首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was designed to evaluate the apoptotic efficacy of selenium (Se) under glutathione-deprived conditions. Testicular cells were used as a model to assess the above. For the study, cells were maintained for 4 h under various treatments; control (media only), selenium (0.5 microM and 1.5 microM), BSO (20 nM), selenium + BSO (0.5 microM Se + 20 nM BSO and 1.5 microM Se + 20 nM BSO). The treated cells were harvested for various estimations viz. viability, GSH, GSSG, redox ratio, ROS generation and integrity of DNA. mRNA was extracted for RT-PCR analysis of JNK, p38, caspase 3 and Bcl-2. It was observed that the cell viability decreased concomitant with the decrease in GSH levels, increase in GSSG levels and increase in the generation of ROS in the combined treatment group in comparison to control and individual treatments. Also, there was an increase in the mRNA expression of JNK and p38 MAPK along with an increase in caspase 3 expression and decrease in Bcl-2 expression. The integrity of DNA was also found to be altered in the combined treatment. Thus, the results presented in this work agree with those earlier reports in a notion that sodium selenite causes apoptosis and the toxicity of selenite is mediated by increase of intracellular ROS. Also, reduction in endogenous GSH along with selenite treatment is associated with increased apoptosis, increased expression of p38 and JNK MAPK, decreased Bcl-2 expression, and increase in caspase-3 expression. Our data indicates that GSH participates in apoptosis in testicular cells and that depletion of this molecule may be critical in predisposing these cells to apoptotic cell death.  相似文献   

2.
In a host–parasite interaction model, peripheral blood mononuclear cells (PBMCs) were co-incubated with trophozoites of Entamoeba histolytica to determine if the cytotoxic killing of PBMCs involves (NOX)-derived reactive oxygen species (ROS) and p38 mitogen-activated protein kinase (MAPK). Experimental PBMC populations were pre-treated with diphenylene iodonium chloride to inhibit NOX, N-acetylcysteine to inhibit p47phox (a subunit of NOX), and SB202190 to inhibit p38 MAPK, with co-suppression of caspases. Percentage apoptosis, caspase-3 activity and ROS generation were monitored in all PBMC populations. Pre-treatment significantly raised the proportion of apoptotic PBMCs, but changes in caspase-3 activity and ROS production were relatively negligible. These results indicate that p38 MAPK and NOX were cytoprotective determinants in the trophozoite-induced apoptosis of PBMCs. Further, the programmed cell death herein investigated was independent of both caspases and ROS, and the exact mechanism of cell death remains to be an open question.  相似文献   

3.
CD70 is expressed in normal activated immune cells as well as in several types of tumors. It has been established that anti-CD70 mAb induces complement-dependent death of CD70(+) tumor cells, but how anti-CD70 mAb affects the intrinsic signaling is poorly defined. In this report, we show that ligation of CD70 expressed on EBV-transformed B cells using anti-CD70 mAb induced production of reactive oxygen species (ROS) and subsequent apoptosis. We observed an early expression of endoplasmic reticulum (ER) stress response genes that preceded the release of apoptotic molecules from the mitochondria and the cleavage of caspases. CD70-induced apoptosis was inhibited by pretreatment with the ER stress inhibitor salubrinal, ROS quencher N-acetylcysteine, and Ca(2+) chelator BAPTA. We supposed that ROS generation might be the first event of CD70-induced apoptosis because N-acetylcysteine blocked increases of ROS and Ca(2+), but BAPTA did not block ROS generation. We also found that CD70 stimulation activated JNK and p38 MAPK. JNK inhibitor SP600125 and p38 inhibitor SB203580 effectively blocked upregulation of ER stress-related genes and cleavage of caspases. Inhibition of ROS generation completely blocked phosphorylation of JNK and p38 MAPK and induction of ER stress-related genes. Taken together, we concluded that cross-linking of CD70 on EBV-transformed B cells triggered ER stress-mediated apoptosis via ROS generation and JNK and p38 MAPK pathway activation. Our report reveals alternate mechanisms of direct apoptosis through CD70 signaling and provides data supporting CD70 as a viable target for an Ab-based therapy against EBV-related tumors.  相似文献   

4.
Yeo JE  Kang SK 《Biochimica et biophysica acta》2007,1772(11-12):1199-1210
This study was designed to investigate possible prevention of apoptotic cell death by selenium, an antioxidant, using cultured brain-derived neural progenitor cells (NPCs) and an experimental mouse brain trauma (BT) model. We tested some of the neuroprotective effects of sodium selenite in NPC cells by monitoring thioredoxin reductase (TR) expression, optimum H(2)O(2) removal, and consequent inhibition of pro-apoptotic events including cytochrome c release and caspase 3 and 9 activation. Analysis of key apoptotic regulators during H(2)O(2)-induced apoptosis of NPCs showed that selenite blocks the activation of c-jun N-terminal protein kinase (JNK)/P38 mitogen-activated protein kinase (MAPK), and Akt survival protein. Moreover, selenite activates p44/42 MAPK and inhibits the downregulation of Bcl2 in selenite-treated NPC cells. For in vivo experiments, the effects of selenite on H(2)O(2) neurotoxicity were tested using several biochemical and morphologic markers. Here we show that selenite potentially inhibits H(2)O(2)-induced apoptosis of NPCs and in traumatic brain injury. This in vivo protective function was also associated with inhibition of H(2)O(2)-induced reactive oxygen species (ROS) generation, cytochrome c release and caspase 3 and 9 activation. Our data show that the protective function of selenite through attenuation of secondary pathological events most likely results from its comprehensive effects that block apoptotic cell death, resulting in the maintenance of functional neurons and in inhibition of astrogliosis. The finding that selenite administration prevents secondary pathological events in an animal model of traumatic brain injury, as well as its efficacy, may provide novel drug targets for treating brain trauma.  相似文献   

5.
Previously, we have shown that the release of AIF from mitochondria is required for As2O3-induced cell death in human cervical cancer cells, and that reactive oxygen species (ROS) is necessary for AIF release from mitochondria. In this study, we further investigated the role of MAPKs in ROS-mediated mitochondrial apoptotic cell death triggered by As2O3. As2O3-induced apoptotic cell death in HeLa cells was associated with activation and mitochondrial translocation of Bax, a marked phosphorylation of Bcl-2, reduction of Bcl-2 and Bax interaction, dissipation of mitochondrial membrane potential. Using small interfering RNA, reduced Bax expression effectively attenuated As2O3-induced mitochondrial membrane potential loss and apoptotic cell death. Moreover, the phosphorylation of Bcl-2 induced by As2O3 diminished its ability to bind to Bax. Treatment of cells with As2O3 activated both the p38 MAPK and JNK pathways. Mitochondrial translocation of Bax was completely suppressed in the presence of p38 MAPK inhibitor PD169316 or si-p38 MAPK. The As2O3-induced Bcl-2 phosphorylation was attenuated largely by JNK inhibition using SP600125 or si-JNK and to some extent by p38 MAPK inhibition with PD169316 or si-p38 MAPK. In addition, N-acetyl-L-cystein (NAC), a thiol-containing anti-oxidant, completely blocked As2O3-induced p38 MAPK and JNK activations, mitochondria translocation of Bax, and phosphorylation of Bcl-2. These results support a notion that ROS-mediated activations of p38 MAPK and JNK in response to As2O3 treatment signals activation of Bax and phosphorylation of Bcl-2, resulting in mitochondrial apoptotic cell death in human cervical cancer cells.  相似文献   

6.
Curcuma phaeocaulis Valeton is a commonly prescribed Chinese medical herb for tumor therapy. In this study, an extract of Curcuma phaeocaulis Valeton referred as Cpv was prepared and its anti-tumor effect was evaluated with MCF-7 and MDA-MB-231 cells. Curcuma phaeocaulis Valeton power was extracted with ethanol and the main components of the extract (Cpv) were analyzed with HPLC. The effect of Cpv on MCF-7 cells proliferation, intracellular reactive oxygen species (ROS) formation, mitochondrial membrane potential (ΔΨm), apoptosis, apoptotic related proteins, MDA-MB-231 cell migration, and integrins expression were determined. Furthermore, the effect of Cpv on some key signal transduction molecules was also investigated. Furanodienone, germacrone and furanodiene were identified as the main components of Cpv. Cpv treatment significantly inhibited cell proliferation, increased LDH release, induced intracellular ROS formation, and decreased ΔΨm in a dose-dependent manner in MCF-7 cells. Cpv induced apoptosis without affecting cell migration. Cpv increased protein expression of Bax, PARP, cleaved PARP, caspase-3, 7, JNK1, p-p42/44MAPK, NF-κB, IKKα, IKKβ, decreased protein expression of Bcl-2, Bcl-xL, Bim, Bik, Bad, integrin β5, p42/44MAPK without affecting integrin α5, β1, and p38MAPK protein expression. We concluded that Cpv inhibited MCF-7 cells proliferation by inducing apoptosis mediated by increasing ROS formation, decreasing ΔΨm, regulating Bcl-2 family proteins expression, and activating caspases. Cpv treatment also modulated several signaling transduction pathways. These results might provide some molecular basis for the anti-tumor activity of Curcuma phaeocaulis Valeton.  相似文献   

7.
The mechanisms of peroxynitrite-induced apoptosis are not fully understood. We report here that peroxynitrite-induced apoptosis of PC12 cells requires the simultaneous activation of p38 and JNK MAP kinase, which in turn activates the intrinsic apoptotic pathway, as evidenced by Bax translocation to the mitochondria, cytochrome c release to the cytoplasm and activation of caspases, leading to cell death. Peroxynitrite induces inactivation of the Akt pathway. Furthermore, overexpression of constitutively active Akt inhibits both peroxynitrite-induced Bax translocation and cell death. Peroxynitrite-induced death was prevented by overexpression of Bcl-2 and by cyclosporin A, implicating the involvement of the intrinsic apoptotic pathway. Selective inhibition of mixed lineage kinase (MLK), p38 or JNK does not attenuate the decrease in Akt phosphorylation showing that inactivation of the Akt pathway occurs independently of the MLK/MAPK pathway. Together, these results reveal that peroxynitrite-induced activation of the intrinsic apoptotic pathway involves interactions with the MLK/MAPK and Akt signaling pathways.  相似文献   

8.
Emerging evidence suggests that selenium has chemotherapeutic potential by inducing cancer cell apoptosis with minimal side effects to normal cells. However, the mechanism by which selenium induces apoptosis is not well understood. We have investigated the role of Bax, a Bcl-2 family protein and a critical regulator of the mitochondrial apoptotic pathway, in selenite-induced apoptosis in colorectal cancer cells. We found that supranutritional doses of selenite could induce typical apoptosis in colorectal cancer cells in vitro and in xenograft tumors. Selenite triggers a conformational change in Bax, as detected by the 6A7 antibody, and leads to Bax translocation into the mitochondria, where Bax forms oligomers to mediate cytochrome c release. Importantly, we show that the two conserved cysteine residues of Bax seem to be critical for sensing the intracellular ROS to initiate Bax conformational changes and subsequent apoptosis. Our results show for the first time that selenite can activate the apoptotic machinery through redox-dependent activation of Bax and further suggest that selenite could be useful in cancer therapy.  相似文献   

9.
10.
Advanced Glycation End Products (AGEs) has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS) and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA) induced Human telomerase-immortalized corneal epithelial cells (HUCLs) apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE). AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC) or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways.  相似文献   

11.
Although selenium compounds have been extensively studied as chemopreventative agents for prostate cancer, little is known about the potential use of selenium compounds for chemotherapy. We have shown that selenite inhibits cell growth and induces apoptosis in androgen-dependent LAPC-4 prostate cancer cells. LAPC-4 cells were more sensitive to selenite-induced apoptosis than primary cultures of normal prostate cells. Selenite-induced apoptosis in LAPC-4 cells correlated with a decrease in the Bcl-2:Bax expression ratio. Selenite-induced oxidative stress and apoptosis are dependent upon its reaction with reduced GSH. LAPC-4 cells treated with selenite showed decreased levels of total GSH and increased concentrations of GSSG. Thus, selenite altered the intracellular redox status toward an oxidative state by decreasing the ratio of GSH:GSSG. Because increased levels of Bcl-2 and GSH are associated with radioresistance, we examined the ability of selenite to sensitize prostate cancer cells to gamma-irradiation. Both LAPC-4 and androgen-independent DU 145 cells pretreated with selenite showed increased sensitivity to gamma-irradiation as measured by clonogenic survival assays. Importantly, selenite-induced radiosensitization was observed in combination with a clinically relevant dose of 2 Gy. These data suggest that altering the redox environment of prostate cancer cells with selenite increases the apoptotic potential and sensitizes them to radiation-induced cell killing.  相似文献   

12.
TNF-alpha transduces signals of survival or death via its two receptors, R1/p55/p60 and RII/p80/p75. The role of caspases as effectors of cell death is universally accepted, although caspase inhibitors may potentiate TNF cytotoxicity in some instances. In conditions when macromolecular synthesis is blocked, caspases are part of the machinery that executes TNF-triggered apoptotic death in U937, a human myelomonocyte cell line, and in the Jurkat T cell line. However, inhibition of p38 mitogen-activated protein kinase (p38 MAPK) triggered TNF cytotoxicity in U937 cells and murine splenic macrophages, but not the Jurkat cell line. TNF induced expression of the antiapoptotic protein c-IAP2 (cytoplasmic inhibitor of apoptosis protein 2), and was blocked in the presence of a p38 MAPK inhibitor, which also induced caspase-dependent, TNF-mediated apoptosis in U937 cells. Thus, inhibition of p38 MAPK resulted in the activation of caspase 9 and cleavage of the adaptor molecule BH3 interacting domain death agonist, and blocked NF-kappaB-mediated transactivation, without affecting the nuclear translocation of NF-kappaB. Collectively, these data show that activation of p38 MAPK is critical to cell survival by TNF in U937 cells, and demonstrate lineage-specific regulation of TNF-triggered signals of activation or apoptosis.  相似文献   

13.
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes severe neurological disease with high mortality. Molecular mechanisms of JEV pathogenesis such as upstream apoptotic processes and pathways are not yet completely resolved or understood. In this study, JEV replication in human promonocyte cells induced time-dependent apoptosis and activated virus dose-dependent caspases 3, 8 and 9. Proteomic analysis demonstrated up- and down-regulated (more or less than 1.5-fold) proteins in JEV-infected promonocyte cells. Biological process categorization showed processes of antioxidation, free radical removal, and sulfur redox metabolism entailed many identified up- and down-regulated proteins. Down-regulation of thioredoxin, confirmed by using Western blotting, was involved in the apoptosis process of the oxidative stress response pathway. JEV infection caused increased intracellular ROS production and activation of ASK1-ERK/p38 MAPK signaling. ERK/p38 MAPK inhibitor PD98059 treatment definitely suppressed this apoptosis. Down-regulation of thioredoxin, increased intracellular ROS, and activation of ASK1-ERK/p38 MAPK signaling all were associated with JEV-induced apoptosis. These results are suggestive of an oxidative stress-pathway as a key element of JE pathogenesis.  相似文献   

14.
The primary objective of this study was to determine the possible apoptotic cell death preventive effects of the antioxidant selenium using an experimental rat spinal cord injury (SCI) model and cultured spinal cord-derived neural progenitor cells (NPCs). Sodium selenite treatment exerted a profound preventive effect on apoptotic cell death, including p-P38, p-SAPK/JNK, caspases, and PARP activity, and ameliorated astrogliosis and hypomyelination, which occurs in regions of active cell death in the spinal cords of SCI rats. The foremost protective effect of selenite in SCI would therefore be manifested in the suppression of acute secondary apoptotic cell death. However, selenite does not appear to exert an anti-inflammatory function associated with active microglia and macrophage propagation or infiltration into the lesion site. Selenite-mediated neuroprotection has been linked to selenite's attenuation or inhibition of p38 mitogen-activated protein kinase, pSAPK/JNK, and Bax activation in in vitro and in vivo SCI lesion sites. Selenite also attenuated cell death via the prevention of cytochrome c release, caspase activation, and ROS accumulation in the cytosol. Also, our study showed that selenite administered immediately after SCI significantly diminishes functional deficits. The selenite-treated group recovered hind limb reflexes more rapidly, and a higher percentage of these rats regained responses to a greater degree than was seen in the untreated injured rats. Our data indicate that the therapeutic outcome of selenite is most likely the consequence of its comprehensive apoptotic cell death blocking effects, resulting in the protection of white matter, oligodendrocytes, and neurons, and the inhibition of astrogliosis. The finding that the administration of selenite prevents secondary pathological events in traumatic spinal cord injuries, and promotes the recovery of motor function in an animal model. Its efficacy may facilitate the development of novel drug targets for the treatment of SCI.  相似文献   

15.
Withaferin A (WA) is present abundantly in Withania somnifera, a well-known Indian medicinal plant. Here we demonstrate how WA exhibits a strong growth-inhibitory effect on several human leukemic cell lines and on primary cells from patients with lymphoblastic and myeloid leukemia in a dose-dependent manner, showing no toxicity on normal human lymphocytes and primitive hematopoietic progenitor cells. WA-mediated decrease in cell viability was observed through apoptosis as demonstrated by externalization of phosphatidylserine, a time-dependent increase in Bax/Bcl-2 ratio; loss of mitochondrial transmembrane potential, cytochrome c release, caspases 9 and 3 activation; and accumulation of cells in sub-G0 region based on DNA fragmentation. A search for the downstream pathway further reveals that WA-induced apoptosis was mediated by an increase in phosphorylated p38MAPK expression, which further activated downstream signaling by phosphorylating ATF-2 and HSP27 in leukemic cells. The RNA interference of p38MAPK protected these cells from WA-induced apoptosis. The RNAi knockdown of p38MAPK inhibited active phosphorylation of p38MAPK, Bax expression, activation of caspase 3 and increase in Annexin V positivity. Altogether, these findings suggest that p38MAPK in leukemic cells promotes WA-induced apoptosis. WA caused increased levels of Bax in response to MAPK signaling, which resulted in the initiation of mitochondrial death cascade, and therefore it holds promise as a new, alternative, inexpensive chemotherapeutic agent for the treatment of patients with leukemia of both lymphoid and myeloid origin. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The contribution of vincristine (VCR)‐induced microtubule destabilization to evoke apoptosis in cancer cells remains to be resolved. Thus, we investigated the cytotoxic mechanism of VCR on U937 and HL‐60 human leukaemia cell lines. We discovered that VCR treatment resulted in the up‐regulation of TNF‐α expression and activation of the death receptor pathway, which evoked apoptosis of U937 cells. Moreover, VCR induced microtubule destabilization and mitotic arrest. VCR treatment down‐regulated SIRT3, and such down‐regulation caused mitochondrial ROS to initiate phosphorylation of p38 MAPK. p38 MAPK suppressed MID1‐modulated degradation of the protein phosphatase 2A (PP2A) catalytic subunit. The SIRT3‐ROS‐p38 MAPK‐PP2A axis inhibited tristetraprolin (TTP)‐controlled TNF‐α mRNA degradation, consequently, up‐regulating TNF‐α expression. Restoration of SIRT3 and TTP expression, or inhibition of the ROS‐p38 MAPK axis increased the survival of VCR‐treated cells and repressed TNF‐α up‐regulation. In contrast to suppression of the ROS‐p38 MAPK axis, overexpression of SIRT3 modestly inhibited the effect of VCR on microtubule destabilization and mitotic arrest in U937 cells. Apoptosis of HL‐60 cells, similarly, went through the same pathway. Collectively, our data indicate that the SIRT3‐ROS‐p38 MAPK‐PP2A‐TTP axis modulates TNF‐α expression, which triggers apoptosis of VCR‐treated U937 and HL‐60 cells. We also demonstrate that the apoptotic signalling is not affected by VCR‐elicited microtubule destabilization.  相似文献   

17.
TNF-alpha elicits various responses including apoptosis, proliferation, and differentiation according to cell type. In neuronal PC12 cells, TNF-alpha induces moderate apoptosis while lipopolysarccaharide or trophic factor deprivation can potentiate apoptosis that is induced by TNF-alpha. TNF-alpha initiates various signal transduction pathways leading to the activation of the caspase family, NF-subk;B, Jun N-terminal kinase, and p38 MAPK via the death domain that contains the TNF-alpha receptor. Inhibition of translation using cycloheximide greatly enhanced the apoptotic effect of TNF-alpha. This implies that the induction of anti-apoptotic genes for survival by TNF-alpha may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic Bcl-2 family member, was highly expressed in response to TNF-alpha. In this study, we examined the anti-apoptotic role of p38 MAPK that is activated by TNF-alpha in neuronal PC12 cells. The phosphorylation of p38 MAPK in response to TNF-alpha slowly increased and lasted several hours in the PC12 cell and DRG neuron. This prolonged and slow phosphorylation of p38 MAPK was distinct from other non-neuronal cells. The specific inhibitor of p38 MAPK, SB202190, significantly enhanced the apoptosis that was induced by TNF-alpha in PC12 cells. This indicates that the activation of p38 MAPK could protect PC12 cells from apoptosis since there is no known role of p38 MAPK in response to TNF-alpha in neuron. This discovery could be evidence for the neuroprotective role of the p38 MAPK.  相似文献   

18.
19.
Benzyl isothiocyanate (BITC), a dietary cancer chemopreventive agent, causes apoptosis in MDA-MB-231 and MCF-7 human breast cancer cells, but the mechanism of cell death is not fully understood. We now demonstrate that the BITC-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species (ROS) due to inhibition of complex III of the mitochondrial respiratory chain. The BITC-induced ROS production and apoptosis were significantly inhibited by overexpression of catalase and Cu,Zn-superoxide dismutase and pharmacological inhibition of the mitochondrial respiratory chain. The mitochondrial DNA-deficient Rho-0 variant of MDA-MB-231 cells was nearly completely resistant to BITC-mediated ROS generation and apoptosis. The Rho-0 MDA-MB-231 cells also resisted BITC-mediated mitochondrial translocation (activation) of Bax. Biochemical assays revealed inhibition of complex III activity in BITC-treated MDA-MB-231 cells as early as at 1 h of treatment. The BITC treatment caused activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which function upstream of Bax activation in apoptotic response to various stimuli. Pharmacological inhibition of both JNK and p38 MAPK conferred partial yet significant protection against BITC-induced apoptosis. Activation of JNK and p38 MAPK resulting from BITC exposure was abolished by overexpression of catalase. The BITC-mediated conformational change of Bax was markedly suppressed by ectopic expression of catalytically inactive mutant of JNK kinase 2 (JNKK2(AA)). Interestingly, a normal human mammary epithelial cell line was resistant to BITC-mediated ROS generation, JNK/p38 MAPK activation, and apoptosis. In conclusion, the present study indicates that the BITC-induced apoptosis in human breast cancer cells is initiated by mitochondria-derived ROS.  相似文献   

20.
The present study investigated the protective effects of scutellarin on cobalt chloride (CoCl2)-induced apoptosis in PC12 cells. Incubation of PC12 cells with 500 microM CoCl2 for 24 h resulted in significant apoptosis as evaluated by the crystal violet, electron microscopy and flow cytometry assays. The increase of caspase-3 activity, decrease of Bcl-XL expression, phosphorylation of p38 mitogen-activated protein kinase (MAPK) and accumulation of intracellular reactive oxygen species (ROS) were also seen in CoCl2-treated PC12 cells. Scutellarin at 0.1, 1 and 10 microM significantly protected against the apoptotic cell death induced by CoCl2. Scutellarin decreased caspase-3 activity, increased Bcl-XL expression, inhibited p38 phosphorylation and attenuated ROS production. These results demonstrate that scutellarin can protect PC12 cells from cobalt chloride induced apoptosis by scavenging ROS, inhibiting p38 phosphorylation, up-regulating Bcl-XL expression and decreasing caspase-3 activity, and may reduce the cellular damage in pathological conditions associated with hypoxia-mediated neuronal injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号