首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Class IIa bacteriocins: biosynthesis, structure and activity   总被引:29,自引:0,他引:29  
In the last decade, a variety of ribosomally synthesized antimicrobial peptides or bacteriocins produced by lactic acid bacteria have been identified and characterized. As a result of these studies, insight has been gained into fundamental aspects of biology and biochemistry such as producer self protection, membrane-protein interactions, and protein modification and secretion. Moreover, it has become evident that these peptides may be developed into useful antimicrobial additives. Class IIa bacteriocins can be considered as the major subgroup of bacteriocins from lactic acid bacteria, not only because of their large number, but also because of their activities and potential applications. They have first attracted particular attention as listericidal compounds and are now believed to be the next in line if more bacteriocins are to be approved in the future. The present review attempts to provide an insight into general knowledge available for class IIa bacteriocins and discusses common features and recent findings concerning these substances.  相似文献   

2.
Bacteriocins of lactic acid bacteria   总被引:75,自引:0,他引:75  
T R Klaenhammer 《Biochimie》1988,70(3):337-349
Lactic acid bacteria produce a variety of antagonistic factors that include metabolic end products, antibiotic-like substances and bactericidal proteins, termed bacteriocins. The range of inhibitory activity by bacteriocins of lactic acid bacteria can be either narrow, inhibiting only those strains that are closely related to the producer organism, or wide, inhibiting a diverse group of Gram-positive microorganisms. The following review will discuss biochemical and genetic aspects of bacteriocins that have been identified and characterized from lactic acid bacteria.  相似文献   

3.
The continuing story of class IIa bacteriocins.   总被引:2,自引:0,他引:2  
Many bacteria produce antimicrobial peptides, which are also referred to as peptide bacteriocins. The class IIa bacteriocins, often designated pediocin-like bacteriocins, constitute the most dominant group of antimicrobial peptides produced by lactic acid bacteria. The bacteriocins that belong to this class are structurally related and kill target cells by membrane permeabilization. Despite their structural similarity, class IIa bacteriocins display different target cell specificities. In the search for new antibiotic substances, the class IIa bacteriocins have been identified as promising new candidates and have thus received much attention. They kill some pathogenic bacteria (e.g., Listeria) with high efficiency, and they constitute a good model system for structure-function analyses of antimicrobial peptides in general. This review focuses on class IIa bacteriocins, especially on their structure, function, mode of action, biosynthesis, bacteriocin immunity, and current food applications. The genetics and biosynthesis of class IIa bacteriocins are well understood. The bacteriocins are ribosomally synthesized with an N-terminal leader sequence, which is cleaved off upon secretion. After externalization, the class IIa bacteriocins attach to potential target cells and, through electrostatic and hydrophobic interactions, subsequently permeabilize the cell membrane of sensitive cells. Recent observations suggest that a chiral interaction and possibly the presence of a mannose permease protein on the target cell surface are required for a bacteria to be sensitive to class IIa bacteriocins. There is also substantial evidence that the C-terminal half penetrates into the target cell membrane, and it plays an important role in determining the target cell specificity of these bacteriocins. Immunity proteins protect the bacteriocin producer from the bacteriocin it secretes. The three-dimensional structures of two class IIa immunity proteins have been determined, and it has been shown that the C-terminal halves of these cytosolic four-helix bundle proteins specify which class IIa bacteriocin they protect against.  相似文献   

4.
The use of bacteriocins holds great promise in different areas such as health, food, nutrition, veterinary, nanotechnology, among others. Many research groups worldwide continue to advance the knowledge to unravel a novel range of therapeutic agents and food preservatives. This review addresses the advances of bacteriocins and their producer organisms as biocontrol agents for applications in the medical industry and agriculture. Furthermore, the bacteriocin mechanism of action and structural characteristics will be reviewed. Finally, the potential role of bacteriocins to modulate the signaling in host-associated microbial communities will be discussed.  相似文献   

5.
The review is devoted to literature data on antimicrobial metabolites produced by lactic acid bacteria (LAB), which have long been used for the preparation of cultured dairy products. This paper summarizes data on low-molecular-weight antimicrobial substances, which are primary products or by-products of lactic fermentation. Individual sections are devoted to a variety of antifungal agents and bacteriocins produced by LAB; their potential use as food preservatives has been discussed. The characteristics and classification of bacteriocins are presented in a greater detail; their synthesis and mechanism of action are described using the example of nisin A, which belongs to class I lantibiotics synthesized by the bacterium Lactococcus lactis subsp. lactis. The mechanism of action of class II bacteriocins has been demonstrated with lacticin. Prospective directions for using LAB antimicrobial metabolites in industry and medicine are discussed in the Conclusion.  相似文献   

6.
The review is devoted to literature data on antimicrobial metabolites produced by lactic acid bacteria (LAB), which have long been used for the preparation of cultured dairy products. This paper summarizes data on low-molecular-weight antimicrobial substances, which are primary products or by-products of lactic fermentation. Individual sections are devoted to a variety of antifungal agents and bacteriocins produced by LAB; their potential use as food preservatives has been discussed. The characteristics and classification of bacteriocins are presented in a greater detail; their synthesis and mechanism of action are described using the example of nisin A, which belongs to class I lantibiotics synthesized by the bacterium Lactococcus lactis subsp. lactis. The mechanism of action of class II bacteriocins has been demonstrated with lacticin. Prospective directions for using LAB antimicrobial metabolites in industry and medicine are discussed in the Conclusion.  相似文献   

7.
Linear DNA plasmids of yeasts   总被引:2,自引:0,他引:2  
Abstract Proteinaceous antimicrobial compounds are produced by a diversity of species ranging from bacteria to humans. This review focuses on the mode of action of pore-forming bacteriocins produced by Gram-positive bacteria. The mechanism of action of specific immunity proteins, which protect the producer strains from the lethal action of their own products (producer self-protection), are also discussed.  相似文献   

8.
Bacteriocins from lactic acid bacteria (LAB) are a diverse group of antimicrobial proteins/peptides, offering potential as biopreservatives, and exhibit a broad spectrum of antimicrobial activity at low concentrations along with thermal as well as pH stability in foods. High bacteriocin production usually occurs in complex media. However, such media are expensive for an economical production process. For effective use of bacteriocins as food biopreservatives, there is a need to have heat-stable wide spectrum bacteriocins produced with high-specific activity in food-grade medium. The main hurdles concerning the application of bacteriocins as food biopreservatives is their low yield in food-grade medium and time-consuming, expensive purification processes, which are suitable at laboratory scale but not at industrial scale. So, the present review focuses on the bacteriocins production using complex and food-grade media, which mainly emphasizes on the bacteriocin producer strains, media used, different production systems used and effect of different fermentation conditions on the bacteriocin production. In addition, this review emphasizes the purification processes designed for efficient recovery of bacteriocins at small and large scale.  相似文献   

9.
Gram-negative and some Gram-positive bacteria that are resistant to bacteriocins of lactic acid bacteria (LAB) were subjected to sublethal stresses and treated with nisin and pediocin AcH. Both bacteriocins reduced the viability of cells surviving sublethal stresses. The results explain the possible mechanisms by which bacteriocins of LAB enter through the walls (or outer membranes) to destabilize the cytoplasmic (or inner) membranes and kill cells of sensitive Gram-positive and resistant, but injured, Gram-negative and Gram-positive bacteria.  相似文献   

10.
Class I bacteriocins (lantibiotics) and class II bacteriocins are antimicrobial peptides secreted by gram-positive bacteria. Using two lantibiotics, lacticin 481 and nisin, and the class II bacteriocin coagulin, we showed that bacteriocins can be detected without any purification from whole producer bacteria grown on plates by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). When we compared the results of MALDI-TOF-MS performed with samples of whole cells and with samples of crude supernatants of liquid cultures, the former samples led to more efficient bacteriocin detection and required less handling. Nisin and lacticin 481 were both detected from a mixture of their producer strains, but such a mixture can yield additional signals. We used this method to determine the masses of two lacticin 481 variants, which confirmed at the peptide level the effect of mutations in the corresponding structural gene.  相似文献   

11.

Aims

The aim of this study is to evaluate the capacity of three bacteriocin producers, namely Lactococcus lactis subsp. lactis biovar diacetylactis UL719 (nisin Z producer), L. lactis ATCC 11454 (nisin A producer) and Pediococcus acidilactici UL5 (pediocin PA‐1 producer), and to grow and produce their active bacteriocins in Macfarlane broth, which mimics the nutrient composition encountered in the human large intestine.

Methods and Results

The three bacteriocin‐producing strains were grown in Macfarlane broth and in De Man–Rogosa–Sharpe (MRS) broth. For each strain, the bacterial count, pH drop and production of organic acids and bacteriocins were measured for different period of time. The ability of the probiotic candidates to inhibit Listeria ivanovii HPB 28 in co‐culture in Macfarlane broth was also examined. Lactococcus lactis subsp. lactis biovar diacetylactis UL719, L. lactis ATCC 11454 and Ped. acidilactici UL5 were able to grow and produce their bacteriocins in MRS broth and in Macfarlane broth. Each of the three candidates inhibited L. ivanovii HPB 28, and this inhibition activity was correlated with bacteriocin production. The role of bacteriocin production in the inhibition of L. ivanovii in Macfarlane broth was confirmed for Ped. acidilactici UL5 using a pediocin nonproducer mutant.

Conclusions

The data provide some evidence that these bacteria can produce bacteriocins in a complex medium with carbon source similar to those found in the colon.

Significance and Impact of the Study

This study demonstrates the capacity of lactic acid bacteria to produce their bacteriocins in a medium simulating the nutrient composition of the large intestine.  相似文献   

12.
The production of bacteriocins is frequently described in high microbial diversity environments. The aims of this study were to screen Streptococcus spp. isolated from rumen for their antibacterial potential and to determine the presence of post-translational modification genes for lantibiotic class of bacteriocins. The isolates were tested for production of antibacterial compounds by the spot-on-lawn assay. Presence of interfering factors and the sensitivity to proteinase K were evaluated. The ruminal bacteria were identified by 16S rRNA gene sequencing and the subspecific discrimination of the isolates belonging to the same specie was performed by PFGE. The presence of lantibiotic post-translational modification genes (lanB, lanC, and lanM) into bacterial genomes was performed by PCR. The bacteriocin-like inhibitory substances showed broad inhibitory activity and the producer cells were identified as S. equinus, S. lutetiensis, and S. gallolyticus. According to PFGE, the isolates identified as S. equinus belong to different strains. Three ruminal isolates showed at least one of the lantibiotic post-translational modification genes, and lanC was more frequently detected (75%). The production of broad-spectrum bacteriocin-like inhibitory substances by rumen strains suggests that antimicrobial peptides may play an important role in competition in the complex ruminal ecosystem.  相似文献   

13.
The Lactococcus lactis subsp. lactis 194-K strain has been established to be able to produce two bacteriocins, one of which was identified as the known lantibiotic nisin A, and the other 194-D bacteriocin represents a polypeptide with a 2589-Da molecular mass and comprises 20 amino acid residues. Both bacteriocins were produced in varying proportions in all of the studied culture media, which support the growth of the producer. Depending on the cultivation medium, the nisin A content was 380- to 1123-fold lower in the 194-K stain culture broth than that of the 194-D peptide. In comparision to nisin A Bacteriocin 194-D possessed a wide range of antibacterial activity and suppressed the growth of both Gram-positive and Gram-negative bacteria. An optimal medium for 194-D bacteriocin synthesis was shown to be a fermentation medium which contained yeast extract, casein hydrolysate, and potassium phosphate. The biosynthesis of bacteriocin 194-D by the 194-K strain in these media occurred parallel to producer growth, and its maximal accumulation in the culture broth was observed at14–20 h of the strain’s growth.  相似文献   

14.
Aims: Study of the potential of Lactococcus lactis CECT‐4434 as a biosurfactants and nisin (the only bacteriocin allowed to be used in the food industry) producer for industrial applications, exploiting the possibility of recovering separately both metabolites, taking into account that L. lactis is an interesting micro‐organism with several applications in the food industry because it is recognized as GRAS. Methods and Results: The results showed the ability of this strain to produce cell‐bound biosurfactants, under controlled pH, and cell‐bound biosurfactants and bacteriocins, when pH was not controlled. Three extraction procedures were designed to separately recover these substances. Conclusions: The strain L. lactis CECT‐4434 showed to be a cell‐bound biosurfactants and bacterocins producer when fermentations were carried out under uncontrolled pH. Both products can be recovered separately. Significance and Impact of the Study: Development of a convenient tool for the extraction of cell‐bound biosurfactants and bacteriocins from the fermentation broth.  相似文献   

15.
Four novel heat-stable bacteriocin-like substances were found to be produced by Geobacillus stearothermophilus strains isolated from oil-wells in Lithuania. Geobacillus stearothermophilus 32A, 17, 30 and 31 strains were identified as producers of bacteriocins with bactericidal activity against closely related Geobacillus species and several pathogenic strains: Bacillus cereus DSM 12001 and Staphylococcus haemolyticus P903. The secretion of the analysed bacteriocins started during early logarithmic growth and dropped sharply after the culture entered the stationary phase of growth. The antimicrobial activity of the bacteriocins against sensitive indicator cells disappeared after treatment with proteolytic enzymes, indicating their proteinaceous nature. Bacteriocins were stable throughout the pH range between 4 and 10, and no loss in activity was noted following temperature exposures up to 100°C. Direct detection of antibacterial activity on SDS-PAGE suggests that the inhibitory peptides have a molecular weight of 6–7.5 kDa. Such bacteriocins with broad activity spectra, including antipathogenic action, are attractive to the biotechnology industry as they could be used as antimicrobial agents in medicine, agriculture and food products.  相似文献   

16.
Bacteriocins of gram-positive bacteria.   总被引:21,自引:0,他引:21       下载免费PDF全文
In recent years, a group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram-positive pathogenic bacteria. They are ribosomally synthesized peptides of 30 to less than 60 amino acids, with a narrow to wide antibacterial spectrum against gram-positive bacteria; the antibacterial property is heat stable, and a producer strain displays a degree of specific self-protection against its own antibacterial peptide. In many respects, these proteins are quite different from the colicins and other bacteriocins produced by gram-negative bacteria, yet customarily they also are grouped as bacteriocins. Although a large number of these bacteriocins (or bacteriocin-like inhibitory substances) have been reported, only a few have been studied in detail for their mode of action, amino acid sequence, genetic characteristics, and biosynthesis mechanisms. Nevertheless, in general, they appear to be translated as inactive prepeptides containing an N-terminal leader sequence and a C-terminal propeptide component. During posttranslational modifications, the leader peptide is removed. In addition, depending on the particular type, some amino acids in the propeptide components may undergo either dehydration and thioether ring formation to produce lanthionine and beta-methyl lanthionine (as in lantibiotics) or thio ester ring formation to form cystine (as in thiolbiotics). Some of these steps, as well as the translocation of the molecules through the cytoplasmic membrane and producer self-protection against the homologous bacteriocin, are mediated through specific proteins (enzymes). Limited genetic studies have shown that the structural gene for such a bacteriocin and the genes encoding proteins associated with immunity, translocation, and processing are present in a cluster in either a plasmid, the chromosome, or a transposon. Following posttranslational modification and depending on the pH, the molecules may either be released into the environment or remain bound to the cell wall. The antibacterial action against a sensitive cell of a gram-positive strain is produced principally by destabilization of membrane functions. Under certain conditions, gram-negative bacterial cells can also be sensitive to some of these molecules. By application of site-specific mutagenesis, bacteriocin variants which may differ in their antimicrobial spectrum and physicochemical characteristics can be produced. Research activity in this field has grown remarkably but sometimes with an undisciplined regard for conformity in the definition, naming, and categorization of these molecules and their genetic effectors. Some suggestions for improved standardization of nomenclature are offered.  相似文献   

17.
Bacteriocins from plant pathogenic bacteria   总被引:1,自引:0,他引:1  
Many bacteria produce antimicrobial substances such as nonribosomally synthesized antibiotics and ribosomally synthesized proteinaceous compounds referred to as bacteriocins. Secretion of antimicrobials is generally thought to contribute to the competitiveness of the producing organism, but there are indications that these compounds in some cases may have regulatory roles too. Bacteriocins most often act on closely related species only and are thus of interest for application as targeted narrow-spectrum antimicrobials with few side effects. Although the application of bacteriocins in plant disease control is an attractive option, very little is known about the occurrence and roles of these compounds in plant pathogenic bacteria and their natural competitors occurring in the same biotopes. This study presents an overview of current knowledge of bacteriocins from plant pathogenic bacteria.  相似文献   

18.
Lactobacillus plantarum JJ18 and Lactobacillus plantarum subsp. plantarum JJ60, probiotics from idli batter, produce bacteriocins JJ18 and JJ60 having a wide spectrum of activity. After optimising the environmental conditions for bacteriocin production the effect of various media components was determined. Maximum bacteriocin production was observed in MRS broth, pH 6.4 at 37 °C after 36 h. Tryptone (as nitrogen source) and glucose (as carbon source) are required for optimal production of bacteriocins JJ18 and JJ60. Activity was not affected by surfactants like Triton X-100, Tween 80 and Tween 20 or by treatment with NaCl, urea and EDTA. Protease treatment resulted in complete loss of activity of the partially purified bacteriocins JJ18 and JJ60, while lipase and α-amylase had no effect, indicating that the bacteriocin is a simple protein. Tris tricine SDS-PAGE electrophoresis depicted a single band of less than 3.5 kDa. However, the strain Lactobacillus plantarum JJ18 was inhibited by bacteriocin JJ60 and Lactobacillus plantarum JJ60 by bacteriocin JJ18, whereas no inhibition was observed against the respective producer strains, indicating that the two bacteriocins are different. The bacteriocins remained active over a wide range of pH and temperature. The bacteriocins were able to adsorb onto producer and target cells, Lactobacillus plantarum and Listeria monocytogenes and differentially in the presence of various surfactants, salts and solvents. A bactericidal mode of action was observed against Listeria monocytogenes. Given their wide spectrum of activity against various pathogens, the bacteriocins JJ18 and JJ60 can be applied as bio-preservatives in the food industry.  相似文献   

19.
Abstract: The mechanisms by which Gram-negative bacteria like Escherichia coli secrete bacteriocins into the culture medium is unique and quite different from the mechanism by which other proteins are translocated across the two bacterial membranes, namely through the known branches of the general secretory pathway. The release of bacteriocins requires the expression and activity of a so-called bacteriocin release protein and the presence of the detergent-resistant phospholipase A in the outer membrane. The bacteriocin release proteins are highly expressed small lipoproteins which are synthesized with a signal peptide that remains stable and which accumulates in the cytoplasmic membrane after cleavage. The combined action of these stable, accumulated signal peptides, the lipid-modified mature bacteriocin release proteins (BRPs) and phospholipase A cause the release of bacteriocins. The structure and mode of action of these BRPs as well as their application in the release of heterologous proteins by E. coli is described in this review.  相似文献   

20.
The pediocin-like bacteriocins contain two domains: a cationic N-terminal beta-sheet domain that mediates binding of the bacteriocin to the target cell surface and a more hydrophobic C-terminal hairpin-like domain that penetrates into the hydrophobic part of the target cell membrane. The two domains are joined by a hinge, which enables movement of the domains relative to each other. In this study, 12 different hybrid bacteriocins were constructed by exchanging domains between 5 different bacteriocins. The hybrid bacteriocins were by and large highly potent (i.e. similar potencies as the parental bacteriocins) when constructed such that the recombination point was in the hinge region, indicating that the two domains function independently. The use of optimal recombination points was, however, crucial. Shifting the recombination point just one residue from the hinge could reduce the activity of the hybrid by 3-4 orders of magnitude. Most interestingly, the active hybrids displayed target cell specificities similar to those of the parental bacteriocin from which their membrane-penetrating C-terminal hairpin domain was derived. The results also indicate that the negatively charged aspartate reside in the hinge of most pediocin-like bacteriocins interacts with the C-terminal hairpin domain, perhaps by interacting with the positively charged residue that is present at one of the last three positions in the C-terminal end of most pediocin-like bacteriocins. Bacteria that produce pediocin-like bacteriocins also produce a cognate immunity protein that protects the producer from being killed by its own bacteriocin. Four different active hybrid immunity proteins constructed by exchanging regions between three different immunity proteins were tested for their ability to confer immunity to the hybrid bacteriocins. The results showed that the C-terminal half of the immunity proteins contains a region that directly or indirectly specifically recognizes the membrane-penetrating C-terminal hairpin domain of pediocin-like bacteriocins. The implications these results have on how pediocin-like bacteriocins and their immunity proteins interact with cellular specificity determinants (for instance a putative bacteriocin receptor) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号