共查询到6条相似文献,搜索用时 0 毫秒
1.
泛肽、核糖体蛋白及泛肽-核糖体蛋白S27a与肿瘤的关系 总被引:1,自引:0,他引:1
泛肽-核糖体蛋白S27a(Ubiquitin-ribosomal protein S27a,UBRS27a)是泛肽和核糖体蛋白的融合蛋白,N端为泛肽,C端由含C2-C2型锌指结构域的高度保守核糖体蛋白S27a构成。在真核细胞中表达时,被酶解成泛肽和核糖体蛋白。该多功能核糖体蛋白在各种活性增殖细胞和瘤组织中高度表达,在多种类型的肿瘤细胞中,该基因的过量表达是一个典型特征。本实验室对该蛋白在家蚕中的作了初步研究,也发现RPS27a在活性增殖细胞中表达量很高。大多数核糖体蛋白的功能还没有完全探明,它们不仅仅在组装成核糖体时起作用,往往还有核糖体外的功能。回顾了最近几年有关该融合蛋白以及与它相关的泛肽途径、核糖体蛋白与肿瘤之间的关系。通过对它们的研究,有可能预示肿瘤的发生和发展,并为肿瘤临床诊断提供依据,为恶性肿瘤的治疗提供靶点。 相似文献
2.
Sun XX DeVine T Challagundla KB Dai MS 《The Journal of biological chemistry》2011,286(26):22730-22741
Ribosomal proteins play a critical role in tightly coordinating p53 signaling with ribosomal biogenesis. Several ribosomal proteins have been shown to induce and activate p53 via inhibition of MDM2. Here, we report that S27a, a small subunit ribosomal protein synthesized as an 80-amino acid ubiquitin C-terminal extension protein (CEP80), functions as a novel regulator of the MDM2-p53 loop. S27a interacts with MDM2 at the central acidic domain of MDM2 and suppresses MDM2-mediated p53 ubiquitination, leading to p53 activation and cell cycle arrest. Knockdown of S27a significantly attenuates the p53 activation in cells in response to treatment with ribosomal stress-inducing agent actinomycin D or 5-fluorouracil. Interestingly, MDM2 in turn ubiquitinates S27a and promotes proteasomal degradation of S27a in response to actinomycin D treatment, thus forming a mutual-regulatory loop. Altogether, our results reveal that S27a plays a non-redundant role in mediating p53 activation in response to ribosomal stress via interplaying with MDM2. 相似文献
3.
Herve du Penhoat C Atreya HS Shen Y Liu G Acton TB Xiao R Li Z Murray D Montelione GT Szyperski T 《Protein science : a publication of the Protein Society》2004,13(5):1407-1416
The Archaeoglobus fulgidis gene RS27_ARCFU encodes the 30S ribosomal protein S27e. Here, we present the high-quality NMR solution structure of this archaeal protein, which comprises a C4 zinc finger motif of the CX(2)CX(14-16)CX(2)C class. S27e was selected as a target of the Northeast Structural Genomics Consortium (target ID: GR2), and its three-dimensional structure is the first representative of a family of more than 116 homologous proteins occurring in eukaryotic and archaeal cells. As a salient feature of its molecular architecture, S27e exhibits a beta-sandwich consisting of two three-stranded sheets with topology B(decreasing), A(increasing), F(decreasing), and C(increasing), D(decreasing), E(increasing). Due to the uniqueness of the arrangement of the strands, the resulting fold was found to be novel. Residues that are highly conserved among the S27 proteins allowed identification of a structural motif of putative functional importance; a conserved hydrophobic patch may well play a pivotal role for functioning of S27 proteins, be it in archaeal or eukaryotic cells. The structure of human S27, which possesses a 26-residue amino-terminal extension when compared with the archaeal S27e, was modeled on the basis of two structural templates, S27e for the carboxy-terminal core and the amino-terminal segment of the archaeal ribosomal protein L37Ae for the extension. Remarkably, the electrostatic surface properties of archaeal and human proteins are predicted to be entirely different, pointing at either functional variations among archaeal and eukaryotic S27 proteins, or, assuming that the function remained invariant, to a concerted evolutionary change of the surface potential of proteins interacting with S27. 相似文献
4.
The nucleotide and protein sequence of the 40S ribosomal protein S17 (RibS17) of the protozoan parasite Theileria annulata has been determined. Southern blot analysis showed the gene was single copy and comparative sequence analysis revealed that the predicted polypeptide had high sequence homology with the RibS17 from other organisms. Northern blot analysis showed that there was a 3-fold increase in the level of RibS17 RNA between the macroschizont and the piroplasm stage of the lifecycle, whereas, there was no difference in expression between the sporozoite and the macroschizont stages. Antisera to the purified fusion protein, corresponding to the terminal 50 amino acids of the protein sequence, were raised in rabbits. Western analysis detected a polypeptide of the predicted size that was more abundant in the piroplasm stage compared with the macroschizont stage. Immunofluorescence analysis with the same antisera revealed a strong signal in the macroschizont and piroplasm stages, but the antiserum did not cross-react with the bovine host cells. The antisera did, however, cross-react with Toxoplasma gondii tachyzoites and Plasmodium falciparum merozoites. The possible functional significance of the stage related increase in abundance of a ribosomal protein is discussed. 相似文献
5.
Demosthenis Chronis Shiyan Chen Shunwen Lu Tarek Hewezi Sara C.D. Carpenter Rosemary Loria Thomas J. Baum Xiaohong Wang 《The Plant journal : for cell and molecular biology》2013,74(2):185-196
Nematode effector proteins originating from esophageal gland cells play central roles in suppressing plant defenses and in formation of the plant feeding cells that are required for growth and development of cyst nematodes. A gene (GrUBCEP12) encoding a unique ubiquitin carboxyl extension protein (UBCEP) that consists of a signal peptide for secretion, a mono‐ubiquitin domain, and a 12 amino acid carboxyl extension protein (CEP12) domain was cloned from the potato cyst nematode Globodera rostochiensis. This GrUBCEP12 gene was expressed exclusively within the nematode's dorsal esophageal gland cell, and was up‐regulated in the parasitic second‐stage juvenile, correlating with the time when feeding cell formation is initiated. We showed that specific GrUBCEP12 knockdown via RNA interference reduced nematode parasitic success, and that over‐expression of the secreted GrΔSPUBCEP12 protein in potato resulted in increased nematode susceptibility, providing direct evidence that this secreted effector is involved in plant parasitism. Using transient expression assays in Nicotiana benthamiana, we found that GrΔSPUBCEP12 is processed into free ubiquitin and a CEP12 peptide (GrCEP12) in planta, and that GrCEP12 suppresses resistance gene‐mediated cell death. A target search showed that expression of RPN2a, a gene encoding a subunit of the 26S proteasome, was dramatically suppressed in GrΔSPUBCEP12 but not GrCEP12 over‐expression plants when compared with control plants. Together, these results suggest that, when delivered into host plant cells, GrΔSPUBCEP12 becomes two functional units, one acting to suppress plant immunity and the other potentially affecting the host 26S proteasome, to promote feeding cell formation. 相似文献
6.
Self-incompatibility (SI) in Brassica is controlled by the S locus. The specificity of the SI response is controlled on the stigma side by the S receptor kinase (SRK) and on the pollen side by the SCR (S locus cysteine-rich) protein, but other proteins might be involved in the process of self-pollen rejection. In this study,
we show that the AtPP gene linked to the S locus of Brassica napus is expressed in the stigmas of SI lines. AtPP has a developmental pattern of expression similar to the SRK gene. The AtPP protein has similarity with members of an Arabidopsis protein family and with an S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, which is a plant defense-related
protein of Clarkia breweri representing a new class of methyltransferases. A member of the AtPP gene family is present in the homeolog region of the S locus in Arabidopsis. Therefore, this gene might have co-evolved with S genes from an ancestral S locus of Brassicaceae. Possible functions of the AtPP protein in the self-recognition process are discussed.
Received: 9 October 2000 / Revision accepted: 23 April 2001 相似文献