首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Arvidsson  Helen  Lundkvist  Heléne 《Plant and Soil》2002,238(1):159-174
Nutrient concentrations in current and 1-year-old needles were analyzed annually for 5 years after application of hardened wood ash in 1–4-year-old Norway spruce (Picea abies (L.) Karst.) stands within a range of climate and fertility gradients. At each site, 3000 kg ha–1 hardened wood ash of two types, Nymölla and Perstorp, was applied in a randomized block design. Wood ash Nymölla contained 12 kg ha–1 P, 30 kg ha–1 K, 891 kg ha–1 Ca, 72 kg ha–1 Mg and wood ash Perstorp contained 12 kg ha–1 P, 60 kg ha–1 K, 486 kg ha–1 Ca, and 60 kg ha–1 Mg. The ash was intended to compensate for nutrients removed at the preceding harvest when logging residues were collected and removed from the site (whole-tree harvesting). The climate gradient included four climate zones throughout Sweden and each of these included a fertility gradient of three sites classified according to their ground vegetation type. There were no effects on nutrient concentrations in the needles 1 year after the application of wood ash. Five years after ash application, the concentrations of P, K and Ca in current and 1-year-old needles were higher than in the control plots. The results were consistent over all stands, irrespective of climate zone and fertility status. P and K concentrations were higher in spruce needles from plots treated with Perstorp wood ash, whereas Ca concentrations were higher in those of Nymölla treated plots. Analyses across all study sites revealed a treatment effect in terms of increased ratios of P:N, K:N and Ca:N in 1-year-old needles. The ratio P:N tended to increase with time in the Perstorp wood ash treatment compared with the control. The needle concentrations of Mg and S were not affected by the ash applications. The increase in needle nutrient concentrations after application of hardened wood ash suggests that wood ash recycling could be used in order to replace nutrients removed at whole-tree harvesting.  相似文献   

2.
Field research was conducted on four Atlantic Coastal Plain soils in the United States to evaluate response of corn (Zea mays L.) plants to Mn application. The soils under study were classified as either Aeric or Typic Ochraquults. Manganese application increased corn grain yields by an average of 1195 kg ha–1 on the four soils. The average grain yields on the soils were 7955 kg ha–1 for the control and 9150 kg ha–1 for the +Mn treatment. A Mitscherlich plant growth model was used to establish relationships between percent maximum grain yield and Mn concentration in the ear leaf at early silk (r=0.87, =0.01) and in the mature grain (r=0.58, =0.01). Based on 90% of maximum yield as the definition of the critical deficiency level, the critical Mn deficiency levels calculated with parameters from the Mitscherlich model were 10.6 mg kg–1 in the ear leaf and 4.9 mg kg–1 in the grain.  相似文献   

3.
The fertilisation of wheat crops with Se is a cost-effective method of enhancing the concentration of organic Se in grain, in order to increase the Se intake of animals and humans. It is important to avoid phytotoxicity due to over-application of Se. Studies of phytotoxicity of Se in wheat grown in Australia, where rainfall and grain yield are usually relatively low, have not been reported previously, and overseas studies have had varied results. This study used trials conducted in the field, glasshouse and laboratory to assess Se phytotoxicity in wheat. In field trials that used rates of up to 120 g ha–1Se as selenate, and in pilot trials that used up to 500 g ha–1 Se soil-applied or up to 330 g ha–1 Se foliar-applied, with soils of low S concentrations (2–5 mg kg–1), no Se toxicity symptoms were observed. In pot trials of four weeks duration, the critical tissue level for Se toxicity was around 325 mg kg–1 DW, a level attained by addition to the growth medium of 2.6 mg kg–1 Se as selenate. Solution concentrations above 10 mg L–1 Se inhibited early root growth of wheat in laboratory studies, with greater inhibition by selenite than selenate. For selenite, Se concentrations around 70 mg L–1 were required to inhibit germination, while for selenate germination % was unaffected by a solution concentration of 150 mg L–1 Se. Leaf S concentration and content of wheat increased three-fold with the addition of 1 mg kg–1 Se as selenate to the growth medium. This effect is probably due to the induction of the S deficiency response of the main sulphate transporter. This study found wheat to be more Se-tolerant than did earlier studies of tobacco, soybeans and rice. We conclude that Se phytotoxicity in wheat will not be observed at the range of Se application rates that would be used to increase grain Se for human consumption (4–200 g ha–1 Se as selenate, which would result in soil and tissue levels well below those seen in the above studies), even when – as is common in Australia – soil S concentration and grain yield are low.  相似文献   

4.
Sikora  L. J.  Enkiri  N. K. 《Plant and Soil》2001,235(1):65-73
Composts are considered low analysis fertilizers because their nitrogen and phosphorus content are around 1% and the organic nitrogen mineralization rate is near 10%. If compost is added to agricultural land at the N requirement of grain crops (40 – 100 kg N ha–1), application rates approach 40–100 mg ha–1. Much lower rates may be advisable to avoid rapid accumulation of growth limiting constituents such as heavy metals found in some composts. Combining low amendment rates of composts with sufficient fertilizer to meet crop requirements is an appealing alternative which (a) utilizes composts at lower rates than those needed to supply all the crop N requirement, (b) reduces the amount of inorganic fertilizer applied to soils, and (c) reduces the accumulation of non-nutrient compost constituents in soils. A study was conducted to compare the effects of blends of biosolids compost (C) with 15N urea(U) or 15NH4 15NO3 (N) fertilizers to fertilizer alone on tall fescue (Festuca arundinacea L.) growth and N uptake. Blends which provided 0, 20, 40 or 60 mg N kg–1 application rate as compost N and 120, 100, 80 or 60 mg N kg–1 as fertilizer N, respectively, were added to Sassafras soil (Typic Hapludults). Fescue was grown on the blends in a growth chamber for 98 days. Fescue yields recorded by clippings taken at 23, 46 and 98 days and roots harvested after the 98-day clipping increased with increasing fertilizer level for both NH4NO3 and urea and with or without compost. Nitrogen uptake by fescue responded similarly to yield with increases recorded with increasing fertilizer levels with or without compost. Paired comparisons based on cumulative 98-day clippings data showed that yields from blends were equal to yields from fertilizer treatments containing the same percentage of fertilizer as the blends. These data indicated that compost did not provide sufficient plant-available N to increase yields or N uptake. None of the blends equaled 120 mg N kg–1 fertilizer rate except for 100 mg NH4NO3-or urea-N kg–1 –20 mg compost-N kg–1blends. The data suggest that biosolids compost blended with fertilizer at a rate of 2–6 mg ha –1 did not supply sufficient additional available N to increase yields or N uptake over those of fertilizer alone.  相似文献   

5.
This study examined macronutrient input from pollen in two naturally regenerating pine stands in southeast Korea. Durham gravity pollen collectors were used to measure pine pollen deposition and the macronutrients in the collected pine pollen were analyzed. In 1998, pine pollen deposition began just before 18 April and lasted for approximately 2weeks. Total pine pollen deposition differed between the two sampling sites; 27.5kgha–1 was collected from the mature stand and 17.7kgha–1 was collected from the young stand. The values for nutrient deposition from pine pollen are 549gha–1 N, 78gha–1 P, 240gha–1 K, 45gha–1 S and 22gha–1 Mg at the mature stand and 353gha–1 N, 51gha–1 P, 151gha–1 K, 27gha–1 S and 14gha–1 Mg at the young stand, suggesting that nutrients from pine pollen contribute to forest nutrient cycling. The pine pollen deposition values obtained from our study (17.7–27.5kg–1ha–1year–1) are approximately 1/115–180-fold that of pine litterfall in Korea. If we take pollen nutrients into account, the contribution rate of pollen to the annual nutrient input is very high in our study (N 1/30, P 1/5, K 1/9 that of litterfall). Macronutrient deposition from pine pollen is concentrated temporally in spring. Although the annual contribution of nutrient mass by pollen is small compared to that of litterfall, the rapid turnover rate of pollen nutrients combined with episodic deposition suggests that pollen may play a disproportionate role in temperate pine forest nutrient cycling.  相似文献   

6.
The effects of fertilization [control (C), 200kgNha–1+25kgP ha–1 (LNP) and 400kgNha–1+ 50kgP ha–1 (HNP)] on fine root dynamics were examined in a 40-year-old Larix leptolepis plantation in central Korea. The average fine root biomass during the growing season for C, LNP and HNP was 957, 934 and 814kgha–1, respectively, whereas the fine root production for C, LNP and HNP was 2103, 2131 and 2066kgha–1, respectively. Nitrogen and P inputs into the soil via fine root turnover for C, LNP and HNP were 23.0 and 1.2, 23.3 and 1.2 and 22.6 and 1.2kgha–1, respectively. There were no significant differences in fine root biomass, production and N and P inputs through fine root turnover between the fertilization treatments during the first growing season after fertilization.  相似文献   

7.
Treated biosolids have been applied to 750-ha of a Pinus radiata forest plantation on Rabbit Island near Nelson City in New Zealand since 1996. A long-term research trial was established in 1997 to investigate the effects of the biosolids applications on the receiving environment and tree growth. An analysis of the likely economic impact of biosolids application shows that biosolids application has been beneficial. Stem volume of the high treatment (biosolids applied at 600 kg N ha-1 every three years) was 36% greater than the control treatment (no biosolids applied), and stem volume of the standard treatment (300 kg N ha-1) was 27% greater than the control treatment at age 18 years of age. Biosolids treatments have effectively transformed a low productivity forest site to a medium productivity site. Although this increased productivity has been accompanied by some negative influences on wood quality attributes with reduced wood stiffness, wood density, and larger branches, an economic analysis shows that the increased stem volume and greater average log diameter in the biosolids treatments outweighs these negative effects. The high and standard biosolids treatments are predicted to increase the net stumpage value of logs by 24% and 14% respectively at harvesting, providing a large positive impact on the forest owner’s economic return.  相似文献   

8.

Key message

Use of wood ash or a mixture of wood and oil shale ashes increases the concentrations of P and K in the assimilation organs of conifers and stimulates tree growth.

Abstract

The effect of fertilization with wood ash (10 and 15 t ha?1) and a mixture of wood ash (10 t ha?1) and oil shale ash (8 t ha?1) on the growth (height, root collar diameter, biomass, biomass production) and nutrient concentrations in subsoil and needles of young Pinus sylvestris and Picea abies plants on the Puhatu (Northeast Estonia) cutaway peatland in the first 2 years were studied. After the second growing year differences in the average height growth of P. abies and P. sylvestris were statistically significantly higher on ash-treated plots than on the control plots (p < 0.05), being respectively 1.4–1.6 and 1.5–1.7 times greater than height growth of the control trees. The best results on root collar diameter were observed on mixture ash treatments: the root collars were 1.9 (P. abies) and 2.2 (P. sylvestris) times larger than of the control trees. The biomass of the two conifer species and the biomass production of P. sylvestris in 2012 was the greatest on the mixture ash treatments. Five months after fertilization with ashes the concentrations of P, K, Ca and Mg were higher on the treated plots than on the control plot. Although the concentrations of P and K in P. sylvestris needles rose after the treatment with ash, seedlings suffered from P and K deficiency. The concentrations of P and K in P. abies needles were on optimum. The P/N and the K/N ratios in needles were also improved compared to control trees needles.  相似文献   

9.
Montás Ramírez  L.  Claassen  N.  Amílcar Ubiera  A.  Werner  H.  Moawad  A.M. 《Plant and Soil》2002,239(2):197-206
During the period January–August 1996, an investigation was carried out in La Mata, Cotuí, Dominican Republic with the objective to study the effect of P, K and Zn fertilizers on Fe toxicity in the rice varieties JUMA-57 (sensitive to Fe toxicity), ISA-40 and PSQ-4 (both tolerant to Fe toxicity). The rate of fertilizer application was 22 and 62 kg P ha–1; 58 and 116 kg K ha–1; 3 and 7 kg Zn ha–1 and a constant dose of 140 kg N ha–1 and 40 kg S ha–1 on all fertilized plots. The control received no fertilizer. JUMA-57 was the only variety that showed symptoms of Fe toxicity. The observed symptoms showed a yellow to orange colour. Symptoms of Fe toxicity appeared first one week after transplanting (WAT), decreased at the fourth WAT, but returned six WAT and continued until the end of the experiment. Fertilizer application reduced symptom intensity and increased grain yield in all varieties, but only JUMA-57 did not reach the maximum yield typical for that variety. Fertilizer application did not completely overcome the toxicity effect, i.e. in symptom intensity and grain yield. The positive effect of fertilizer application could not be attributed to a specific nutrient. Intensity of symptoms was not related to Fe concentration in the leaves. The average Fe concentration of 108 mg kg–1 was not high enough to be considered toxic. Symptoms could not be explained through Mn toxicity (average Mn concentration in the leaves was 733 mg kg–1) nor Zn deficiency (average Zn concentration in the leaves was 20 mg kg–1). There was a clear relationship, though, between soil DTPA extractable Fe and symptom intensity or grain yield. The toxic effect was observed when the DTPA extractable Fe in the flooded soil was above 200 mg kg–1. From these results, we concluded that the Fe toxicity resulted from high Fe in the root zone and not from high Fe concentrations in the leaves.  相似文献   

10.
Choi  Woo-Jung  Lee  Sang-Mo  Ro  Hee-Myong  Kim  Kyoung-Cheol  Yoo  Sun-Ho 《Plant and Soil》2002,245(2):223-232
To investigate the effect of inorganic fertilizer and composted manure amendments on the N isotope composition (delta 15N) of crop and soil, maize (Zea mays L.) was cultivated under greenhouse conditions for 30, 40, 50, 60, and 70 days. Composted pig manure (delta 15N= +13.9) and urea (-2.3) were applied at 0 and 0 kg N ha–1 (C0U0), 0 and 150 kg N ha–1 (C0U2), 150 and 0 kg N ha–1 (C2U0), and 75 and 75 kg N ha–1 (C1U1), respectively. The delta 15N of total soil-N was not affected by both amendments, but delta 15N of NH+ 4 and NO 3 provided some information on the N isotope fractionation in soil. During the early growth stage, significant differences (P < 0.05) in delta 15N among maize subjected to different treatments were observed. After 30 days of growth, the delta 15N values of maize were +6.6 for C0U0, +1.1 for C0U2, +7.7 for C2U0, and +4.5 for C1U1. However, effects of urea and composted manure application on maize delta 15N progressively decreased with increasing growth period, probably due to isotope fractionation accompanying N losses and increased uptake of soil-derived N by maize. After 70 days of growth, delta 15N of leaves and grains of maize amended with composted pig manure were significantly (P < 0.05) higher than those with urea. The temporal variations in delta 15N of maize amended with urea and composted manure indicate that plant delta 15N is generally not a good tracer for N sources applied to field. Our data can be used in validation of delta 15N fractionation models in relation to N source inputs.  相似文献   

11.
Some of the largest riverine N fluxes in the continental USA have been observed in agricultural regions with extensive artificial subsurface drainage, commonly called tile drainage. The degree to which high riverine N fluxes in these settings are due to high net N inputs (NNI), greater transport efficiency caused by the drainage systems, or other factors is not known. The objective of this study was to evaluate the role of tile drainage by comparing NNI and riverine N fluxes in regions of Illinois with similar climate and crop production practices but with different intensities of tile drainage. Annual values of NNI between 1940 and 1999 were estimated from county level agricultural production statistics and census estimates of human population. During 1945–1961, riverine nitrate flux in the extensively tile drained region averaged 6.6kgNha–1year–1 compared to 1.3 to 3.1kgNha–1 for the non-tile drained region, even though NNI was greater in the non-tile drained region. During 1977–1997, NNI to the tile-drained region had increased to 27kgNha–1year–1 and riverine N flux was approximately 100% of this value. In the non-tile-drained region, NNI was approximately 23kgNha–1year–1 and riverine N flux was between 25% and 37% of this value (5 to 9kgNha–1year–1). Denitrification is not included in NNI and, therefore, any denitrification losses from tile-drained watersheds must be balanced by other N sources, such as depletion of soil organic N or underestimation of biological N fixation. If denitrification and depletion of soil organic N are significant in these basins, marginal reductions in NNI may have little influence on riverine N flux. If tile drained cropland in Illinois is representative of the estimated 11 million ha of tile drained cropland throughout the Mississippi River Basin, this 16% of the drainage area contributed approximately 30% of the increased nitrate N flux in the Lower Mississippi River that occurred between 1955 and the 1990s.  相似文献   

12.
Biomass, production, and nutrient distribution of a pure Quercus variabilis Bl. stand (stand 1) and two mixed Q. variabilisQ. mongolica Fisch. stands (stand 2 and 3) were investigated in central Korea. Stand 1 naturally occurred on a site with a southern aspect while stand 2 and stand 3 occurred on sites with a northern aspect. Total (overstory+understory vegetation) biomass (tha-1) and annual production (tha–1year–1) were 137.8 and 11.1 for stand 1, 216.2 and 16.6 for stand 2, and 253.3 and 19.7 for stand 3. Nutrient contents (kgha–1) in the vegetation were distributed as follows: K, 478–860; N, 471–839; Ca, 428–791; Mg, 72–125; Na, 77–141; and P, 37–71, and were greatest in stand 3 followed by stand 2, and stand 1. Stand density influenced the differences in biomass, annual production and nutrient contents in the vegetation. Forest floor dry mass and N content (kgha–1) were 13400 and 169 for stand 1, 10400 and 133 for stand 2, and 11200 and 127 for stand 3. Total amounts of N, P and Na in the ecosystem were greatest in the upper 40cm of mineral soil followed by the vegetation and forest floor. However, the vegetation contained a greater amount of K than the mineral soil. It appeared that microenvironments, such as, aspect influenced the distribution of natural oak species within a relatively small area and resulted in differences in biomass, production and nutrient distribution among the stands.  相似文献   

13.
Five weekly applications of Beauveria bassiana (Balsamo) Vuillemin, a genetically engineered isolate of Bacillus thuringiensis Berliner (Raven®), and aldicarb (Temik®) were compared for control of Colorado potato beetle, Leptinotarsa decemlineata (Say) in an irrigated desert cropping system. B. thuringiensis was applied using low and high label rates (1.17 and 7.0 l ha–1). B. bassiana was applied at 5×1013 spores ha–1. Aldicarb (Rh^one-Poulenc), applied at 3.37 kg a.i. ha–1 provided the greatest beetle control and potato yields (45 metric tons ha–1), but overall lowest biodiversity in nontarget organisms, particularly predatory Heteroptera. Low and high rates of B. thuringiensis produced fair to excellent beetle control, yielded 33 and 40 metric tons ha–1 and enabled good survival in predatory Heteroptera and other nontargets. Plots treated with B. bassiana resulted in poor control of beetles prior to row closure after which fair to good control was achieved. Yield in the Beauveria-treated plots was 33 metric tons ha–1 and effect on biodiversity was comparable to the Bt-treated plots. The lowest number of overwintering adult L. decemlineata was found in the plots treated with bacteria and fungi (0.68–0.84 adults/0.03 m–3 of soil) and the highest was found in control and aldicarb plots (3.44 and 1.84 adults/0.03 m3 of soil). Aphids and leafhoppers showed higher densities in plots treated with microbial control agents, but were eliminated from plots treated with aldicarb.  相似文献   

14.
Tree species and wood ash application in plantations of short-rotation woody crops (SRWC) may have important effects on the soil productive capacity through their influence on soil organic matter (SOM) and exchangeable cations. An experiment was conducted to assess changes in soil C and N contents and pH within the 0–50 cm depth, and exchangeable cation (Ca2+, Mg2+, K+, and Na+) and extractable acidity concentrations within the 0–10 cm depth. The effects of different species (European larch [Larix decidua P. Mill.], aspen [Populus tremula L. × Populus tremuloides Michx.], and four poplar [Populus spp.] clones) and wood ash applications (0, 9, and 18 Mg ha−1) on soil properties were evaluated, using a common garden experiment (N = 70 stands) over 7 years of management in Michigan’s Upper Peninsula. Soils were of the Onaway series (fine-loamy, mixed, active, frigid Inceptic Hapludalfs). The NM-6 poplar clone had the greatest soil C and N contents in almost all ash treatment levels. Soil C contents were 7.5, 19.4, and 10.7 Mg C ha−1 greater under the NM-6 poplar than under larch in the ash-free, medium-, and high-level plots, respectively. Within the surface layer, ash application increased soil C and N contents (P < 0.05) through the addition of about 0.7 Mg C ha−1 and 3 kg N ha−1 with the 9 Mg ha−1 ash application (twofold greater C and N amounts were added with the 18 Mg ha−1 application). During a decadal time scale, tree species had no effects—except for K+—on the concentrations of the exchangeable cations, pH, and extractable acidity. In contrast, ash application increased soil pH and the concentration of Ca2+ (P < 0.05), from 5.2 ± 0.4 cmolc kg−1 (ash-free plots) to 8.6 ± 0.4 cmolc kg−1 (high-level ash plots), and tended to increase the concentration of Mg2+ (P < 0.1), while extractable acidity was reduced (P < 0.05) from 5.6 ± 0.2 cmolc kg−1 (ash-free plots) to 3.7 ± 0.2 cmolc kg−1 (high-level plots). Wood ash application, within certain limits, not only had a beneficial effect on soil properties important to the long-term productivity of fast-growing plantations but also enhanced long-term soil C sequestration.  相似文献   

15.
A study was conducted in 1998 and 1999 on a long-term fallow management trial, established in 1989 at the International Institute of Tropical Agriculture (IITA), Ibadan, in the derived savanna of southwestern Nigeria, to quantify P fractions under natural fallow (NF) and a Pueraria cover crop fallow. Plots with previous 1:1, 1:2, and 1:3 crop/fallow ratios before reverting to fallow in either 1998 or 1999 were considered. Biomass accumulation under the two fallow types was comparable and increased linearly with fallow age, reaching slightly above 7 t dry matter ha–1 after 8 months of fallow. Phosphorus accumulation in the fallow vegetation ranged from 2.1 – 9.1 kg ha–1 for natural fallow (NF) and from 1.5 – 6.6 kg ha–1 for Pueraria. Magnesium was also higher under NF (9.1 – 21 kg ha–1) than under Pueraria (4.4 – 13 kg ha–1), whereas N, Ca, and K contents were higher in Pueraria biomass than under NF at 1 year after fallow. Pueraria fallow tended to lower soil pH compared with NF. However, plots with less frequent cropping (1:3 crop/fallow ratio) did not have significantly different pH irrespective of the fallow vegetation type. Olsen extractable soil P increased as fallow length increased irrespective of the fallow system and previous crop/fallow ratio. For example, under NF (0–5 cm depth, 1:1 crop/fallow ratio in1998) Olsen P increased from 12 mg kg–1 to 17 mg kg–1 after 1 year of fallow and under Pueraria, it increased from 8 mg kg–1 to 15 mg kg–1. Fallow type and previous crop/fallow ratio had no significant and consistent effects on soil P fractions. However, NaOH- and concentrated HCl- extractable organic P fractions increased with fallow length. In 1998, under NF, NaOH- extractable organic P increased from 12 to 21 mg kg–1 (1:1 crop/fallow ratio) and from 10 to 19 mg kg–1 for both 1:2 and 1:3 crop/fallow ratio. HCl- extractable organic P increased from 11 to 30 mg kg–1 (1:1 crop/fallow ratio), from 13 to 27 mg kg–1 (1:2 crop/fallow ratio) and from 18 to 35 mg kg–1 (1:3 crop/fallow ratio). Similar trend was observed under Pueraria fallow. These results suggest that P was reallocated to non-readily available organic P fractions irrespective of fallow type and previous land use. These organic P fractions, which are usually more stable, reflect the overall change in soil organic P levels when the soil was stressed by cultivation and then reverted to fallow. These pools may thus represent an active reservoir (source and sink) of P in shifting cultivation under tropical conditions without inorganic fertilizer application.  相似文献   

16.
Kosobokova  K. N. 《Hydrobiologia》1994,292(1):219-227
Reproduction of the dominant Antarctic copepod Calanus propinquus was studied in February–April, 1989 aboard the R.V Dmitry Mendeleev during cruise N° 43 to the Weddell Sea. Single females were kept at 0 °C in the laboratory for 56 days with abundant food concentration (above 300 µg C l–1 of Platymonas viridis). Females released clutches at night at 2–3 day intervals. Most clutches contained from 10 to 40 eggs, mean 37.3 eggs female–1. Average carbon content of an egg was 0.37 ± 0.05 µg C. The maximum daily egg production rate of 30–50 eggs female–1 d–1 was observed for the first 3 days of the laboratory incubation, corresponding to 3.7–6.2% body C. The state of gonadal development of females showed the decline of the reproductive season in late February. The data suggest that egg laying in the region under study starts in December and lasts until March. The state of ovarian maturation, changes in vertical distribution and biochemical body composition of females suggest the possibility of two-year life cycle in C. propinquus in the southern Weddell Sea.  相似文献   

17.
We used patch clamp recording techniques to determine if muscarinic signaling mechanisms are present in dissociated autonomic neurons obtained from the major pelvic ganglion, which provides the cholinergic innervation of the urinary bladder and other pelvic organs. The M1 specific agonist, McN-A-343 (2–30 M) enhanced Ca2+ currents in approximately 37% of neurons (by 50–80%). This enhancement was reduced by atropine (5–10 M) or a PKC inhibitor (bisindolylmaleimide, 50–200 nM). In responsive neurons Ca2+ currents were also enhanced by the phorbol ester, phorbol-12, 13-dibutyrate (50–300 nM) and the dihydropyridine agonist Bay K 8644 (5 M) and had kinetics of activation and inactivation as expected for L-type Ca2+ channels. We conclude that in a subpopulation of MPG neurons, M1-mediated activation of PKC phosphorylates and enhances L-type Ca2+ channel activities. This muscarinic facilitatory mechanism in MPG neurons may be the same as the M1-mediated facilitation of transmitter release reported previously at the nerve terminals in the urinary bladder.  相似文献   

18.
Hu  Qiuhui  Pan  Genxing  Zhu  Jianchun 《Plant and Soil》2002,238(1):91-95
The present study examined the effect of fertilization with sodium selenite on the selenium content of tea and the nutritional function of Se-enriched tea. Selenium content of tea leaves was increased up to 0.36 g g–1 by the application of sodium selenite to soil at 0.5 and 1.0 kg Se ha–1. Application by a Se-enriched organic manure at a rate of 0.5 kg Se ha–1 provided a higher biological availability of selenium for plant uptake compared with a similar amount of sodium selenite. Foliar spray of sodium selenite at 50–100 g Se ha–1 increased the selenium content to 0.32–1.45 g g–1 in tea leaves sampled at the 8–26 days after spraying. Selenium content in the blood and liver, glutathione peroxidase activity in blood of rats were significantly enhanced by feeding of an extracted solution of Se-enriched tea leaves and sodium selenite. Glutathione peroxidase activity in liver of rats fed with Se-enriched tea was higher than that fed with sodium selenite, indicating that the selenium in Se-enriched tea leaves is a more effective Se source than sodium selenite. Increasing the Se level in food products through the application of a selenium fertilizer is a safe, effective and feasible means of increasing the selenium intake of human and animals in low selenium areas of China.  相似文献   

19.
On five farms that have been managed organically for several years, all cultivated soils were sampled on two occasions. The time span between the first and second soil sampling varied from 6 to 12 years. At the first sampling the farms had been managed organically for 3, 4, 6, 11 or 53 years. The average phosphorus (P) concentrations in topsoil (0-20 cm) extracted by ammonium-acetate lactate solution (P-AL) decreased from the first to the second sampling on all farms. At the second soil sampling, the average topsoil P-AL concentrations on the five farms were 50, 64, 65, 75 and 119 mg P kg–1, which is characterised as medium (26–65 mg P kg–1) or high (66–150 mg P kg–1). The decrease occurred mostly in soils with high and very high (>150 mg P kg–1) P-AL concentrations at the first sampling. In these samples, the average value decreased from 100 to 87 and from 188 to 151 mg P kg–1, respectively. In subsoil (20–40 cm), an increase from 15 to 27 mg P kg–1 (P<0.01) in P-AL concentration was found in subsoil samples with low P-AL concentrations (0–25 mg P kg–1) at the first sampling. This indicates P transfer from topsoil to subsoil. The pattern of decrease in topsoil was fairly well explained by farm level P balances. The average topsoil concentrations of P-AL were well below values for comparable conventional farms, but still at a level acceptable for crop production. Crop yields were acceptable, but the general pattern of decrease shows that in the future, some P should be supplied from external sources to avoid a further decrease, especially on the fields with lowest P-AL concentrations.  相似文献   

20.
In 1997 and 1998 we assessed the input and output of suspended matter, nitrogen and phosphorus during the exploitation period of a fishpond in the Domaîne Départemental de Lindre (Moselle, north-eastern France). Special attention was given to the emptying period which was studied under different meteorological conditions (rainy and dry periods). The pond has a surface area of 2 ha, a volume of 16000 m3 and is used for the production of various Cyprinidae (roach, bream, chub, pike, perch, carp). During the emptying operation, 630 and 2830 kg ha–1 of suspended matter, 10.8 and 36.5 kg ha–1 of Total-nitrogen and 1.2 and 5.1 kg ha–1 of Total-phosphorus were discharged from the pond during drought and heavy rainfall (50.5 mm in 166 h), respectively. Except for the emptying period, the pond retained 6850, 117 and 6.6 kg ha–1 of suspended matter, nitrogen and phosphorus, respectively. In the course of the emptying period, more than 32% of the suspended matter was discharged as was 8.5% of the nitrogen and 25% of the phosphate. For the whole exploitation period 4020 – 6220 kg ha–1 of suspended matter, 80–106 kg ha–1 of nitrogen and 1.6–5.5 kg ha–1 of phosphorus accumulated in the pond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号