreased about 50% between days 15 and 18, then rose late in gestation. No changes were observed in the specific activities of fatty acid: CoA ligase, glycerolphosphate acyltransferase, lysophosphatidate acyltransferase, diacylglycerol acyltransferase or diacylglycerol cholinephosphotransferase during the final 12 days of gestation. Kinetic observations (competitive inhibition by alternative substrates, pH-dependence and thermal inactivation) were consistent with the hypothesis that glycerol phosphate and dihydroxyacetone phosphate can be acylated by a single microsomal enzyme in placenta. Except for fatty acid: CoA ligase, the activities of microsomal and lysosomal enzymes of triacylglycerol metabolism were comparable with those in adult rat liver. These observations are consistent with physiological studies suggesting that triacylglycerol synthetic and degradative pathways are very active in rat placenta.  相似文献   

10.
Currently, little is known about the role of intracellular triacylglycerol (TAG) lipases in the brain. Adipose triglyceride lipase (ATGL) is encoded by the PNPLA2 gene and catalyzes the rate-limiting step of lipolysis. In this study, we investigated the effects of ATGL deficiency on brain lipid metabolism in vivo using an established knock-out mouse model (ATGL-ko). A moderate decrease in TAG hydrolase activity detected in ATGL-ko versus wild-type brain tissue was accompanied by a 14-fold increase in TAG levels and an altered composition of TAG-associated fatty acids in ATGL-ko brains. Oil Red O staining revealed a severe accumulation of neutral lipids associated to cerebrovascular cells and in distinct brain regions namely the ependymal cell layer and the choroid plexus along the ventricular system. In situ hybridization histochemistry identified ATGL mRNA expression in ependymal cells, the choroid plexus, pyramidal cells of the hippocampus, and the dentate gyrus. Our findings imply that ATGL is involved in brain fatty acid metabolism, particularly in regions mediating transport and exchange processes: the brain-CSF interface, the blood-CSF barrier, and the blood-brain barrier.  相似文献   

11.
We studied the regulation of triacylglycerol (TAG) metabolism by phosphatidylcholine (PC) in CHO MT58 cells, which are deficient in PC synthesis because of a temperature-sensitive CTP:phosphocholine cytidylyltransferase. At the permissive growth temperature (34 degrees C), these cells contained 49% less TAG and 30% less PC than wild-type CHO K1 cells. Treatment with dipalmitoylphosphatidylcholine normalized both the PC and TAG levels. Despite low TAG levels, the incorporation of [14C]oleate into TAG was increased in CHO MT58 cells. The in vitro de novo synthesis of TAG and the activity of diacylglycerol acyltransferase were 90% and 34% higher, respectively. Two other key enzyme activities in TAG synthesis, acyl-CoA synthetase and mitochondrial glycerol-3-phosphate acyltransferase (GPAT), increased by 48% and 2-fold, respectively, and mitochondrial GPAT mRNA increased by approximately 4-fold. Additionally, TAG hydrolysis was accelerated in CHO MT58 cells, and in vitro lipolytic activity increased by 68%. These studies suggest that a homeostatic mechanism increases TAG synthesis and recycling in response to PC deficiency. TAG recycling produces diacylglycerol and fatty acids that can be substrates for de novo PC synthesis and for lysophosphatidylcholine (lysoPC) acylation. In CHO MT58 cells, in which de novo PC synthesis is blocked, lysoPC acylation with fatty acid originating from TAG may represent the main pathway for generating PC.  相似文献   

12.
The heart predominantly utilizes fatty acids (FAs) as energy substrate. FAs that enter cardiomyocytes can be activated and directly oxidized within mitochondria (and peroxisomes) or they can be esterified and intracellularly deposited as triacylglycerol (TAG) often simply referred to as fat. An increase in cardiac TAG can be a signature of the diseased heart and may implicate a minor role of TAG synthesis and breakdown in normal cardiac energy metabolism. Often overlooked, the heart has an extremely high TAG turnover and the transient deposition of FAs within the cardiac TAG pool critically determines the availability of FAs as energy substrate and signaling molecules. We herein review the recent literature regarding the enzymes and co-regulators involved in cardiomyocyte TAG synthesis and catabolism and discuss the interconnection of these metabolic pathways in the normal and diseased heart. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

13.
Defective lipolysis in mice lacking adipose triglyceride lipase provokes severe cardiac steatosis and heart dysfunction, markedly shortening life span. Similarly, cardiac muscle (CM)-specific Plin5 overexpression (CM-Plin5) leads to severe triglyceride (TG) accumulation in cardiomyocytes via impairing TG breakdown. Interestingly, cardiac steatosis due to overexpression of Plin5 is compatible with normal heart function and life span indicating a more moderate impact of Plin5 overexpression on cardiac lipolysis and energy metabolism. We hypothesized that cardiac Plin5 overexpression does not constantly impair cardiac lipolysis. In line with this assumption, TG levels decreased in CM of fasted compared with nonfasted CM-Plin5 mice indicating that fasting may lead to a diminished barrier function of Plin5. Recent studies demonstrated that Plin5 is phosphorylated, and activation of adenylyl cyclase leads to phosphorylation of Plin5, suggesting that Plin5 is a substrate for PKA. Furthermore, any significance of Plin5 phosphorylation by PKA in the regulation of TG mobilization from lipid droplets (LDs) is unknown. Here, we show that the lipolytic barrier of Plin5-enriched LDs, either prepared from cardiac tissue of CM-Plin5 mice or Plin5-transfected cells, is abrogated by incubation with PKA. Notably, PKA-induced lipolysis of LDs enriched with Plin5 carrying a single mutation at serine 155 (PlinS155A) of the putative PKA phosphorylation site was substantially impaired revealing a critical role for PKA in Plin5-regulated lipolysis. The strong increase in protein levels of phosphorylated PKA in CM of Plin5 transgenic mice may partially restore fatty acid release from Plin5-enriched LDs, rendering these hearts compatible with normal heart function despite massive steatosis.  相似文献   

14.
Liver receptor homolog-1 (LRH-1) has emerged as a regulator of hepatic glucose, bile acid, and mitochondrial metabolism. However, the functional mechanism underlying the effect of LRH-1 on lipid mobilization has not been addressed. This study investigated the regulatory function of LRH-1 in lipid metabolism in maintaining a normal liver physiological state during fasting. The Lrh-1f/f and LRH-1 liver-specific knockout (Lrh-1LKO) mice were either fed or fasted for 24 h, and the liver and serum were isolated. The livers were used for qPCR, western blot, and histological analysis. Primary hepatocytes were isolated for immunocytochemistry assessments of lipids. During fasting, the Lrh-1LKO mice showed increased accumulation of triglycerides in the liver compared to that in Lrh-1f/f mice. Interestingly, in the Lrh-1LKO liver, decreases in perilipin 5 (PLIN5) expression and genes involved in β-oxidation were observed. In addition, the LRH-1 agonist dialauroylphosphati-dylcholine also enhanced PLIN5 expression in human cultured HepG2 cells. To identify new target genes of LRH-1, these findings directed us to analyze the Plin5 promoter sequence, which revealed −1620/−1614 to be a putative binding site for LRH-1. This was confirmed by promoter activity and chromatin immuno-precipitation assays. Additionally, fasted Lrh-1f/f primary hepatocytes showed increased co-localization of PLIN5 in lipid droplets (LDs) compared to that in fasted Lrh-1LKO primary hepatocytes. Overall, these findings suggest that PLIN5 might be a novel target of LRH-1 to mobilize LDs, protect the liver from lipid overload, and manage the cellular needs during fasting.  相似文献   

15.
Akey step in lipolytic activation of adipocytes is the translocation of hormone-sensitive lipase (HSL) from the cytosol to the surface of the lipid storage droplet. Adipocytes from perilipin-null animals have an elevated basal rate of lipolysis compared with adipocytes from wild-type mice, but fail to respond maximally to lipolytic stimuli. This defect is downstream of the beta-adrenergic receptor-adenylyl cyclase complex. Now, we show that HSL is basally associated with lipid droplet surfaces at a low level in perilipin nulls, but that stimulated translocation from the cytosol to lipid droplets is absent in adipocytes derived from embryonic fibroblasts of perilipin-null mice. We have also reconstructed the HSL translocation reaction in the nonadipocyte Chinese hamster ovary cell line by introduction of GFP-tagged HSL with and without perilipin A. On activation of protein kinase A, HSL-GFP translocates to lipid droplets only in cells that express fully phosphorylatable perilipin A, confirming that perilipin is required to elicit the HSL translocation reaction. Moreover, in Chinese hamster ovary cells that express both HSL and perilipin A, these two proteins cooperate to produce a more rapidly accelerated lipolysis than do cells that express either of these proteins alone, indicating that lipolysis is a concerted reaction mediated by both protein kinase A-phosphorylated HSL and perilipin A.  相似文献   

16.
17.
Hara  Sayuri  Falk  Heinz  Kleinig  Hans 《Planta》1985,164(3):303-307
During somatic embryogenesis in Papaver orientale tissue cultures a permanent starch accumulation and a transient triacylglycerol accumulation were observed. The degradation of the lipids during plantlet development from embryoids was paralleled by an activity increase of the glyoxylate-cycle enzymes malate synthase (EC 4.1.3.2) and isocitrate lyase (EC 4.1.3.1). Fat accumulation and breakdown was interpreted as a reflection of seed formation and germination during normal development.  相似文献   

18.
19.
Survival in a terrestrial, dry environment necessitates a permeability barrier for regulated permeation of water and electrolytes in the cornified layer of the skin (the stratum corneum) to minimize desiccation of the body. This barrier is formed during cornification and involves a cross-linking of corneocyte proteins as well as an extensive remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by various hydrolytic enzymes generates ceramides, cholesterol, and non-esterified fatty acids for the extracellular lipid lamellae in the stratum corneum. However, the important role of epidermal triacylglycerol (TAG) metabolism during formation of a functional permeability barrier in the skin was only recently discovered. Humans with mutations in the ABHD5/CGI-58 (α/β hydrolase domain containing protein 5, also known as comparative gene identification-58, CGI-58) gene suffer from a defect in TAG catabolism that causes neutral lipid storage disease with ichthyosis. In addition, mice with deficiencies in genes involved in TAG catabolism (Abhd5/Cgi-58 knock-out mice) or TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2, Dgat2 knock-out mice) also develop severe skin permeability barrier dysfunctions and die soon after birth due to increased dehydration. As a result of these defects in epidermal TAG metabolism, humans and mice lack ω-(O)-acylceramides, which leads to malformation of the cornified lipid envelope of the skin. In healthy skin, this epidermal structure provides an interface for the linkage of lamellar membranes with corneocyte proteins to maintain permeability barrier homeostasis. This review focuses on recent advances in the understanding of biochemical mechanisms involved in epidermal neutral lipid metabolism and the generation of a functional skin permeability barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

20.
Lipid-filled macrophages (foam cells) are a defining feature of atherosclerotic plaques. Foam cells contain lipid droplet-associated proteins that in other cell types regulate lipid turnover. In foam cell such proteins may directly affect lipid droplet formation and lipid efflux. Differentiated primary human monocytes or THP-1 cells were lipid loaded by incubation with aggregated low density lipoproteins (AgLDL) or VLDL resulting in macrophage foam cells with predominantly cholesterol ester or triglyceride-rich lipid droplets, respectively. Lipid droplets were isolated and major proteins identified by mass spectrometry, among them the apolipoprotein B-48 receptor that has not previously been recognized in this context. Expression of two proteins, perilipin and adipophilin, was quantified by Western blots of cell lysates. Perilipin content decreased and adipophilin increased with lipoprotein lipid loading regardless of intracellular neutral lipid composition. This protein expression pattern may hinder lipid turnover in macrophage foam cells, thereby increasing lipid content of atherosclerotic plaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号