首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
为实现香菇多糖含量的快速测定,利用近红外光谱漫反射技术采集了60个香菇粉末样本在12000~3800 cm-1范围内的光谱数据,利用紫外可见光谱法测定了香菇粉末样品的多糖含量。采用多种化学计量学方法,剔除掉四个异常样本后,考察了不同的光谱预处理方法以及波长选择对模型的影响,用留一交互检验法建立了偏最小二乘(PLS)模型,并用所建立的校正模型对独立预测集样本进行了预测。结果表明,当采用二阶导数及变量稳定性的竞争自适应加权抽样法(SCARS)选择的波长对光谱进行处理时,所建立的模型预测效果最佳,在隐变量数为10时,模型相关系数为0.9906,校正均方根误差(RMSEC)为0.0523 g/100 g,预测相关系数Rp=0.9781,预测均方根误差(RMSEP)=0.0577 g/100 g,该模型具有较好的预测能力,可用于香菇多糖含量的近红外光谱快速检测。  相似文献   

2.
应用近红外光谱预测水稻叶片氮含量   总被引:4,自引:1,他引:3       下载免费PDF全文
以水稻(Oryza sativa)新鲜叶片和干叶粉末两种状态的样品为研究对象, 基于近红外光谱(NIRS)技术, 应用偏最小二乘法(PLS)、主成分回归(PCR)和逐步多元回归(SMLR), 建立并评价了水稻叶片氮含量(NC)近红外光谱模型。结果表明, 基于PLS建立的模型表现最好, 鲜叶氮含量近红外光谱校正模型校正决定系数RC2为0.940, 校正标准误差RMSEC为0.226; 干叶粉末氮含量的近红外光谱校正模型RC2为0.977, RMSEC为0.136。模型的内部交叉验证分析表明, 预测鲜叶氮含量内部验证决定系数RCV2为0.866, 内部验证标准误差RMSECV为0.243; 预测干叶粉末氮含量RCV2为0.900, RMSECV为0.202。模型的外部验证分析表明, 预测水稻鲜叶氮含量的外部验证决定系数RV2大于0.800, 外部验证标准误差RMSEP小于0.500, 预测干叶粉末氮含量的RV2为0.944, RMSEP为0.142。说明, 近红外光谱分析技术与化学分析方法一致性较好, 且基于干叶粉末建立的近红外光谱预测模型的准确性和精确度较新鲜叶片高。  相似文献   

3.
本文以积分球漫反射模块采集113份不同等级不同年份的白茶近红外光谱图并进行预处理分析,采用蒽酮比色法对来自不同厂家的白茶进行含量测定,运用偏最小二乘法(PLS)建立了白茶可溶性糖总量快速测定模型并对模型进行验证。试验结果表明所建立模型的相关系数(R)为0. 963,校正均方根差(RMSEC)为0. 363 9,验证均方根差(RMSEP)为0. 349,验证集平均相对误差为3. 11%。通过NIRS快速测定白茶总糖含量具有较高的可行性,该方法预测结果较好,能够准确、快速、无损的对白茶可溶性糖总量进行快速定量分析。  相似文献   

4.
基于近红外光谱的冬小麦籽粒蛋白质含量检测   总被引:1,自引:0,他引:1  
冬小麦籽粒蛋白质含量(GPC)是评价冬小麦品质的主要指标,为了研究不同建模方法对GPC检测的影响,本研究对冬小麦籽粒的近红外原始光谱进行S-G平滑、基线校正和多元散射校正等预处理,利用连续投影算法(SPA)提取冬小麦GPC的重要光谱波段,并结合偏最小二乘回归(PLSR)、主成分回归(PCR)、支持向量机(SVM)和多元线性回归(MLR)建立GPC的光谱预测模型,并综合比较模型的适用性。结果表明:经过SPA提取的特征波段为1801、1010、1109、2284、2219、2239、871、1361、1925、1849和1456 nm;模型评价方面,利用特征波段建立的SVM模型效果较好,其中校正均方根误差(RMSEC)和R2分别为0.2481和0.9760,验证均方根误差(RMSEP)和R2分别为0.3587和0.9581。研究表明,SPA+SVM预测模型在一定程度上能够实现冬小麦籽粒蛋白质的快速、无损检测。  相似文献   

5.
目的:应用近红外光谱(NIR)结合偏最小二乘法(PLS)建立小麦粉常规营养成分蛋白质、水分和脂肪的含量预测模型,并选择最佳模型。方法:收集117份小麦粉样品的近红外光谱,化学法测定蛋白质、水分和脂肪的含量,利用主成分分析(PCA)随机分组,81份样品用于构建模型、36份样品用作验证模型的预测能力。探讨波长范围和光谱预处理方法对所建模型预测能力的影响。结果:3个营养成分预测能力最好的模型分别是:对于蛋白质,预处理采用矢量归一化(SNV),波长选取7 505.9~5 446.2 cm-1和4 605.4~4 242.8 cm-1,预测模型的RPD值是7.02;对于水分,无预处理,波长选择全谱12 800~3 960 cm-1,模型的RPD值是6.83;对于脂肪,无预处理,波长在9 000~4 000 cm-1,模型的RPD值是5.06。结论:近红外光谱法可以实现对小麦粉常规营养成分的快速预测,通过选择波长范围和光谱预处理方法可以显著提高模型的预测能力。  相似文献   

6.
建立一种快速检测盾叶薯蓣中三角叶薯蓣皂苷、盾叶新苷和薯蓣皂苷含量的方法。本研究以全国8个产地的盾叶薯蓣药材为研究对象,首先,利用HPLC-ELSD建立同时测定盾叶薯蓣中三角叶薯蓣皂苷、盾叶新苷及薯蓣皂苷含量的方法,并对不同产地的盾叶薯蓣药材进行三种皂苷的含量测定;其次,扫描盾叶薯蓣药材样品的近红外光谱,分别将盾叶薯蓣药材校正集样品的三种皂苷含量作为参考值,结合其近红外光谱图,以内部交叉验证决定系数(R~2)、校正均方根偏差(RMSEC)、预测均方根偏差(RMSEP)及预测性能指数(PI)作为评价所建定量检测模型性能的指标,利用TQ8.0分析软件结合偏最小二乘法(PLS),通过光谱预处理方法筛选、建模波段及主成分数的确定分别建立盾叶薯蓣药材中三种皂苷含量的快速检测模型;最后,分别利用验证集样品对所建三种皂苷检测模型的预测准确性进行检验。盾叶薯蓣样品中三角叶薯蓣皂苷、盾叶新苷和薯蓣皂苷含量测定方法经考察符合定量分析的要求;盾叶薯蓣药材中三角叶薯蓣皂苷定量检测模型的R~2为0.981 17、RMSEC为0.086 3、RMSEP为0.063 8、PI为90.5;盾叶新苷定量检测模型的R~2为0.982 64、RMSEC为0.042 0、RMSEP为0.027 4、PI为91.1;薯蓣皂苷定量检测模型的R~2为0.943 64、RMSEC为0.009 90、RMSEP为0.005 41、PI为85.8;经统计学检验,三个模型对三种皂苷的预测值与实测值之间无显著性差异。该方法可以相对快速、准确测定盾叶薯蓣中三角叶薯蓣皂苷、盾叶新苷及薯蓣皂苷的含量,为盾叶薯蓣药材质量的快速评价提供依据。  相似文献   

7.
本文建立了一种快速预测蕨菜总多糖含量的方法。采用蒽酮-硫酸比色法测定140份蕨菜总多糖含量作为参比值,采集140份蕨菜样品的傅里叶变换中红外光谱图,结合偏最小二乘法,建立蕨菜总多糖定量分析模型。通过比较多元散射校正法、标准正态变换法、一阶导数法、二阶导数法、多元散射校正+一阶导数法、标准正态变换+一阶导数法、多元散射校正+二阶导数法以及标准正态变换+二阶导数法共8种不同的光谱预处理方法,运用多糖类化合物的中红外光谱学特征吸收筛选建模波段,对蕨菜多糖含量预测模型进行优化。结果表明:采用标准正态变换法作为光谱数据预处理方法,以1750~1600、1500~1400、1350~1290、1160~1070、1060~970、930~800 cm^(-1)作为建模波段,获得校正集相关性系数R^(2)为0.9308,校正均方差(RMSEC)为0.374%,检验集相关性系数R^(2)为0.9145,预测均方差(RMSEP)为0.418%,20组样品进行完全外部验证误差为:-0.35%~0.31%,相对误差值为:-0.83%~5.24%,所构建定量模型可用于蕨菜总多糖含量预测。  相似文献   

8.
为建立近红外光谱技术测定荞麦蛋白质与淀粉含量的方法,本研究以217份荞麦样品为试验材料,采用最小二乘回归预测和交叉验证构建近红外预测模型。分析表明:前处理采用多元散射校正法(MSC),维数(Rank)分别为5和5,光谱区间6803.9~6094.2/cm所建立的荞麦蛋白质与淀粉含量模型的预测效果较好,其决定系数(R~2)分别为0.9481和0.9167,交叉验证均方根(RMSECV)分别为0.68和2.08,相对分析误差(RPD)分别为4.39和3.46,均大于3.0,外部验证相关系数均大于0.96。本试验所建立的蛋白质与淀粉含量近红外预测模型具有较高的准确度和稳健性,可用于荞麦品质的快速测定。  相似文献   

9.
籼稻品质分析的近红外光谱模型建立及其应用研究   总被引:1,自引:0,他引:1  
为了满足籼稻品质快速分析的需求,本研究利用籼稻精米粉近红外光谱建立了直链淀粉含量、蛋白质含量、碱消值、垩白度的回归预测模型.结果表明,本研究提供的预测模型具有良好的测定效果,用偏最小二乘法(PLS)获得的籼稻精米粉直链淀粉含量、蛋白质含量、碱消值、垩白度的回归模型和交叉验证显示最优校正决定系数(R~2)和交叉检验均方误差(RMSECV)分别为0.9561、1.55,0.9510、0.258,0.9076、0.283,0.9014、4.14.说明所建的近红外光谱预测模型具有实用价值.  相似文献   

10.
本文旨在建立地黄叶片中总环烯醚萜苷及苯乙醇苷定量分析模型。利用紫外-可见分光光度法测定不同种质怀地黄生育期内的128份地黄叶片中总环烯醚萜苷及总苯乙醇苷的含量,并将其作为基础值,结合地黄叶片的近红外光谱图,利用TQ8.0分析软件结合偏最小二乘法(PLS),分别建立地黄叶片中总环烯醚萜苷及总苯乙醇苷的定量分析模型。地黄叶片中总苯乙醇苷定量校正模型决定系数(R2)为0.998 2,校正均方根偏差(RMSEC)为0.089 9,预测均方决定差(RMSEP)为0.142,交叉验证均方根偏差(RMSECV)为0.707 2;总环烯醚萜苷定量校正模型的内部交叉验证决定系数(R2)为0.972 1,校正均方差(RMSEC)为0.259,预测均方决定差(RMSEP)为0.095 4,交叉验证均方根偏差(RMSECV)为0.869 4。预测值与实测值差异无统计学意义。该定量模型可用于怀地黄叶片中总环烯醚萜苷及总苯乙醇苷含量的快速测定。  相似文献   

11.
应用近红外漫反射光谱法快速测定女贞子中特女贞苷的含量。运用近红外光谱技术(NIRS)结合偏最小二乘法(PLS)建立不同产地女贞子中特女贞苷含量的定量校正模型。特女贞苷的定量校正模型内部交叉验证决定系数(R2)为0.98075,校正均方根偏差(RMSEC)为0.216,预测均方根偏差(RMSEP)为0.223,交互验证均方根偏差(RMSECV)为0.52276。该方法具有简便快速,准确无损,可用于女贞子中特女贞苷含量的快速测定。  相似文献   

12.
应用近红外漫反射光谱法快速测定女贞子中特女贞苷的含量。运用近红外光谱技术(NIRS)结合偏最小二乘法(PLS)建立不同产地女贞子中特女贞苷含量的定量校正模型。特女贞苷的定量校正模型内部交叉验证决定系数(R2)为0.98075,校正均方根偏差(RMSEC)为0.216,预测均方根偏差(RMSEP)为0.223,交互验证均方根偏差(RMSECV)为0.52276。该方法具有简便快速,准确无损,可用于女贞子中特女贞苷含量的快速测定。  相似文献   

13.
采用近红外光谱技术结合化学计量学方法,对原料乳中常见的2种掺杂物——大豆分离蛋白与植脂末进行定量分析研究。先通过不同光谱预处理方法结合偏最小二乘法(PLS)建模评价不同预处理方法的效果,结果表明通过平滑处理结合多元散射校正(MSC)进行光谱预处理效果最佳,大豆分离蛋白PLS定量模型相关系数(R2)与交叉验证均方差(RMSECV)分别为0.980 9、0.127 5,植脂末PLS模型分别为0.972 2、0.130 8。随后比较了不同建模方法的效果,结果发现:采用径向基神经网络(RBF)对大豆分离蛋白的建模效果最佳,R2为0.999 4,测试集均方根误差为0.003 1;采用广义回归神经网络(GRNN)方法对植脂末建模效果最佳,R2为0.998 9,测试集均方根误差为0.004 5。因此,合理结合近红外光谱技术与化学计量学方法可快速、准确检测原料乳中大豆分离蛋白和植脂末这2种掺杂物含量。  相似文献   

14.
探讨了傅立叶变换近红外光谱技术(FT-NIRS)检测豌豆蛋白质、淀粉、脂肪和总多酚含量的可行性。用化学方法测定190份豌豆种质的蛋白质、淀粉、脂肪以及总多酚含量,采集其子粒与粉末的近红外光谱,采用偏最小二乘法(PLS)分别建立两种光谱与成份含量预测模型。豌豆粉末模型结果优于子粒模型,其中蛋白质和淀粉的粉末模型的预测残差(RPD)为5.88、5.82,相关系数r2达到0.99、0.99,具有很好的预测性能。对其中产地信息详细明确的150份豌豆种质的品质性状与产地进行两步聚类分析,明确得到3种类型,其特点分别为:类群1低蛋白质含量,类群2高总多酚含量,类群3高蛋白质、高淀粉和高脂肪含量。进一步分析了豌豆品质性状随播种期、经度、纬度、海拔高度的变化情况。结果表明,近红外光谱技术可对豌豆种质资源的部分品质性状进行快速筛选鉴定,聚类分析结论、地理坐标与播期对豌豆种质主要品质性状的影响规律,都可为收集高品质性状豌豆种质资源提供可靠依据。  相似文献   

15.
近红外光谱无损测定大豆种子生活力方法研究   总被引:3,自引:0,他引:3  
:快速准确无损测定种子生活力是种质资源安全保存研究中的一项重要内容。采用傅立叶变换近红外漫反射光谱技术,结合偏最小二乘法,以保存不同年限的黄色大豆品种资源的种子为样品,建立其生活力的无破坏性测定数学模型,同时对不同光谱预处理方法和不同建模波段范围对模型的预测性能进行对比分析。结果表明:原始光谱在4000~10000nm全波段的模型预测精度较高。经Savitzky-Golay二介导数和标准化预处理后,生活力的PLS模型最好,校正集样品的相关系数为0.937,预测集样品的相关系数为0.902,RMSEC和RMSEP分别为2.190和2.684。可见模型预测的准确性接近常规发芽方法,能够满足种质资源快速、非破坏性活力检测的要求,为今后快速无损测定种子生活力提供了理论依据。  相似文献   

16.
目的:建立锁阳中19种无机元素含量的近红外光谱(NIR)快速测定模型,筛选适宜采用NIR技术进行测定的元素。方法:采集5个省(区)的82批锁阳样品,采用积分球漫反射方式采集样品的NIR原始光谱,采用电感耦合等离子体-质谱(ICP-MS)法测定Na、K、Ca、Mg、Fe、Zn、Mn、Co、Sr、Ni、Ag、Ba、Ti、Pb、Cr、Cd、As、Hg、Cu等19种无机元素含量的化学参考值,筛选预处理原始光谱的化学计量学方法,筛选最佳波段及因子数,以偏最小二乘法(PLS)建立NIR定量分析模型。结果:K、Ca、Mg、Mn、Co、Sr、Ti、Cr元素的决定系数R2及交叉验证R2均大于0.9,校正均方差(RMSEC)、预测均方差(RMSEP)及留一法交叉验证均方差(RMSECV)在0.52~2.20之间,模型预测值与真实值之间具有较好的相关性,预测性能较好;Ni、Zn元素的决定系数R2及交叉验证R2在0.8~0.9之间,RMSEC、RMSEP及RMSECV在0.49~1.41之间,预测值与真实值之间的相关性一般;Cu元素的决定系数R2及交叉验证R2在0.7~0.8之间,Na、Fe、Ag、Ba、Pb...  相似文献   

17.
【目的】为准确快速地了解紫色红曲菌固态发酵中生物量的变化,【方法】采用理化方法测定菌体量和氨基葡萄糖含量,研究了不同培养时间、培养基组成、培养方式下菌体量与氨基葡萄糖含量的关系,建立生物量和氨基葡萄糖含量的换算关系式;构建关联该菌固态培养物近红外光谱数据与实测氨基葡萄糖含量的PLS模型。【结果】建立了可通过近红外光谱法测定氨基葡萄糖来快速预测固态发酵生物量的方法,其中最优近红外模型的校正集内部交叉验证均方根误差(RMSECV)为0.209 4,预测集相关系数(Rp)和均方根误差(RMSEP)分别为0.993 4和0.217 3;同时利用所建的换算关系式也大大提高了生物量计算的准确性。【结论】基于所建立的生物量和氨基葡萄糖的换算关系式,利用近红外光谱法可以快速并且较准确地测定紫色红曲菌固态发酵过程中生物量的变化。  相似文献   

18.
本研究旨在应用近红外光谱法建立一种白芍药材中芍药苷含量的快速测定方法。利用HPLC测定样品中芍药苷含量,并以其作为参考值,运用偏最小二乘法(PLS)建立芍药苷含量与近红外光谱之间的多元校正模型,对未知样品进行含量预测。结果表明,所建芍药苷定量分析模型的相关系数(R2)、内部交叉验证均方差(RMSECV)、校正均方差(RMSEC)分别为0.99395、0.33068、0.0563;经内部验证,模型的预测均方差(RMSEP)和平均回收率分别为0.0756和100.07%。该方法操作简便,无污染,结果准确可靠,可用于白芍中芍药苷含量的快速测定。  相似文献   

19.
利用小波分析对13名志愿者18个血清样品的短波近红外光谱进行去噪预处理,以血糖仪测定的血糖为参考,采用间隔偏最小二乘法(iPLS)在700nm~1060nm短波近红外波段建立血糖浓度预测模型。由相关系数(R)和预测标准差(RMSEP)对预测模型的精确度进行了评价。预测模型的相关系数为0.9654,均方根预测误差为0.2435,并和采用傅立叶变换去噪方法及iPLS建模的结果进行了比较。结果表明:小波分析预处理数据的方法能更有效地扣除噪声干扰,使模型具有更强的抗干扰能力和更高的预测精度。  相似文献   

20.
叶绿素含量是植物生长状况的重要指标,狼毒叶绿素含量预测可为狼毒长势监测及危害防控提供科学依据。本文选取青海省兴海县瑞香狼毒分布的典型退化草甸,利用全光谱的偏最小二乘法(PLS)、基于连续投影算法的多元线性回归法(SPA-MLR)、基于连续投影算法的偏最小二乘法(SPA-PLS)、红边参数以及植被指数共5种方法对狼毒叶片SPAD值进行预测和对比分析,构建青海省瑞香狼毒叶绿素含量的最优预测模型。结果表明:利用SPA算法筛选出9个特征波长建立的PLS模型对狼毒SPAD值的预测结果最好,预测相关系数为0.778,预测均方根误差为1.895;与全光谱PLS模型相比,SPA-PLS模型明显减少计算量,提高了建模效率;与SPA-MLR模型相比,SPA-PLS模型有效解决了变量之间的共线问题,显著提高了预测精度,是狼毒叶绿素含量的最佳预测模型;基于红边参数和植被指数建立的预测模型中,MCARI指数构建的模型对狼毒SPAD值的预测精度最高,预测相关系数为0.808,预测均方根误差为1.969,可作为反演狼毒叶绿素含量的最优植被指数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号