首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cho KH  Kim JR  Baek S  Choi HS  Choo SM 《FEBS letters》2006,580(14):3511-3518
Reverse engineering of biomolecular regulatory networks such as gene regulatory networks, protein interaction networks, and metabolic networks has received an increasing attention as more high-throughput time-series measurements become available. In spite of various approaches developed from this motivation, it still remains as a challenging subject to develop a new reverse engineering scheme that can effectively uncover the functional interaction structure of a biomolecular network from given time-series expression profiles (TSEPs). We propose a new reverse engineering scheme that makes use of phase portraits constructed by projection of every two TSEPs into respective phase planes. We introduce two measures of a slope index (SI) and a winding index (WI) to quantify the interaction properties embedded in the phase portrait. Based on the SI and WI, we can reconstruct the functional interaction network in a very efficient and systematic way with better inference results compared to previous approaches. By using the SI, we can also estimate the time-lag accompanied with the interaction between molecular components of a network.  相似文献   

2.

Background  

Cells dynamically adapt their gene expression patterns in response to various stimuli. This response is orchestrated into a number of gene expression modules consisting of co-regulated genes. A growing pool of publicly available microarray datasets allows the identification of modules by monitoring expression changes over time. These time-series datasets can be searched for gene expression modules by one of the many clustering methods published to date. For an integrative analysis, several time-series datasets can be joined into a three-dimensional gene-condition-time dataset, to which standard clustering or biclustering methods are, however, not applicable. We thus devise a probabilistic clustering algorithm for gene-condition-time datasets.  相似文献   

3.
4.
Regulation of gene expression is a carefully regulated phenomenon in the cell. “Reverse-engineering” algorithms try to reconstruct the regulatory interactions among genes from genome-scale measurements of gene expression profiles (microarrays). Mammalian cells express tens of thousands of genes; hence, hundreds of gene expression profiles are necessary in order to have acceptable statistical evidence of interactions between genes. As the number of profiles to be analyzed increases, so do computational costs and memory requirements. In this work, we designed and developed a parallel computing algorithm to reverse-engineer genome-scale gene regulatory networks from thousands of gene expression profiles. The algorithm is based on computing pairwise Mutual Information between each gene-pair. We successfully tested it to reverse engineer the Mus Musculus (mouse) gene regulatory network in liver from gene expression profiles collected from a public repository. A parallel hierarchical clustering algorithm was implemented to discover “communities” within the gene network. Network communities are enriched for genes involved in the same biological functions. The inferred network was used to identify two mitochondrial proteins.  相似文献   

5.
MOTIVATION: Time series expression experiments are an increasingly popular method for studying a wide range of biological systems. Here we developed an algorithm that can infer the local network of gene-gene interactions surrounding a gene of interest. This is achieved by a perturbation of the gene of interest and subsequently measuring the gene expression profiles at multiple time points. We applied this algorithm to computer simulated data and to experimental data on a nine gene network in Escherichia coli. RESULTS: In this paper we show that it is possible to recover the gene regulatory network from a time series data of gene expression following a perturbation to the cell. We show this both on simulated data and on a nine gene subnetwork part of the DNA-damage response pathway (SOS pathway) in the bacteria E. coli. CONTACT: dibernardo@tigem.it SUPLEMENTARY INFORMATION: Supplementary data are available at http://dibernado.tigem.it  相似文献   

6.

Background  

Inferring gene networks from time-course microarray experiments with vector autoregressive (VAR) model is the process of identifying functional associations between genes through multivariate time series. This problem can be cast as a variable selection problem in Statistics. One of the promising methods for variable selection is the elastic net proposed by Zou and Hastie (2005). However, VAR modeling with the elastic net succeeds in increasing the number of true positives while it also results in increasing the number of false positives.  相似文献   

7.
Deciphering gene expression regulatory networks   总被引:11,自引:0,他引:11  
  相似文献   

8.
ABSTRACT: BACKGROUND: Inference about regulatory networks from high-throughput genomics data is of great interest in systems biology. We present a Bayesian approach to infer gene regulatory networks from time series expression data by integrating various types of biological knowledge. RESULTS: We formulate network construction as a series of variable selection problems and use linear regression to model the data. Our method summarizes additional data sources with an informative prior probability distribution over candidate regression models. We extend the Bayesian model averaging (BMA) variable selection method to select regulators in the regression framework. We summarize the external biological knowledge by an informative prior probability distribution over the candidate regression models. CONCLUSIONS: We demonstrate our method on simulated data and a set of time-series microarray experiments measuring the effect of a drug perturbation on gene expression levels, and show that it outperforms leading regression-based methods in the literature.  相似文献   

9.

Background

Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type (‘outlier genes’), a hallmark of potential oncogenes.

Methodology

A new statistical method (the gene tissue index, GTI) was developed by modifying and adapting algorithms originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas. According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples. Immunohistochemical data were available for 65% (19 of 29) of these genes, and 17 of these 19 genes (90%) showed a typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier gene candidate as a potential therapeutic target.

Conclusions/Significance

Taken together, these results support the GTI as a novel approach to identify potential oncogene outliers and drug targets. The algorithm is implemented in an R package (Text S1).  相似文献   

10.
11.
We developed PathAct, a novel method for pathway analysis to investigate the biological and clinical implications of the gene expression profiles. The advantage of PathAct in comparison with the conventional pathway analysis methods is that it can estimate pathway activity levels for individual patient quantitatively in the form of a pathway-by-sample matrix. This matrix can be used for further analysis such as hierarchical clustering and other analysis methods. To evaluate the feasibility of PathAct, comparison with frequently used gene-enrichment analysis methods was conducted using two public microarray datasets. The dataset #1 was that of breast cancer patients, and we investigated pathways associated with triple-negative breast cancer by PathAct, compared with those obtained by gene set enrichment analysis (GSEA). The dataset #2 was another breast cancer dataset with disease-free survival (DFS) of each patient. Contribution by each pathway to prognosis was investigated by our method as well as the Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis. In the dataset #1, four out of the six pathways that satisfied p < 0.05 and FDR < 0.30 by GSEA were also included in those obtained by the PathAct method. For the dataset #2, two pathways (“Cell Cycle” and “DNA replication”) out of four pathways by PathAct were commonly identified by DAVID analysis. Thus, we confirmed a good degree of agreement among PathAct and conventional methods. Moreover, several applications of further statistical analyses such as hierarchical cluster analysis by pathway activity, correlation analysis and survival analysis between pathways were conducted.  相似文献   

12.

Background

G Protein-Coupled Receptors (GPCRs) are a large and diverse family of membrane proteins whose members participate in the regulation of most cellular and physiological processes and therefore represent key pharmacological targets. Although several bioinformatics resources support research on GPCRs, most of these have been designed based on the traditional assumption that monomeric GPCRs constitute the functional receptor unit. The increase in the frequency and number of reports about GPCR dimerization/oligomerization and the implication of oligomerization in receptor function makes necessary the ability to store and access information about GPCR dimers/oligomers electronically.

Results

We present here the requirements and ontology (the information scheme to describe oligomers and associated concepts and their relationships) for an information system that can manage the elements of information needed to describe comprehensively the phenomena of both homo- and hetero-oligomerization of GPCRs. The comprehensive information management scheme that we plan to use for the development of an intuitive and user-friendly GPCR-Oligomerization Knowledge Base (GPCR-OKB) is the result of a community dialog involving experimental and computational colleagues working on GPCRs.

Conclusion

Our long term goal is to disseminate to the scientific community organized, curated, and detailed information about GPCR dimerization/oligomerization and its related structural context. This information will be reported as close to the data as possible so the user can make his own judgment on the conclusions drawn for a particular study. The requirements and ontology described here will facilitate the development of future information systems for GPCR oligomers that contain both computational and experimental information about GPCR oligomerization. This information is freely accessible at http://www.gpcr-okb.org.  相似文献   

13.
14.
Gu X 《Genetics》2004,167(1):531-542
Microarray technology has produced massive expression data that are invaluable for investigating the genome-wide evolutionary pattern of gene expression. To this end, phylogenetic expression analysis is highly desirable. On the basis of the Brownian process, we developed a statistical framework (called the E(0) model), assuming the independent expression of evolution between lineages. Several evolutionary mechanisms are integrated to characterize the pattern of expression diversity after gene duplications, including gradual drift and dramatic shift (punctuated equilibrium). When the phylogeny of a gene family is given, we show that the likelihood function follows a multivariate normal distribution; the variance-covariance matrix is determined by the phylogenetic topology and evolutionary parameters. Maximum-likelihood methods for multiple microarray experiments are developed, and likelihood-ratio tests are designed for testing the evolutionary pattern of gene expression. To reconstruct the evolutionary trace of expression diversity after gene (or genome) duplications, we developed a Bayesian-based method and use the posterior mean as predictors. Potential applications in evolutionary genomics are discussed.  相似文献   

15.
MOTIVATION: Identification of the regulatory structures in genetic networks and the formulation of mechanistic models in the form of wiring diagrams is one of the significant objectives of expression profiling using DNA microarray technologies and it requires the development and application of identification frameworks. RESULTS: We have developed a novel optimization framework for identifying regulation in a genetic network using the S-system modeling formalism. We show that balance equations on both mRNA and protein species led to a formulation suitable for analyzing DNA-microarray data whereby protein concentrations have been eliminated and only mRNA relative concentrations are retained. Using this formulation, we examined if it is possible to infer a set of possible genetic regulatory networks consistent with observed mRNA expression patterns. Two origins of changes in mRNA expression patterns were considered. One derives from changes in the biophysical properties of the system that alter the molecular-interaction kinetics and/or message stability. The second is due to gene knock-outs. We reduced the identification problem to an optimization problem (of the so-called mixed-integer non-linear programming class) and we developed an algorithmic procedure for solving this optimization problem. Using simulated data generated by our mathematical model, we show that our method can actually find the regulatory network from which the data were generated. We also show that the number of possible alternate genetic regulatory networks depends on the size of the dataset (i.e. number of experiments), but this dependence is different for each of the two types of problems considered, and that a unique solution requires fewer datasets than previously estimated in the literature. This is the first method that also allows the identification of every possible regulatory network that could explain the data, when the number of experiments does not allow identification of unique regulatory structure.  相似文献   

16.
MOTIVATION: Inferring genetic networks from time-series expression data has been a great deal of interest. In most cases, however, the number of genes exceeds that of data points which, in principle, makes it impossible to recover the underlying networks. To address the dimensionality problem, we apply the subset selection method to a linear system of difference equations. Previous approaches assign the single most likely combination of regulators to each target gene, which often causes over-fitting of the small number of data. RESULTS: Here, we propose a new algorithm, named LEARNe, which merges the predictions from all the combinations of regulators that have a certain level of likelihood. LEARNe provides more accurate and robust predictions than previous methods for the structure of genetic networks under the linear system model. We tested LEARNe for reconstructing the SOS regulatory network of Escherichia coli and the cell cycle regulatory network of yeast from real experimental data, where LEARNe also exhibited better performances than previous methods. AVAILABILITY: The MATLAB codes are available upon request from the authors.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号