首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A DNA gene probe was prepared to study genetic change mechanisms responsible for adaptation to mercury in natural bacterial communities. The probe was constructed from a 2.6-kilobase NcoI-EcoRI DNA restriction fragment which spans the majority of the mercury resistance operon (mer) in the R-factor R100. The range of specificity of this gene probe was defined by hybridization to the DNA of a wide variety of mercury-resistant bacteria previously shown to possess the mercuric reductase enzyme. All of the tested gram-negative bacteria had DNA sequences homologous to the mer probe, whereas no such homologies were detected in DNA of the gram-positive strains. Thus, the mer probe can be utilized to study gene flow processes in gram-negative bacterial communities.  相似文献   

2.
A DNA gene probe was prepared to study genetic change mechanisms responsible for adaptation to mercury in natural bacterial communities. The probe was constructed from a 2.6-kilobase NcoI-EcoRI DNA restriction fragment which spans the majority of the mercury resistance operon (mer) in the R-factor R100. The range of specificity of this gene probe was defined by hybridization to the DNA of a wide variety of mercury-resistant bacteria previously shown to possess the mercuric reductase enzyme. All of the tested gram-negative bacteria had DNA sequences homologous to the mer probe, whereas no such homologies were detected in DNA of the gram-positive strains. Thus, the mer probe can be utilized to study gene flow processes in gram-negative bacterial communities.  相似文献   

3.
A 1.1-kb Hp alpha I fragment of the Escherichia coli chromosome containing the gene for translation initiation factor 3 was employed as a probe in heterologous hybridization to chromosomal DNA from a variety of other procaryotes. Positive hybridization was observed to DNA derived from all gram-negative bacteria tested. In contrast, no hybridization to DNA from gram-positive bacteria was detected. In addition, homologous sequences were found in Euglena gracilis chloroplast DNA, while this was not the case with Saccharomyces cerevisiae mitochondrial DNA. These results are discussed in light of existing data on the components and mechanism of translation initiation in the various organisms and organelles employed in this study.  相似文献   

4.
Abstract A specific DNA probe, containing a conserved region of the insertion sequence IS1, was hybridised to dot blots of total genomic DNA from 2 oral and 5 intestinal Bacteroides spp. Using Escherichia coli K12 as a positive control and Pseudomonas aeruginosa as a negative control, DNA homologous to the probe could not be detected in Bacteroides corporis, Bacteroides intermedius, Bacteroides ovatus, Bacteroides vulgatus, Bacteroides thetaiotaomicron or 2 strains of Bacteroides fragilis . The total DNA included plasmid DNA of 30.2, 42.7 and 42.7 MDa from B. fragilis, B. intermedius and B. corporis , respectively.
IS1 is commonly found in members of the Enterobacteriaceae, and it was concluded that the 2 groups of bacteria are not closely related.  相似文献   

5.
Type 1 pili, characterized by mannose-inhibitable agglutination of fowl or guinea pig erythrocytes, have been found throughout the family Enterobacteriaceae. A radiolabeled probe was prepared from a restriction endonuclease-digested fragment of the Escherichia coli pil operon and used to detect homologous DNA sequences in 236 bacteria representing 11 genera of Enterobacteriaceae. Only isolates identified as E. coli or Shigella spp. exhibited homology. In contrast, mannose-sensitive hemagglutination was observed in nine genera. Probe DNA did not hybridize to plasmid DNA, indicating a chromosomal location for the pil operon. Analysis of restriction nuclease-digested whole-cell DNA from 60 E. coli and two Shigella sp. isolates indicated that internal sequences were conserved in most strains, but that changes in flanking sequences in the chromosome were common.  相似文献   

6.
7.
RecA protein in gram-negative bacteria, especially in Escherichia coli, has been extensively studied, but little is known about this key enzyme in other procaryotes. Described here are degenerate oligonucleotide primers that have been used to amplify by the polymerase chain reaction (PCR) recA sequences from several gram-positive bacteria and mycoplasmas. The DNA sequences of recA PCR products from Streptococcus pyogenes, Streptococcus mutans, Enterococcus faecalis, and Mycoplasma pulmonis were determined and compared. These data indicate that the M. pulmonis recA gene has diverged significantly from recA genes of other eubacteria. It should be possible to use cloned recA PCR products to construct recA mutants, thereby providing the means of elucidating homologous genetic recombination and DNA repair activities in these organisms.  相似文献   

8.
Thiobarbiturate-reacting Materials in Microorganisms   总被引:2,自引:1,他引:1       下载免费PDF全文
The amount of thiobarbiturate-reacting material in 51 strains of bacteria and three yeasts was determined. Reactive material was found to be present in all of the gram-negative bacteria examined. It was assumed that the reactive material in this case was primarily 2-keto-3-deoxyoctonate (KDO), an eight-carbon sugar acid which is usually associated with the cell wall lipolysaccharide of members of the Salmonella-Escherichia group. Very little reactive material could be detected in the gram-positive species and yeasts that were examined. When expressed as per cent dry weight, the gram-negative bacteria exhibited about eight times more reactive material than the gram-positive species. It is suggested that the small amount of reactive material detected in gram-positive cells and yeasts is due to compounds other than KDO.  相似文献   

9.
Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer.  相似文献   

10.
The mRNA for a major outer membrane lipoprotein from Escherichia coli was found to hybridize specifically with one of the EcoRI and one of the HindIII restriction endonuclease-generated fragments of total DNA from nine bacteria in the family Enterobacteriaceae: E. coli, Shigella dysenteriae, Salmonella typhimurium, Citrobacter freundii, Klebsiella aerogenes, Enterobacter aerogenes, Edwardsiella tarda, Serratia marcescens, and Erwinia amylovora. However, among the Enterobacteriaceae, DNA from two species of Proteus (P. mirabilis and P. morganii) did not contain any restriction endonuclease fragments that hybridized with the E. coli lipoprotein mRNA. Furthermore, no hybrid bands were detected in four other gram-negative bacteria outside the family Enterobacteriaceae: Pseudomonas aeruginosa, Acinetobacter sp. HO1-N, Caulobacter crescentus, and Myxococcus xanthus. Envelope fractions from all bacteria in the family Enterobacteriaceae tested above cross-reacted with antiserum against the purified E. coli free-form lipoprotein in the Ouchterlony immunodiffusion test. Both species of Proteus, however, gave considerably weaker precipitation lines, in comparison with the intense lines produced by the other members of the family. All of the above four bacteria outside the family Enterobacteriaceae did not cross-react with anti-E. coli lipoprotein serum. From these results, the rate of evolutionary changes in the lipoprotein gene seems to be closely related to that observed for various soluble enzymes of the Enterobacteriaceae.  相似文献   

11.
The 70-kDa heat shock protein (hsp70) sequences define one of the most conserved proteins known to date. The hsp70 genes from Deinococcus proteolyticus and Thermomicrobium roseum, which were chosen as representatives of two of the most deeply branching divisions in the 16S rRNA trees, were cloned and sequenced. hsp70 from both these species as well as Thermus aquaticus contained a large insert in the N-terminal quadrant, which has been observed before as a unique characteristic of gram-negative eubacteria and eukaryotes and is not found in any gram-positive bacteria or archaebacteria. Phylogenetic analysis of hsp70 sequences shows that all of the gram-negative eubacterial species examined to date (which includes members from the genera Deinococcus and Thermus, green nonsulfur bacteria, cyanobacteria, chlamydiae, spirochetes, and alpha-, beta-, and gamma-subdivisions of proteobacteria) form a monophyletic group (excluding eukaryotic homologs which are derived from this group via endosybitic means) strongly supported by the bootstrap scores. A closer affinity of the Deinococcus and Thermus species to the cyanobacteria than to the other available gram-negative sequences is also observed in the present work. In the hsp7O trees, D. proteolyticus and T. aquaticus were found to be the most deeply branching species within the gram-negative eubacteria. The hsp70 homologs from gram-positive bacteria branched separately from gram-negative bacteria and exhibited a closer relationship to and shared sequence signatures with the archaebacteria. A polyphyletic branching of archaebacteria within gram-positive bacteria is strongly favored by different phylogenetic methods. These observations differ from the rRNA-based phylogenies where both gram-negative and gram-positive species are indicated to be polyphyletic. While it remains unclear whether parts of the genome may have variant evolutionary histories, these results call into question the general validity of the currently favored three-domain dogma.  相似文献   

12.
The effect of cyclohexanol, cyclohekxanon and cyclohexylamine on the selection of bacteria in a model population composed of bacteria isolated from activated sludge was examined. The initial population consisted of both gram-positive and gram-negative bacteria. The latter, which accounted for 90-97% of the population, belonged mainly to three Pseudomonas groups and the Enterobacteriaceae, Vibrio-Aeromonas, Achromobacter-Alcaligenes and Flavobacterium groups. Seven day growth in medium containing cyclohexane derivatives caused pronounced qualitative changes in the population. The compounds favored the development of bacteria of the genus Pseudomonas and inhibited the growth of all other gram-negative bacteria. The direction of selection was independent of the type of cyclohexane derivative.  相似文献   

13.
A standardized fluorescent in situ hybridization (FISH) method using Peptide Nucleic Acid (PNA) probes for analysis of gram-negative and gram-positive bacteria, as well as yeast, has been developed. Fluorescently labeled PNA probes targeting specific rRNA sequences of Escherichia coli, Pseudomonas aeruginosa, Staphyloccocus aureus, Salmonella were designed, as well as PNA probes targeting eubacteria and eucarya. These PNA probes were evaluated by PNA FISH using 27 bacterial and 1 yeast species, representing both phylogenetically closely related species, as well as species important to both clinical and industrial settings. The S. aureus and P. aeruginosa PNA probes did not cross react with any of the organisms tested, whereas the E. coli PNA probe, as expected from sequence data, also detected Shigella species. The Salmonella PNA probe reacted with all of the 13 Salmonella strains, representing the 7 subspecies of Salmonella, however, it is also complementary to a few other bacterial species. The eubacteria- and eucarya-specific PNA probes detected all bacterial species and one yeast species, respectively. The general applicability of the PNA FISH method made simultaneous identification of multiple species, both gram-negative and gram-positive, in a mixed population an attractive possibility never accomplished using DNA probes. Four color images using differently labeled PNA probes showed simultaneous identification of E. coli, P. aeruginosa, S. aureus and Salmonella, thereby demonstrating the potential of multiplex FISH for various diagnostic applications within both clinical and industrial microbiology.  相似文献   

14.
Two tuf genes in the cyanobacterium Spirulina platensis.   总被引:4,自引:2,他引:2       下载免费PDF全文
Probes derived from the tufA gene of Escherichia coli have been utilized to detect homologous sequences on Spirulina platensis DNA. A 6-kilobase-pair fragment of S. platensis DNA appears to contain two sequences homologous to the E. coli gene. Thus, as reported for gram-negative bacteria, the cyanobacterium presumably contains two tuf genes.  相似文献   

15.
Conjugative Plasmid Transfer in Gram-Positive Bacteria   总被引:24,自引:0,他引:24       下载免费PDF全文
Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer.  相似文献   

16.
The biochemical characterization of the muconate and the chloromuconate cycloisomerases of the chlorophenol-utilizing Rhodococcus erythropolis strain 1CP previously indicated that efficient chloromuconate conversion among the gram-positive bacteria might have evolved independently of that among gram-negative bacteria. Based on sequences of the N terminus and of tryptic peptides of the muconate cycloisomerase, a fragment of the corresponding gene has now been amplified and used as a probe for the cloning of catechol catabolic genes from R. erythropolis. The clone thus obtained expressed catechol 1,2-dioxygenase, muconate cycloisomerase, and muconolactone isomerase activities. Sequencing of the insert on the recombinant plasmid pRER1 revealed that the genes are transcribed in the order catA catB catC. Open reading frames downstream of catC may have a function in carbohydrate metabolism. The predicted protein sequence of the catechol 1,2-dioxygenase was identical to the one from Arthrobacter sp. strain mA3 in 59% of the positions. The chlorocatechol 1,2-dioxygenases and the chloromuconate cycloisomerases of gram-negative bacteria appear to be more closely related to the catechol 1,2-dioxygenases and muconate cycloisomerases of the gram-positive strains than to the corresponding enzymes of gram-negative bacteria.  相似文献   

17.
The streptomycin resistance gene of Pseudomonas syringae pv. papulans Psp36 was cloned into Escherichia coli and used to develop a 500-bp DNA probe that is specific for streptomycin resistance in P. syringae pv. papulans. The probe is a portion of a 1-kb region shared by three different DNA clones of the resistance gene. In Southern hybridizations, the probe hybridized only with DNA isolated from streptomycin-resistant strains of P. syringae pv. papulans and not with the DNA of streptomycin-sensitive strains. Transposon insertions within the region of DNA shared by the three clones resulted in loss of resistance to streptomycin. Colony hybridization of bacteria isolated from apple leaves and orchard soil indicated that 39% of 398 streptomycin-resistant bacteria contained DNA that hybridized to the probe. These included all strains of P. syringae pv. papulans and some other fluorescent pseudomonads and nonfluorescent gram-negative bacteria, but none of the gram-positive bacteria. The same-size restriction fragments hybridized to the probe in P. syringae pv. papulans. Restriction fragment length polymorphism of this region was occasionally observed in strains of other taxonomic groups of bacteria. In bacteria other than P. syringae pv. papulans, the streptomycin resistance probe hybridized to different-sized plasmids and no relationship between plasmid size and taxonomic group or between plasmid size and orchard type, soil association, or leaf association could be detected.  相似文献   

18.
The Tn21 subgroup of bacterial transposable elements   总被引:20,自引:0,他引:20  
The Tn3 family of transposable elements is probably the most successful group of mobile DNA elements in bacteria: there are many different but related members and they are widely distributed in gram-negative and gram-positive bacteria. The Tn21 subgroup of the Tn3 family contains closely related elements that provide most of the currently known variation in Tn3-like elements in gram-negative bacteria and that are largely responsible for the problem of multiple resistance to antibiotics in these organisms. This paper reviews the structure, the mechanism of transposition, the mode of acquisition of accessory genes, and the evolution of these elements.  相似文献   

19.
A comparative investigation of the heterotrophic microflora of 11 species of healthy corals and of white-band-diseased and yellow-band-diseased corals inhabiting the reefs of Nha Trang Bay (Vietnam), which has been exposed to anthropogenic impact, was performed. Fifty-nine strains of heterotrophic bacteria isolated on Y/K and Endo media were investigated and characterized. All the isolates were identified at the genus level by consideration of the results of analysis of their phenotypic properties, determination of the molar percent of G+C bases in their DNA, and the composition of fatty acids of their lipids. In the composition of the microflora of tissues of healthy corals, gamma-proteobacteria prevailed, with halomonads being dominant among them. In addition, the gram-negative bacteria included Pseudomonas and Vibrio spp., members of the Cytophaga-Flavobacterium-Bacteroides (CFB) phylogenetic cluster, and Moraxella sp. The gram-positive bacteria revealed included Bacillus, Staphylococcus, Halococcus, and Micrococcus spp., and coryneform bacteria. In the composition of the microflora of the tissues of affected corals, bacteria of the family Enterobacteriaceae and of the genera Planococcus and Arthrobacter, which were not revealed in healthy hydrobionts, were found. The anthropogenic impact is not the sole factor determining the infection of corals.  相似文献   

20.
A method to microscopically detect and identify individual cells of members of the domains Bacteria and Archaea is presented. rRNA-targeted oligonucleotides were 5' end labeled with the enzyme horseradish peroxidase and used for whole-cell hybridization. Specifically bound probe was visualized by the enzymatic formation of an intracellular precipitate from the substrate diaminobenzidine. Permeation of the enzyme-labeled probe into whole fixed cells of gram-negative bacteria required their pretreatment with lysozyme-EDTA, whereas permeability of some archaebacterial cells was improved by addition of detergent to the hybridization buffer. Hitherto we had not achieved penetration of enzyme-labeled probe into gram-positive bacteria and yeast cells. This method should be a valuable tool for identification of suitable prokaryotic cells in environments with elevated background fluorescence or in situations in which an epifluorescence microscope is not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号