首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We used a genetic approach to characterize features of mitogen-activated protein kinase (MAPK) activation occurring as a consequence of expression of distinct erbB receptor combinations in transformed human cells. Kinase-deficient erbB proteins reduced epidermal growth factor (EGF)-induced tyrosine phosphorylation of endogenous Shc proteins and also reduced immediate and sustained EGF-induced ERK MAPK activities in human glioblastoma cells, although basal ERK MAPK activities were unaffected. Basal and EGF-induced JNK and p38 MAPK kinase activities were equivalent in parental cancer cells and EGFR-inhibited subclones. When ectopically overexpressed in murine fibroblasts and human glioblastoma cells, a constitutively activated human EGF receptor oncoprotein (deltaEGFR) induced EGF-independent elevation of basal ERK MAPK activity. Basal JNK MAPK kinase activity was also specifically induced by deltaEGFR, which correlated with increased phosphorylation of a 54-kDa JNK2 protein observed in deltaEGFR-containing cells. The JNK activities in response to DNA damage were comparably increased in cells containing wildtype EGFR or deltaEGFR. Consistent with the notion that transforming erbB complexes induce sustained and unregulated MAPK activities, coexpression of p185(neu) and EGFR proteins to levels sufficient to transform murine fibroblasts also resulted in prolonged EGF-induced ERK in vitro kinase activation. Transforming erbB complexes, including EGFR homodimers, deltaEGFR homodimers, and p185(neu)/EGFR heterodimers, appear to induce sustained, unattenuated activation of MAPK activities that may contribute to increased transformation and resistance to apoptosis in primary human glioblastoma cells.  相似文献   

2.
3.
The protein product of the rodent neu oncogene, p185neu, is a tyrosine kinase with structural similarity to the epidermal growth factor receptor (EGFR). Transfection and subsequent overexpression of the human p185c-erbB-2 protein transforms NIH 3T3 cells in vitro. However, NIH 3T3 cells are not transformed by overexpressed rodent p185c-neu. NIH 3T3 transfectants overexpressing EGF receptors are not transformed unless incompletely transformed. Several groups have recently demonstrated EGF-induced, EGFR-mediated phosphorylation of p185c-neu. During efforts to characterize the interaction of p185c-neu with EGFR further, we created cell lines that simultaneously overexpress both p185c-neu and EGFR and observed that these cells become transformed. These observations demonstrate that two distinct, overexpressed tyrosine kinases can act synergistically to transform NIH 3T3 cells, thus identifying a novel mechanism that can lead to transformation.  相似文献   

4.
The epidermal growth factor receptor, EGFR, has been implicated in cell transformation in both mammalian and avian species. The v-ErbB oncoprotein is an oncogenic form of the chicken EGFR. The tyrosine kinase activity of this oncoprotein is required for transformation, but no transformation-specific cellular substrates have been described to date. Recently activation of the ras signal transduction pathway by the EGFR has been shown to involve the Shc and Grb2 proteins. In this communication, we demonstrate that the Shc proteins are phosphorylated on tyrosine residues and are complexed with Grb2 and the chicken EGFR following ligand activation of this receptor. In fibroblasts and erythroid cells transformed by the avian erythroblastosis virus (AEV) strains H and ES4, the Shc proteins are found to be constitutively phosphorylated on tyrosine residues. The tyrosine-phosphorylated forms of the AEV strain H v-ErbB protein are found in a complex with Shc and Grb2, but the Shc proteins do not bind to the AEV strain ES4 v-ErbB protein. Mutant forms of the v-ErbB protein (in which several of the tyrosines that become autophosphorylated have been deleted by truncation) are unable to transform erythroid cells but can still transform fibroblasts. Analysis of cells transformed by one of these mutants revealed that the truncated v-ErbB protein could no longer bind to either Shc or Grb2, but this oncoprotein still gave rise to tyrosine-phosphorylated Shc proteins that complexed with Grb2 and led to activation of mitogen-activated protein (MAP) kinase. The results suggest that stable binding of Grb2 and Shc to the v-ErbB protein is not necessary to activate this signal transduction pathway and assuming that the mutant activate MAP kinase in erythroid cells in a manner similar to that of fibroblasts, that activation of this pathway is not sufficient to transform erythroid cells.  相似文献   

5.
6.
The neu oncogene, characterized by Weinberg and colleagues, is a transforming gene found in ethylnitrosourea-induced rat neuro/glioblastomas; its human proto-oncogene homologue has been termed erbB2 or HER2 because of its close homology with the epidermal growth factor receptor (EGF-R) gene (c-erbB1). Expression of the rat neu oncogene is sufficient for transformation of mouse NIH 3T3 fibroblasts in culture and for the development of mammary carcinomas in transgenic mice, but the neu proto-oncogene has not been associated with cell transformation. We constructed a vector for expression of a chimeric cDNA and hybrid protein consisting of the EGF-R extracellular, transmembrane and protein kinase C-substrate domains linked to the intracellular tyrosine kinase and carboxyl terminal domain of the rat neu cDNA. Upon transfection with the construct, NIH 3T3 cells gave rise to EGF-R antigen-positive cell clones with varying amounts of specific EGF binding. Immunofluorescence and immunoprecipitation using neu- and EGF-receptor specific antibodies demonstrated a correctly oriented and positioned chimeric EGF-R-neu protein of the expected apparent mol. wt on the surface of these cells. EGF or TGF alpha induced tyrosine phosphorylation of the chimeric receptor protein, stimulated DNA synthesis of EGF-R-neu expressing cells and led to a transformed cell morphology and growth in soft agar. In contrast, the neu proto-oncogene did not show kinase activity or transforming properties when expressed at similar levels in NIH 3T3 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Recombinant expression of a chimeric EGFR/ErbB-3 receptor in NIH 3T3 fibroblasts allowed us to investigate cytoplasmic events associated with ErbB-3 signal transduction upon ligand activation. An EGFR/ErbB-3 chimera was expressed on the surface of NIH 3T3 transfectants as two classes of receptors possessing epidermal growth factor (EGF) binding affinities comparable to those of the wild-type EGF receptor (EGFR). EGF induced autophosphorylation in vivo of the chimeric receptor and DNA synthesis of EGFR/ErbB-3 transfectants with a dose response similar to that of EGFR transfectants. However, the ErbB-3 and EGFR cytoplasmic domains exhibited striking differences in their interactions with several known tyrosine kinase substrates. We demonstrated strong association of phosphatidylinositol 3-kinase activity with the chimeric receptor upon ligand activation comparable in efficiency with that of the platelet-derived growth factor receptor, while the EGFR exhibited a 10- to 20-fold-lower efficiency in phosphatidylinositol 3-kinase recruitment. By contrast, both phospholipase C gamma and GTPase-activating protein failed to associate with or be phosphorylated by the ErbB-3 cytoplasmic domain under conditions in which they coupled with the EGFR. In addition, though certain signal transmitters, including Shc and GRB2, were recruited by both kinases, EGFR and ErbB-3 elicited tyrosine phosphorylation of distinct sets of intracellular substrates. Thus, our findings show that ligand activation of the ErbB-3 kinase triggers a cytoplasmic signaling pathway that hitherto is unique within this receptor subfamily.  相似文献   

8.
The erbB-2 gene product, gp185erbB-2, unlike the structurally related epidermal growth factor (EGF) receptor (EGFR), exhibits constitutive kinase and transforming activity. We used a chimeric EGFR/erbB-2 expression vector to compare the mitogenic signaling pathway of the erbB-2 kinase with that of the EGFR, at similar levels of expression, in response to EGF stimulation. The EGFR/erbB-2 chimera was significantly more active in inducing DNA synthesis than the EGFR when either was expressed in NIH 3T3 cells. Analysis of biochemical pathways implicated in signal transduction by growth factor receptors indicated that both phospholipase C type gamma (PLC-gamma) and the p21ras GTPase-activating protein (GAP) are substrates for the erbB-2 kinase in NIH 3T3 fibroblasts. However, under conditions in which activation of the erbB-2 kinase induced DNA synthesis at least fivefold more efficiently than the EGFR, the levels of erbB-2- or EGFR-induced tyrosine phosphorylation of PLC-gamma and GAP were comparable. In addition, the stoichiometry of tyrosine phosphorylation of these putative substrates by erbB-2 appeared to be at least an order of magnitude lower than that induced by platelet-derived growth factor receptors at comparable levels of mitogenic potency. Thus, our results indicate that differences in tyrosine phosphorylation of PLC-gamma and GAP do not account for the differences in mitogenic activity of the erbB-2 kinase compared with either the EGFR or platelet-derived growth factor receptor in NIH 3T3 fibroblasts.  相似文献   

9.
The functional integration of growth factor signaling occurs at several levels in target cells. One of the most proximal mechanisms is receptor transmodulation, by which one activated receptor can regulate the expression of other receptors in the same cells. Well-established transregulatory loops involve platelet-derived growth factor (PDGF) down-regulation of epidermal growth factor (EGF) receptors and beta-type transforming growth factors modulation of PDGF receptors. We have studied the relationship between neu tyrosine kinase activation and the expression of the PDGF receptors in transfected NIH/3T3 cells. Expression of the neu oncogene, but not of the neu proto-oncogene, was associated with a decrease of PDGF alpha- and beta-receptors on the cell surface, as measured by [125-I]PDGF-AA and -BB binding. These results were corroborated by metabolic labeling and immunoprecipitation of the PDGF beta-receptors. PDGF alpha- and beta-receptor mRNAs were strongly decreased in the neu oncogene-transformed cells in comparison with control cells expressing the neu proto-oncogene. Down-regulation of the PDGF receptors and their mRNAs was also observed after EGF treatment of cells expressing a chimeric EGF receptor/neu receptor, where the neu tyrosine kinase is activated by EGF binding. These results show that the neu tyrosine kinase can down-modulate PDGF receptor expression, and the effect is mediated via decreased PDGF receptor mRNA levels.  相似文献   

10.
Reactive oxygen species initiate multiple signal transduction pathways including tyrosine kinase signaling. Here, we demonstrate tyrosine phosphorylation of EGF receptor, STAT3, and, to a lesser extent, STAT1 upon H2O2 treatment of HER14 cells (NIH3T3 fibroblasts transfected with full-length EGF receptor). Maximum phosphorylation levels were observed in 5 min of stimulation at 1-2 mM H2O2. It has been shown that the intrinsic EGF-receptor tyrosine kinase is responsible for the receptor phosphorylation upon H2O2 stimulation. STAT3 and STAT1 activation in HER14 cells was demonstrated to depend on EGF receptor kinase activity, rather than JAK2 activity, while in both K721A and CD126 cells (NIH3T3 transfected with kinase-dead EGF receptor, and EGF receptor lacking major autophosphorylation sites, respectively) STAT1 and STAT3 tyrosine phosphorylation requires JAK2 kinase activity. Furthermore, STAT3 is constitutively phosphorylated in K721A and CD126 cells, and STAT1 H2O2-stimulated activation in these cells is much more prominent than in HER14. In all the cell lines used, Src-kinase activity was demonstrated to be unnecessary for ROS-initiated phosphorylation of STATs. Herein, we postulate that EGF receptor plays a role in H2O2-induced STAT activation in HER14 cells. Our data also prompted a hypothesis of constitutive inhibition of JAK2-dependent STAT activation in this cell line.  相似文献   

11.
Cross-communication between different signaling systems allows the integration of the great diversity of stimuli that a cell receives under varying physiological situations. In this paper we have explored the possibility that tumor necrosis factor (TNF) receptor signal cross-talks with epidermal growth factor (EGF) receptor signal on the nuclear factor-kappa B (NF-kappa B) activation pathway. We have demonstrated that overexpression of the EGF receptor (EGFR) in NIH3T3 cells significantly enhances TNF-induced NF-kappa B-dependent luciferase activity even without EGF, that EGF treatment has a synergistic effect on the induction of the reporter activity, and that this enhancement is suppressed by AG1478, EGFR-specific tyrosine kinase inhibitor. We also have shown that TNF induces tyrosine phosphorylation and internalization of the overexpressed EGFR in NIH3T3 cells and the endogenously expressed EGFR in A431 cells and that the transactivation by TNF is suppressed by N-acetyl-l-cysteine or overexpression of an endogenous reducing molecule, thioredoxin, but not by phosphatidylinositol 3-kinase inhibitors and protein kinase C inhibitor. Taken together, this evidence strongly suggests that EGFR transactivation by TNF, which is regulated in a redox-dependent manner, is playing a pivotal role in TNF-induced NF-kappa B activation.  相似文献   

12.
Compound 5 (Cpd 5), a synthetic K vitamin analogue, or 2-(2-mercaptoethanol)-3-methyl-1,4-naphthoquinone, is a potent inhibitor of epidermal growth factor (EGF)-induced rat hepatocyte DNA synthesis and induces EGF receptor (EGFR) tyrosine phosphorylation. To understand the cellular responses to Cpd 5, its effects on the EGF signal transduction pathway were examined and compared to those of the stimulant, EGF. Cpd 5 induced a cellular response program that included the induction of EGFR tyrosine phosphorylation and the activation of the mitogen-activated protein kinase (MAPK) cascade. EGFR tyrosine phosphorylation was induced by Cpd 5 in a time- and dose-dependent manner. Coimmunoprecipitation studies demonstrated that both EGF and Cpd 5 induced tyrosine phosphorylation of EGFR was associated with increased amounts of adapter proteins Shc and Grb2, and the Ras GTP-GDP exchange protein Sos, indicating the formation of functional EGFR complexes. Although EGFR phosphorylation was induced both by the stimulant EGF and the inhibitor Cpd 5, the timing and intensity of activation by EGF and Cpd 5 were different. EGF activated EGFR transiently, whereas Cpd 5 induced an intense and sustained activation. Cpd 5-altered cells had a decreased ability to dephosphorylate tyrosine phosphorylated EGFR, providing evidence for an inhibition of tyrosine phosphatase activity. Both EGF and Cpd 5 caused an induction of phospho-extracellular response kinase (ERK), which was also more sustained with Cpd 5. Moreover, whereas Cpd 5 induced a striking translocation of phosphorylated ERK from cytosol to the nucleus, no significant nuclear translocation occurred after stimulation with EGF. The data suggest that this novel compound causes growth inhibition through antagonism of EGFR phosphatases and consequent induction of EGFR and ERK phosphorylation. This is supported by experiments with PD 153035 and PD 098059, antagonists of phosphorylation of EGFR and MAP kinase kinase (MEK), respectively, which both antagonized Cpd 5-induced phosphorylation and the inhibition of DNA synthesis. These results imply a mechanism of cell growth inhibition associated with intense and prolonged protein tyrosine phosphorylation. Protein tyrosine phosphatases may thus be a novel target for drugs designed to inhibit cell growth.  相似文献   

13.
eps8, a recently identified tyrosine kinase substrate, has been shown to augment epidermal growth factor (EGF) responsiveness, implicating it in EGF receptor (EGFR)-mediated mitogenic signaling. We investigated the status of eps8 phosphorylation in normal and transformed cells and the role of eps8 in transformation. In NIH 3T3 cells overexpressing EGFR (NIH-EGFR), eps8 becomes rapidly phosphorylated upon EGF stimulation. At receptor-saturating doses of EGF, approximately 30% of the eps8 pool is tyrosine phosphorylated. Under physiological conditions of activation (i.e., at low receptor occupancy), corresponding to the 50% effective dose of EGF for mitogenesis, approximately 3 to 4% of the eps8 contains phosphotyrosine. In human tumor cell lines, we detected constitutive tyrosine phosphorylation of eps8, with a stoichiometry (approximately 5%) similar to that associated with potent mitogenic response in NIH-EGFR cells. Overexpression of eps8 was able to transform NIH 3T3 cells under limiting conditions of activation of the EGFR pathway. Concomitant tyrosine phosphorylation of eps8 and shc, but not of rasGAP, phospholipase C-gamma, and eps15, was frequently detected in tumor cells. This suggested that eps8 and shc might be part of a pathway which is preferentially selected in some tumors. Cooperation between these two transducers was further indicated by the finding of their in vivo association. This association was, at least in part, dependent on recognition of shc by the SH3 domain of eps8. Our results indicate that eps8 is physiologically part of the EGFR-activated signaling and that its alterations can contribute to the malignant phenotype.  相似文献   

14.
Murine fibroblasts transformed by ras oncogenes exhibited an increased amount of tyrosine phosphorylated proteins compared to normal cells. The pattern of phosphorylation was similar to that observed in cells chronically stimulated with EGF or PDGF, and is probably due to autocrine stimulation of receptor tyrosine kinases. NIH 3T3 cells transfected with H-ras under the control of a glucocorticoid inducible promoter were used to determine the temporal relationship among expression of p21H-ras oncoprotein, increase in tyrosine phosphorylation and appearance of the transformed morphology. Enhanced tyrosine phosphorylation was observed more than 24 hours before evidence of morphological changes. These results suggest that full transformation by ras oncogenes requires cooperation with tyrosine protein kinases.  相似文献   

15.
Rath O  Himmler A  Baum A  Sommergruber W  Beug H  Metz T 《FEBS letters》2007,581(13):2549-2556
In contrast to wtEGFR, its truncated version EGFRvIII transformed non-tumorigenic FDC-P1 cells only when c-Myc was coexpressed. In nude mice, EGFRvIII/c-Myc coexpressing cells induced tumors, whereas wtEGFR-expressing EGF-dependent FDC-P1 cells did not. EGFRvIII function was required for both the induction and maintenance of tumor growth. Cellular proliferation was inhibited by a selective EGFR tyrosine kinase inhibitor indicating intrinsic tyrosine kinase activities for both receptors. Unlike wtEGFR, constitutive signaling by EGFRvIII was refractory to stimulation by the EGFR ligands EGF and TGF-alpha. Summarized, EGFRvIII is a constitutively active receptor tyrosine kinase whose transforming capacity is lower than that of EGF-stimulated wtEGFR.  相似文献   

16.
Regulated migration of epidermal growth factor receptor from caveolae.   总被引:22,自引:0,他引:22  
In quiescent fibroblasts, epidermal growth factor (EGF) receptors (EGFR) are initially concentrated in caveolae but rapidly move out of this membrane domain in response to EGF. To better understand the dynamic localization of EGFR to caveolae, we have studied the behavior of wild-type and mutant receptors expressed in cells lacking endogenous EGFR. All of the receptors we examined, including those missing the first 274 amino acids or most of the cytoplasmic tail, were constitutively concentrated in caveolae. By contrast, migration from caveolae required EGF binding, an active receptor kinase domain, and at least one of the five tyrosine residues present in the regulatory domain of the receptor. Movement appears to be modulated by Src kinase, is blocked by activators of protein kinase C, and occurs independently of internalization by clathrin-coated pits. Two mutant receptors previously shown to induce an oncogenic phenotype lack the ability to move from caveolae in response to EGF, suggesting that a prolonged residence in this domain may contribute to abnormal cell behavior.  相似文献   

17.
Overexpression of the erbB-2/neu gene is frequently detected in human cancers. When overexpressed in NIH 3T3 cells, the normal erbB-2 product, gp185erbB-2, displays potent transforming ability as well as constitutively elevated levels of tyrosine kinase activity in the absence of exogenously added ligand. To investigate the basis for its chronic activation we sought evidence of a ligand for gp185erbB-2 either in serum or produced by NIH 3T3 cells in an autocrine manner. We demonstrate that a putative ligand for gp185erbB-2 is not contained in serum. Chimeric molecules composed of the extracellular domain of gp185erbB-2 and the intracellular portion of the epidermal growth factor receptor (EGFR) did not show any transforming ability or constitutive autophosphorylation when they were expressed in NIH 3T3 cells. However, they were able to transduce a mitogenic signal when triggered by a monoclonal antibody directed against the extracellular domain of erbB-2. These results provide evidence against the idea that an erbB-2 ligand is produced by NIH 3T3 cells. Furthermore, we obtained direct evidence of the constitutive enzymative activity of gp185erbB-2 by demonstrating that the erbB-2 kinase remained active in a chimeric configuration with the extracellular domain of the EGFR, in the absence of any detectable ligand for the EGFR. Thus, under conditions of overexpression, the normal gp185erbB-2 is a constitutively active kinase able to transform NIH 3T3 cells in the absence of ligand.  相似文献   

18.
Prostaglandins (PGs) such as PGE2 enhance proliferation in many cells, apparently through several distinct mechanisms, including transactivation of the epidermal growth factor (EGF) receptor (EGFR) as well as EGFR-independent pathways. In this study we found that in primary cultures of rat hepatocytes PGE2 did not induce phosphorylation of the EGFR, and the EGFR tyrosine kinase blockers gefitinib and AG1478 did not affect PGE2-stimulated phosphorylation of ERK1/2. In contrast, PGE2 elicited EGFR phosphorylation and EGFR tyrosine kinase inhibitor-sensitive ERK phosphorylation in MH1C1 hepatoma cells. These findings suggest that PGE2 elicits EGFR transactivation in MH1C1 cells but not in hepatocytes. Treatment of the hepatocytes with PGE2 at 3 h after plating amplified the stimulatory effect on DNA synthesis of EGF administered at 24 h and advanced and augmented the cyclin D1 expression in response to EGF in hepatocytes. The pretreatment of the hepatocytes with PGE2 resulted in an increase in the magnitude of EGF-stimulated Akt phosphorylation and ERK1/2 phosphorylation and kinase activity, including an extended duration of the responses, particularly of ERK, to EGF in PGE2-treated cells. Pertussis toxin abolished the ability of PGE2 to enhance the Akt and ERK responses to EGF. The results suggest that in hepatocytes, unlike MH1C1 hepatoma cells, PGE2 does not transactivate the EGFR, but instead acts in synergism with EGF by modulating mitogenic mechanisms downstream of the EGFR. These effects seem to be at least in part G(i) protein-mediated and include upregulation of signaling in the PI3K/Akt and the Ras/ERK pathways.  相似文献   

19.
Secretory carrier membrane proteins (SCAMPs) are ubiquitously expressed proteins of post-Golgi vesicles. In the presence of the tyrosine phosphatase inhibitor vanadate, or after overexpression in Chinese hamster ovary (CHO) cells, SCAMP1 and SCAMP3 are phosphorylated selectively on tyrosine residue(s). Phosphorylation is reversible after vanadate washout in situ or when isolated SCAMP3 is incubated with the recombinant tyrosine phosphatase PTP1B. Vanadate also causes the partial accumulation of SCAMP3, but not SCAMP1, in “patches” at or near the cell surface. A search for SCAMP kinase activities has shown that SCAMPs 1 and 3, but not SCAMP2, are tyrosine phosphorylated in EGF-stimulated murine fibroblasts overexpressing the EGF receptor (EGFR). EGF catalyzes the progressive phosphorylation of the SCAMPs up to 1 h poststimulation and may enhance colocalization of the EGFR and SCAMP3 within the cell interior. EGF also induces SCAMP–EGFR association, as detected by coimmunoprecipitation, and phosphorylation of SCAMP3 is stimulated by the EGFR in vitro. These results suggest that phosphorylation of SCAMPs, either directly or indirectly, may be functionally linked to the internalization/down-regulation of the EGFR.  相似文献   

20.
The ability of mitogens to rapidly induce tyrosine phosphorylation of cellular proteins has been taken as evidence of participation in subsequent signaling pathways. SSeCKS, a major protein kinase C (PKC) substrate with protein scaffolding and tumor suppressive properties, becomes tyrosine phosphorylated in NIH3T3 and rodent embryo fibroblasts after short-term treatment with epidermal growth factor (EGF), platelet-derived growth factor (PDGF), or fetal calf serum in the presence of pervanadate, but not by treatment with insulin or insulin-like growth factor-1. The relative phosphotyrosine level on SSeCKS was higher in actively dividing cells than in confluent cultures. Tyrosine phosphorylation of SSeCKS was apparent in cells deficient in Src, Fyn, Yes, or Abl tyrosine kinases or in NIH3T3 cells expressing a temperature-sensitive v-Src allele, but not in FAK-deficient embryo fibroblasts. Purified FAK or Src enzyme failed to directly phosphorylate SSeCKS in vitro. EGF failed to induce SSeCKS tyrosine phosphorylation in FAK-/- fibroblasts, indicating that the EGF receptor is probably not the direct kinase of SSeCKS. Phosphorylation under these conditions was rescued by the transient reexpression of wt-FAK but not FAK mutated at Y397, a major autophosphorylation and SH2-based docking site. Adhesion of FAK+/+ cells to fibronectin failed to significantly induce SSeCKS tyrosine phosphorylation although FAK was activated, suggesting that SSeCKS phosphorylation is mediated through a growth factor receptor-FAK rather than an integrin-FAK pathway. Moreover, PDGF could induce SSeCKS tyrosine phosphorylation in the absence of FAK activation, suggesting a role for FAK SH2-based docking rather than kinase activity. Immunofluorescence analysis showed that in FAK-/- cells, SSeCKS costains along F-actin stress fibers, in contrast to FAK+/+ cells, where most SSeCKS stains at the cell edge and along a cortical cytoskeletal matrix. This correlated with increased coprecipitation of SSeCKS with biotin-phalloidin-bound F-actin from FAK-/- compared to FAK+/+ cell lysates. Similarly, bacterially expressed, unphosphorylated SSeCKS cosedimented with F-actin in ultracentrifugation assays. These data suggest that mitogen-induced, FAK-dependent tyrosine phosphorylation of SSeCKS modulates its binding to the actin-based cytoskeleton, suggesting a role for SSeCKS in mitogen-induced cytoskeletal reorganization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号