首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate-determining elementary reaction step, i.e. proton transfer from the chymotrypsin active centre to the scissile substrate bond has been studied in the present work. On the basis of our theoretical results a hypothesis was formulated to explain chymotrypsin enzymatic efficiency. After ES complex formation excited vibrational states are populated in the enzyme molecule. In the rate-determining elementary reaction step, the proton transfer takes place from the first excited vibrational state of the N-H bond in the imidazole group of His57. This proton transfer is realised by quantum mechanical tunneling mechanism.  相似文献   

2.
The charge relay hypothesis generated a large number of theoretical and experimental studies that tested the ideas involved. Opinion based upon theoretical and experimental studies is divided on the prediction, although there are many experimental data which do not support the hypothesis. The essential feature is the proton transfer from the histidine imidazole to the aspartate. Thus, we have performed the detailed calculations of the proton transfer from His 57 to Asp 102 including the environment of the couple in protonated bovine pancreatic β-trypsin. The charge state of the His 57-Asp 102 couple is greatly influenced by the environment of the enzyme around it. In this paper, it is shown that the proton between His 57 and Asp 102 is covalently bonded to the His 57 imidazole in the protonated β-trypsin. Our MO calculations, which support the neutral-pK-histidine theory as the results, do not support the charge relay mechanism.  相似文献   

3.
The participation of a low-barrier hydrogen bond (LBHB) in the mechanism of action of chymotrypsin introduces a new role for Asp 102 and His 57 in catalysis [C. S. Cassidy, J. Lin, and P. A. Frey (1997) Biochemistry 36, 4576-4584]. It is postulated that the LBHB increases the basicity of His 57-N(epsilon2) in the transition state, thereby facilitating the abstraction of a proton from Ser 195, and stabilizes the tetrahedral intermediate in the acylation step. Evidence for this mechanism includes the downfield chemical shift of the proton bridging His 57 and Asp 102 in transition-state analog complexes and the low deuterium fractionation factors for this proton in the same complexes. We present additional spectroscopic evidence supporting the assignment of an LBHB between His 57 and Asp 102. The tetrahedral addition complex between Ser 195 of chymotrypsin and N-acetyl-l-leucyl-l-phenylalanyl trifluoromethylketone is regarded as a close structural analog of a tetrahedral intermediate. The deuterium NMR signal for the downfield deuteron bridging His 57 and Asp 102 in D(2)O has now been observed as a broad band centered at 17.8 +/- 0.5 ppm. The proton NMR signal in H(2)O is centered at 18.9 +/- 0.05 ppm. The two signals are clearly separated corresponding to a deuterium isotope effect of Delta[delta(H) - delta(D)] = 1.1 +/- 0.5 ppm. Deuterium isotope effects in this range are characteristic of LBHBs, and this observation provides further support for the assignment of the proton bridging His 57 and Asp 102 in transition-state analog complexes as an LBHB.  相似文献   

4.
Among the isozymes of carbonic anhydrase, isozyme III is the least efficient in the catalysis of the hydration of CO2 and was previously thought to be unaffected by proton transfer from buffers to the active site. We report that buffers of small size, especially imidazole, increase the rate of catalysis by human carbonic anhydrase III (HCA III) of (1) 18O exchange between HCO3- and water measured by membrane-inlet mass spectrometry and (2) the dehydration of HCO3- measured by stopped-flow spectrophotometry. Imidazole enhanced the rate of release of 18O-labeled water from the active site of wild-type carbonic anhydrase III and caused a much greater enhancement, up to 20-fold, for the K64H, R67H, and R67N mutants of this isozyme. Imidazole had no effect on the rate of interconversion of CO2 and HCO3- at chemical equilibrium. Steady-state measurements showed that the addition of imidazole resulted in increases in the turnover number (kcat) for the hydration of CO2 catalyzed by HCA III and for the dehydration of HCO3- catalyzed by R67N HCA III. These results are consistent with the transfer of a proton from the imidazolium cation to the zinc-bound hydroxide at the active site, a step required to regenerate the active form of enzyme in the catalytic cycle. Like isozyme II of carbonic anhydrase, isozyme III can be enhanced in catalytic rate by the presence of small molecule buffers in solution.  相似文献   

5.
The imidazole (15)N signals of histidine 64 (His(64)), involved in the catalytic function of human carbonic anhydrase II (hCAII), were assigned unambiguously. This was accomplished by incorporating the labeled histidine as probes for solution NMR analysis, with (15)N at ring-N(delta1) and N(epsilon2), (13)Cat ring-Cepsilon1, (13)C and (15)N at all carbon and nitrogen, or (15)N at the amide nitrogen and the labeled glycine with (13)C at the carbonyl carbon. Using the pH dependence of ring-(15)N signals and a comparison between experimental and simulated curves, we determined that the tautomeric equilibrium constant (K(T)) of His(64) is 1.0, which differs from that of other histidine residues. This unique value characterizes the imidazole nitrogen atoms of His(64) as both a general acid (a) and base (b): its epsilon2-nitrogen as (a) releases one proton into the bulk, whereas its delta1-nitrogen as (b) extracts another proton from a water molecule within the water bridge coupling to the zinc-bound water inside the cave. This accelerates the generation of zinc-bound hydroxide to react with the carbon dioxide. Releasing the productive bicarbonate ion from the inside separates the water bridge pathway, in which the next water molecules move into beside zinc ion. A new water molecule is supplied from the bulk to near the delta1-nitrogen of His(64). These reconstitute the water bridge. Based on these features, we suggest here a catalytic mechanism for hCAII: the tautomerization of His(64) can mediate the transfers of both protons and water molecules at a neutral pH with high efficiency, requiring no time- or energy-consuming processes.  相似文献   

6.
Maupin CM  Voth GA 《Biochemistry》2007,46(11):2938-2947
Histidine at position 64 (His64) in human carbonic anhydrase II (HCA II) is believed to be the proton acceptor in the hydration direction and the proton donor in the dehydration direction for the rate-limiting proton transfer (PT) event. Although the biochemical effect of histidine at position 64 has been thoroughly investigated, the role of its orientation in the PT event is a topic of considerable debate. X-ray data of HCA II suggests that His64 can adopt either an "in" or "out" orientation. The "in" orientation is believed to be favored for the hydration direction PT event because the Ndelta of His64 is closer to the catalytic zinc. This orientation allows for smaller water bridges, which are postulated to be more conducive to PT. In the present work, classical molecular dynamics simulations have been conducted to elucidate the role that the His64 orientation may play in its ability to act as a proton donor/acceptor in HCA II. The free energy profile for the orientation of His64 suggests that the histidine will adopt an "in" orientation in the hydration direction, which brings Ndelta in close proximity to the catalytic zinc. When the histidine becomes protonated, it then rotates to an "out" orientation, creating a more favorable solvation environment for the protonated His64. In this "out" orientation, the imidazole ring releases the delta nitrogen's excess proton into the bulk environment. After the second PT event and when the zinc-bound water is regenerated, the His64 is again favored to reorient to the "in" orientation, completing the catalytic cycle.  相似文献   

7.
Ishida T 《Biochemistry》2006,45(17):5413-5420
To elucidate the catalytic advantage of the low-barrier hydrogen bond (LBHB), we analyze the hydrogen bonding network of the catalytic triad (His57-Asp102-Ser195) of serine protease trypsin, one of the best examples of the LBHB reaction mechanism. Especially, we focus on the correlation between the change of the chemical shifts and the structural rearrangement of the active site in the acylation process. To clarify LBHB, we evaluate the two complementary properties. First, we calculate the NMR chemical shifts of the imidazole ring of His57 by the gauge-including atomic orbital (GIAO) approach within the ab initio QM/MM framework. Second, the free energy profile of the proton transfer from His57 to Asp102 in the tetrahedral intermediate is obtained by ab initio QM/MM calculations combined with molecular dynamics free energy perturbation (MD-FEP) simulations. The present analyses reveal that the calculated shifts reasonably reproduce the observed values for (1)H chemical shift of H(epsilon)(1) and H(delta)(1) in His57. The (15)N and (13)C chemical shifts are also consistent with the experiments. It is also shown that the proton between His57 and Asp102 is localized at the His57 side. This largely downfield chemical shift is originated from the strong electrostatic interaction, not a covalent-like bonding character between His57 and Asp102. Also, it is proved that a slight downfield character of H(epsilon)(1) is originated from a electrostatic interaction between His57 and the backbone carbonyl group of Val213 and Ser214. These downfield chemical shifts are observed only when the tetrahedral intermediate is formed in the acylation process.  相似文献   

8.
Enthalpy changes of alpha-chymotrypsin acylation by 3-(2-furyl)acryloylimidazole (FAI) were calorimetrically determined as a function of pH. By observing the functional dependence of acylation enthalpies on buffer ionization heats, a complex pH profile was obtained describing proton release accompanying formation of acyl-enzyme. A pKa of 4.0 for FAI ionization and apparent pKa values of 6.8, 7.55 and 8.8 on the enzyme were used to account for the proton release data. A model which accounts for the proton release behavior was used to fit the acylation enthalpy data and values for the apparent dissociation enthalpies of the groups involved were obtained along with a pH-independent intrinsic enthalpy of acylation. This model suggests a group with an apparent pK = 6.8 and delta Hion = 8.7 kcal/mol which is perturbed to a pK of 7.55 and delta Hion = 7.6 kcal/mol on attachment of the acyl moiety to the enzyme. The apparent ionization enthalpy change for the active-inactive transition (pK3 = 8.8; delta H = 3.0 kcal/mol) corresponds with that calculated from the data of Fersht (J. Mol. Biol. 64 (1972) 497). The pH-independent intrinsic enthalpy of acylation (delta H = -7.9 kcal/mol) is corrected for group ionizations linked to the acylation process. Consequently, it more closely reflects molecular processes of interest such as substrate binding, covalent bond rearrangement, and product release.  相似文献   

9.
We have determined by (15)N, (1)H, and (13)C NMR, the chemical behavior of the six histidines in subtilisin BPN' and their PMSF and peptide boronic acid complexes in aqueous solution as a function of pH in the range of from 5 to 11, and have assigned every (15)N, (1)H, C(epsilon 1), and C(delta2) resonance of all His side chains in resting enzyme. Four of the six histidine residues (17, 39, 67, and 226) are neutrally charged and do not titrate. One histidine (238), located on the protein surface, titrates with pK(a) = 7.30 +/- 0.03 at 25 degrees C, having rapid proton exchange, but restricted mobility. The active site histidine (64) in mutant N155A titrates with a pK(a) value of 7.9 +/- 0.3 and sluggish proton exchange behavior, as shown by two-site exchange computer lineshape simulation. His 64 in resting enzyme contains an extremely high C(epsilon 1)-H proton chemical shift of 9.30 parts per million (ppm) owing to a conserved C(epsilon 1)-H(.)O=C H-bond from the active site imidazole to a backbone carbonyl group, which is found in all known serine proteases representing all four superfamilies. Only His 226, and His 64 at high pH, exist as the rare N(delta1)-H tautomer, exhibiting (13)C(delta1) chemical shifts approximately 9 ppm higher than those for N(epsilon 2)-H tautomers. His 64 in the PMSF complex, unlike that in the resting enzyme, is highly mobile in its low pH form, as shown by (15)N-(1)H NOE effects, and titrates with rapid proton exchange kinetics linked to a pK(a) value of 7.47 +/- 0.02.  相似文献   

10.
We have determined the activation parameters of kcat and kcat/Km for the carbonic anhydrase II-catalyzed hydration of CO2. The enthalpy and entropy of activation for kcat is 7860 +/- 120 cal mol-1 and -3.99 +/- 0.42 cal mol-1 K-1, respectively, for the human enzyme. Results for the bovine enzyme were statistically indistinguishable from those of the human enzyme. The entropy of activation of kcat for the human enzyme was further decomposed into partially compensating electrostatic(es) (delta S*es = +15.1 cal mol-1 K-1) and nonelectrostatic(nes) (delta S*nes = -19.1 cal mol-1 K-1) terms. Computer simulations of a formal kinetic mechanism for carbonic anhydrase II-catalyzed CO2 hydration show that 82% of the temperature effect on kcat can be attributed to the temperature effect on the intramolecular proton transfer step. The reported activation parameters are consistent with a substantial enzyme or active site solvent conformational change in the transition state of the intramolecular proton transfer step, and is consistent with the mechanism of proton transfer proposed by Venkatasubban and Silverman (Venkatasubban, K. S., and Silverman, D. N. (1980) Biochemistry 19, 4984-4989).  相似文献   

11.
J J Driscoll  D J Kosman 《Biochemistry》1987,26(12):3429-3436
Solvent and solvent proton dependent steps involved in the mechanism of the enzyme galactose oxidase have been examined. The deuterium kinetic solvent isotope effect (KSIE) on the velocity of the galactose oxidase catalyzed oxidation of methyl beta-galactopyranoside by O2 was measured. Examination of the thermodynamic activation parameters for the reaction indicated that the isotope effect was attributable to a slightly less favorable delta H value, consistent with a KSIE on proton transfer. A detailed kinetic analysis was performed, examining the effect of D2O on the rate of reaction over the pH range 4.8-8.0. Both pL-rate profiles exhibited bell-shaped curves. Substitution of D2O as solvent shifted the pKes values for the enzymic central complex: pKes1 from 6.30 to 6.80 and pKes2 from 7.16 to 7.35. Analysis of the observed shifts in dissociation constants was performed with regard to potential hydrogenic sites. pKes1 can be attributed to a histidine imidazole, while pKes2 is tentatively assigned to a Cu2+-bound water molecule. A proton inventory was performed (KSIE = +1.55); the plot of kcat vs. mole fraction D2O was linear, indicating the existence of a single solvent-derived proton involved in a galactose oxidase rate-determining step (or steps). The pH dependence of CN- inhibition was also examined. The Ki-pH profile indicated that a group ionization, with pKa = 7.17, modulated CN- inhibition; Ki was at a minimum when this group was in the protonated state. The inhibition profile followed the alkaline limit of the pH-rate profile for the enzymic reaction, suggesting that the group displaced by CN- was also deprotonating above pH 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Microperoxidase-8, Fe(III)MP-8, the heme octapeptide obtained by horse heart cytochrome c digestion, was studied in the presence of H(2)O(2). A modified form of the catalyst was isolated by HPLC and showed a UV/visible spectrum similar to that of Fe(III)MP-8. ESI-MS measurements revealed a 16 Da increase in molecular mass for the modified catalyst when compared to Fe(III)MP-8, suggesting the insertion of an oxygen atom. ESI-MS(2) fragmentation measurements point at oxygen incorporation on the His18 residue of the octapeptide of the modified catalyst. Comparison of the (1)H NMR chemical shifts of the methyl protons of the porphyrin ring of Fe(III)MP-8 and the modified catalyst shows a large shift for especially the 3-methyl and 5-methyl resonances, whereas the other (1)H NMR chemical shifts are almost unaffected. These observations can best be ascribed to a reorientation of the histidine axial ligand. The latter is suggested to be the consequence of an oxygen insertion, possibly on the imidazole ring of His18, thereby corroborating the data obtained by ESI-MS(2). (1)H NMR NOE difference measurements on Fe(III)MP-8 and on the modified catalyst supported the assignment of the H(delta)2 and H(epsilon)1 protons of the His18 imidazole ring. The ring amine proton H(delta)1 could not be detected in both forms of the catalyst. For Fe(III)MP-8 this absence of the H(delta)1 resonance can be ascribed to fast H/D exchange. For the modified catalyst the NMR data are not contradictory, with an oxygen insertion on position delta1 of the His18 imidazole ring with a fast H/D exchanging hydroxyl proton. Together these data converge in suggesting the H(2)O(2) modified catalyst bears a hydroxylated His18 axial ligand. The mechanism that could underlie Fe(III)MP-8 axial histidine hydroxylation is further discussed.  相似文献   

13.
Copper(II) is known to bind in the influenza virus His37 cluster in the homotetrameric M2 proton channel and block the proton current needed for uncoating. Copper complexes based on iminodiacetate also block the M2 proton channel and show reduced cytotoxicity and zebrafish-embryo toxicity. In voltage-clamp oocyte studies using the ubiquitous amantadine-insensitive M2 S31N variant, the current block showed fast and slow phases, in contrast to the single phase found for amantadine block of wild-type M2. Here, we evaluate the mechanism of block by copper adamantyl iminodiacitate and copper cyclooctyl iminodiacitate complexes and address whether the complexes can coordinate with one or more of the His37 imidazoles. The current traces were fitted to parametrized master equations. The energetics of binding and the rate constants suggest that the first step is copper complex binding within the channel, and the slow step in the current block is the formation of a Cu-histidine coordination complex. Solution-phase isothermal titration calorimetry and density functional theory (DFT) calculations indicate that imidazole binds to the copper complexes. Structural optimization using DFT reveals that the complexes fit inside the channel and project the Cu(II) toward the His37 cluster, allowing one imidazole to form a coordination complex with Cu(II). Electrophysiology and DFT studies also show that the complexes block the G34E amantadine-resistant mutant despite some crowding in the binding site by the glutamates.  相似文献   

14.
The tryptophan residue Trp5, highly conserved in the α class of carbonic anhydrases including human carbonic anhydrase II (HCA II), is positioned at the entrance of the active site cavity and forms a π-stacking interaction with the imidazole ring of the proton shuttle His64 in its outward orientation. We have observed that replacement of Trp5 in HCA II caused significant structural changes, as determined by X-ray diffraction, in the conformation of 11 residues at the N-terminus and in the orientation of the proton shuttle residue His64. Most significantly, two variants W5H and W5E HCA II had His64 predominantly outward in orientation, while W5F and wild type showed the superposition of both outward and inward orientations in crystal structures. Although Trp5 influences the orientation of the proton shuttle His64, this orientation had no significant effect on the rate constant for proton transfer near 1 μs−1, determined by exchange of 18O between CO2 and water measured by mass spectrometry. The apparent values of the pKa of the zinc-bound water and the proton shuttle residue suggest that different active-site conformations influence the two stages of catalysis, the proton transfer stage and the interconversion of CO2 and bicarbonate.  相似文献   

15.
J H Lee  K Z Chang  V Patel  C J Jeffery 《Biochemistry》2001,40(26):7799-7805
Phosphoglucose isomerase (PGI, EC 5.3.1.9) catalyzes the interconversion of D-glucose 6-phosphate (G6P) and D-fructose 6-phosphate (F6P) and plays important roles in glycolysis and gluconeogenesis. Biochemical characterization of the enzyme has led to a proposed multistep catalytic mechanism. First, the enzyme catalyzes ring opening to yield the open chain form of the substrate. Then isomerization proceeds via proton transfer between C2 and C1 of a cis-enediol(ate) intermediate to yield the open chain form of the product. Catalysis proceeds in both the G6P to F6P and F6P to G6P directions, so both G6P and F6P are substrates. X-ray crystal structure analysis of rabbit and bacterial PGI has previously identified the location of the enzyme active site, and a recent crystal structure of rabbit PGI identified Glu357 as a candidate functional group for transferring the proton. However, it was not clear which active site amino acid residues catalyze the ring opening step. In this paper, we report the X-ray crystal structure of rabbit PGI complexed with the cyclic form of its substrate, D-fructose 6-phosphate, at 2.1 A resolution. The location of the substrate relative to the side chains of His388 suggest that His388 promotes ring opening by protonating the ring oxygen. Glu216 helps to position His388, and a water molecule that is held in position by Lys518 and Thr214 accepts a proton from the hydroxyl group at C2. Comparison to a structure of rabbit PGI with 5PAA bound indicates that ring opening is followed by loss of the protonated water molecule and conformational changes in the substrate and the protein so that a helix containing amino acids 513-520 moves in toward the substrate to form additional hydrogen bonds with the substrate.  相似文献   

16.
The hydration of CO2 catalyzed by human carbonic anhydrase II (HCA II) is accompanied by proton transfer from the zinc-bound water of the enzyme to solution. We have replaced the proton shuttling residue His 64 with Ala and placed cysteine residues within the active-site cavity by mutating sites Trp 5, Asn 62, Ile 91, and Phe 131. These mutants were modified at the single inserted cysteine with imidazole analogs to introduce new potential shuttle groups. Catalysis by these modified mutants was determined by stopped-flow and 18O-exchange methods. Specificity in proton transfer was demonstrated; only modifications of the Cys 131-containing mutant showed enhancement in the proton transfer step of catalysis compared with unmodified Cys 131-containing mutant. Modifications at other sites resulted in up to 3-fold enhancement in rates of CO2 hydration, with apparent second-order rate constants near 350 microM(-1) s(-1). These are among the largest values of kcat/Km observed for a carbonic anhydrase.  相似文献   

17.
A Motta  R A Laursen  M Llinás 《Biochemistry》1986,25(24):7924-7931
The low-field 1H NMR spectrum of the kringle 4 domain of human plasminogen has been investigated at 300 and 600 MHz for the protein dissolved in 1H2O. The spectrum exhibits six well-resolved resonances, spanning the 9.8 approximately less than delta approximately less than 13 ppm chemical shift range, which arise from exchange-labile H atoms. The acid-base response of the six resonances was monitored in order to characterize the signals in terms of their pH titration profiles. The sensitivity of the low-field resonances to kringle binding the antifibrinolytic ligands N alpha-acetyl-L-lysine and p-benzylaminesulfonic acid was also investigated. The lowest field resonance, at 12.6 ppm, is a doublet of J approximately 7.9 Hz, a splitting that is unprecedented for His or Trp ring NH signals. Selective Overhauser experiments centered on the exchangeable proton transitions identify four of the other resonances as stemming from the His31, His33, Trp I, and Trp II side-chain NH groups, where the latter two are, as yet, not definitely assigned to the specific residues, Trp25 and Trp62. The relative narrowness of the His imidazole NH signals indicates that the two rings are sterically shielded from direct water accessibility. In particular, the His33 NH site appears to be the most protected. The Overhauser evidence conclusively shows that the two identified exchangeable His ring proton signals arise from imidazole NH3 sites rather than from the NH1 tautomers. Similarly, these experiments lead to an unambigous characterization of the corresponding Trp aromatic CH spin systems.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Cytochrome c oxidase (CcO) is the terminal enzyme in the respiratory electron transport chain of aerobic organisms. It catalyses the reduction of atmospheric oxygen to water, and couples this reaction to proton pumping across the membrane; this process generates the electrochemical gradient that subsequently drives the synthesis of ATP. The molecular details of the mechanism by which electron transfer is coupled to proton pumping in CcO is poorly understood. Recent calculations from our group indicate that His291, a ligand of the Cu(B) center of the enzyme, may play the role of the pumping element. In this paper we describe calculations in which a DFT/continuum electrostatic method is used to explore the coupling of the conformational changes of Glu242 residue, the main proton donor of both chemical and pump protons, to its pKa, and the pKa of His291, a putative proton loading site of our pumping model. The computations are done for several redox states of metal centers, different protonation states of Glu242 and His291, and two well-defined conformations of the Glu242 side chain. Thus, in addition to equilibrium redox/protonation states of the catalytic cycle, we also examine the transient and intermediate states. Different dielectric models are employed to investigate the robustness of the results, and their viability in the light of the proposed proton pumping mechanism of CcO. The main results are in agreement with the experimental measurements and support the proposed pumping mechanism. Additionally, the present calculations indicate a possibility of gating through conformational changes of Glu242; namely, in the pumping step, we find that Glu242 needs to be reprotonated before His291 can eject a proton to the P-site of membrane. As a result, the reprotonation of Glu can control proton release from the proton loading site.  相似文献   

19.
Cytochrome c oxidase is a redox-driven proton pump which converts atmospheric oxygen to water and couples the oxygen reduction reaction to the creation of a membrane proton gradient. The structure of the enzyme has been solved; however, the mechanism of proton pumping is still poorly understood. Recent calculations from this group indicate that one of the histidine ligands of enzyme's CuB center, His291, may play the role of the pumping element. In this paper, we report on the results of calculations that combined first principles DFT and continuum electrostatics to evaluate the energetics of the key energy generating step of the model-the transfer of the chemical proton to the binuclear center of the enzyme, where the hydroxyl group is converted to water, and the concerted expulsion of the proton from delta-nitrogen of His291 ligand of CuB center. We show that the energy generated in this step is sufficient to push a proton against an electrochemical membrane gradient of about 200 mV. We have also re-calculated the pKa of His291 for an extended model in which the whole Fe(a3)-CuB center with their ligands is treated by DFT. Two different DFT functionals (B3LYP and PBE0), and various dielectric models of the protein have been used in an attempt to estimate potential errors of the calculations. Although current methods of calculations do not allow unambiguous predictions of energetics in proteins within few pKa units, as required in this case, the present calculation provides further support for the proposed His291 model of CcO pump and makes a specific prediction that could be targeted in the experimental test.  相似文献   

20.
The spatial environment of the active centers for the four zinc-containing enzymes carbonic anhydrase, liver alcohol dehydrogenase, thermolysin and carboxypeptidase were compared and contrasted. The zinc is co-ordinated by three protein groups. In addition, a water molecule and substrate carbonyl may assume a fourth or fifth position. A group whose function is to abstract a proton from water during catalysis was found to have a constant spatial arrangement with respect to the zinc atom. The co-ordination sphere around the zinc is systematically distorted from a regular tetrahedral geometry with one specific ligand position being invariably occupied by a histidine residue. The orientation of the imidazole ring is moderately constant with respect to the Zn pyramid, a constraint possibly imposed by the adjacent substrate to permit its positioning suitable for catalysis.The comparison of carboxypeptidase and thermolysin was previously reported (Kester and Matthews, 1977a). The position of the water molecule as found in liver alcohol dehydrogenase when placed in thermolysin or carboxypeptidase would be consistent with a transient pentagonal Zn co-ordination during catalysis.Comparison of carboxypeptidase and carbonic anhydrase showed that the specificity pocket of carboxypeptidase superimposed onto a hydrophobic cavity of unknown function in carbonic anhydrase. The glycyl-l-tyrosine pseudo-substrate of carboxypeptidase fits well into the cavity, suggesting a probable binding site for esters in carbonic anhydrase. The excellent esterase activity of both these enzymes can thus be explained by a common binding mode and arrangement of catalytic groups.A comparison of trypsin and thermolysin demonstrates that, although their functional groups differ in character, the peptidase activity could be catalyzed in a similar manner. The proton-abstracting function of His57 in trypsin is generated by Glul43 acting on the Zn co-ordinated water, while the proton donor function of His57 in trypsin is generated by His231 in thermolysin.A comparison of liver alcohol dehydrogenase with other dehydrogenases suggests that His51 is not only a proton sink but also electronically provides an essential positive charge at crucial moments during catalysis. In contrast Arg 109 of lactafce dehydrogenase performs the same function by virtue of a conformational change. The superposition indicates that the zinc co-ordinated water oxygen has the proton acceptor function in liver alcohol dehydrogenase corresponding to the essential histidine groups in lactate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase.A compendium of the handedness of the catalytic configuration about the reactive atoms for ten different enzymes has been tabulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号