首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the long-term influence of paralysis on muscle phenotypic mRNA and protein expression, the effects of spinal cord transection (ST) on myosin heavy chain (MyHC) isoform mRNA and protein levels in the soleus and medial gastrocnemius (MG) muscles of rats were analyzed. Control soleus contained predominantly MyHC-I with low amounts of MyHC-IIa and IIx mRNAs. After ST, MyHC-I mRNA decreased to approximately 15%, MyHC-IIa was increased by 75-200%, and MyHC-IIx was elevated by 8-10x. Low level expression of MyHC-IIb was observed post-ST, suggesting that reduced activity is not a primary stimulus for MyHC-IIb expression. Adaptations in mRNA preceded protein adaptations in the soleus. Although MyHC-I protein in the MG was reduced post-ST, no other consistent changes occurred. The relative lack of adaptation to ST by the MG suggests that the reduced activity and load bearing encountered by the MG were insufficient to induce a change in muscle phenotype.  相似文献   

2.
The following two hypotheses regarding diaphragm contractile properties in the perinatal rat were tested. First, there is a major transformation of contractile and fatigue properties during the period between the inception of inspiratory drive transmission in utero and birth. Second, the diaphragm muscle properties develop to functionally match changes occurring in phrenic motoneuron electrophysiological properties. Muscle force recordings and intracellular recordings of end-plate potentials were measured by using phrenic nerve-diaphragm muscle in vitro preparations isolated from rats on embryonic day 18 and postnatal days 0-1. The following age-dependent changes occurred: 1) twitch contraction and half relaxation times decreased approximately two- and threefold, respectively; 2) the tetanic force levels increased approximately fivefold; 3) the ratio of peak twitch force to maximum tetanic force decreased 2.3-fold; 4) the range of forces generated by the diaphragm in response to graded nerve stimulation increased approximately twofold; 5) the force-frequency curve was shifted to the right; and 6) the propensity for neuromuscular transmission failure decreased. In conclusion, the diaphragm contractile and phrenic motoneuron repetitive firing properties develop in concert so that the full range of potential diaphragm force recruitment can be utilized and problems associated with diaphragm fatigue are minimized.  相似文献   

3.
The purpose of this work is to study the influence of aging, training, and food restriction on skeletal muscle mass and fiber number. Male Fischer 344 rats (n = 49) at 3 mo postpartum were assigned to three groups: 1) sedentary control (confined to cage), 2) exercise trained (18 m/min, 8 degrees grade, 20 min/day, 5 days/wk), or 3) food restricted (alternate days of free access and no access to food). At 12 and 27 mo postpartum the soleus and extensor digitorum longus (EDL) muscles were excised, weighed, and fiber number was quantified after HNO3 digestion. At 27 mo the masses of soleus and EDL muscles of sedentary control rats were 83 and 70%, respectively, of 12-mo values (138 +/- 5 and 151 +/- 4 mg). At 27 mo, soleus muscle mass of trained rats was 113% of sedentary control values, whereas EDL muscle mass was unaffected by training. At 27 mo, food restriction had no effect on the mass of both muscles compared with 27-mo sedentary control values. Fiber number was not affected by training or food restriction in both muscles. Fiber number for soleus and EDL muscles of combined groups declined with age by 5.6 and 4.2%, respectively. With aging, the small loss of muscle fibers can account at most for approximately 25% of the observed skeletal muscle atrophy.  相似文献   

4.
An experimental protocol designed to assess fatigability in motor units has been applied to two hindlimb muscles of anesthetized adult rats to study the effects of whole-muscle fatigue on the isometric twitch. Both soleus and extensor digitorum longus exhibited a linear relationship between fatigability (i.e., force decline after a 360-s fatigue test) and the magnitude of the twitch force following the fatigue test. Twitch force after the fatigue test was potentiated (i.e., greater than the value before the fatigue test) in many muscles, despite the development of considerable fatigue. This coexistence of fatigue and twitch potentiation was observed in 7% (5/70) of soleus and 48% (31/64) of extensor digitorum longus muscles. The coexistence was exhibited only by the least fatigable muscles of the fast-contracting extensor digitorum longus. The extensor digitorum longus muscles that did not exhibit twitch potentiation probably experienced a higher proportion of muscle-fiber inactivation, such as due to failure of neuromuscular propagation, that was induced by the fatigue regimen.  相似文献   

5.
Skeletal muscle fatigue in vitro is temperature dependent   总被引:2,自引:0,他引:2  
Our purpose was to determine the effect of temperature on the fatigability of isolated soleus and extensor digitorum longus (EDL) muscles from rats during repeated isometric contractions. Muscles (70-90 mg) were studied at 20-40 degrees C in vitro. Fatigability was defined with respect to both the time and number of stimuli required to reach 50% of the force (P) developed at the onset of the fatigue test. Fatigue was studied during stimulation protocols of variable [force approximately 70% of maximum force (Po)] and constant frequency (28 Hz). Results for soleus and EDL muscles were qualitatively similar, but fatigue times were longer for soleus than for EDL muscles. During the variable-frequency protocol, development of approximately 70% of Po required an increase in stimulation frequency as temperature increased. During stimulation at these frequencies, fatigue time shortened as temperature increased. For both fatigue protocols, the relationship between temperature and the number of stimuli required to reach fatigue followed a bell-shaped curve, with maximum values at 25-30 degrees C. The temperature optimum for maximizing the number of isometric contractions to reach fatigue reflects direct effects of temperature on muscle function.  相似文献   

6.
Yu ZB  Jiao B  Wang YY  Li H 《生理学报》2008,60(3):362-368
甲状腺功能亢进(甲亢)时甲状腺素分泌增加,不仅使具有神经支配的慢缩型肌纤维向快缩型转化,而且改变骨骼肌的强直收缩功能.因此,甲亢性肌病的肌肉乏力可能与骨骼肌强直收缩易发生疲劳有关.本实验在离体条件下,观测甲亢4周引起的大鼠慢缩肌--比目鱼肌(soleus, SOL)单收缩与间断强直收缩功能的变化.结果显示,甲亢4周大鼠体重明显低于同步对照组[(292±13)g vs (354±10)g],但SOL湿重没有明显改变[(107.3±8.6)mg vs (115.1±6.9)mg].甲亢大鼠SOL单收缩张力达到峰值的时间(time to peak tension, TPT)、从峰值降至75%舒张时间(time from peak tension to 75% relaxation, TR75)均明显缩短;强直收缩的TR75也明显缩短[(102.8±4.1)ms vs (178.8±15.8)ms];强直收缩的最适频率从对照组的100Hz增加到140Hz;间断强直收缩期间容易发生疲劳.甲亢大鼠SOL肌浆网Ca2 -ATP酶(sarcoplasmic-reticulum Ca2 -ATPase, SERCA)活性增高.采用SERCA特异性抑制剂CPA (1.0μmol/L)处理后,对照组与甲亢大鼠SOL间断强直收缩的TR75均延长,同时不易出现疲劳.5.0μmol/L CPA灌流虽可进一步抵抗甲亢大鼠SOL间断强直收缩引起的疲劳,但强直收缩期间的静息张力却明显升高.将CPA浓度增至10.0μmol/L,甲亢大鼠SOL间断强直收缩又趋向易发生疲劳.这些结果提示,与心肌相同,骨骼肌肌纤维SERCA活性亦可影响单收缩与强直收缩的舒张时间,SERCA活性升高可加速间断强直收缩发生疲劳.  相似文献   

7.
The isometric and force-velocity properties of the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles were investigated immediately after and during recovery from a fatiguing stimulus regime (40 Hz for 330 ms every second for 180 s) in the anesthetized cat. The amplitude of the isometric twitch of FDL was unaffected but in soleus it remained depressed for much of the recovery period. Immediately after stimulation the twitch time to peak of FDL increased to 140% of the control (prefatigue) value and then reverted to control values. The maximum isometric tetanic tension (Po) developed by FDL was reduced to 67% of control values immediately after the stimulus regime, whereas soleus declined to 93% of control. Recovery of maximum force development was achieved after 45 min in FDL and after 15 min in soleus. The maximum speed of shortening of FDL was reduced to 63% of control values immediately after fatigue; despite some recovery within the first 30 min, it remained depressed during the remainder of the recovery period (up to 300 min). Maximum speed of shortening was unaltered in soleus. The a/Po value transiently increased to 176% of control values in FDL immediately after the fatigue regime but promptly returned to control values. Force-velocity properties of soleus were not affected by the stimulus regime. It is concluded that in FDL changes in the maximum speed of shortening and maximum isometric tension as a result of the stimulus regime are attributable to changes in the intrinsic behavior of cross-bridges and the metabolic status of the fibers, particularly in the fast-twitch fatigue-resistant fibers.  相似文献   

8.
To determine whether long-term reductions in neuromuscular activity result in alterations in metabolic capacity, the activities of oxidative, i.e., succinate dehydrogenase (SDH) and citrate synthase (CS), and glycolytic, i.e., alpha-glycerophosphate dehydrogenase (GPD), enzyme markers were quantified in rat soleus muscles 1, 3, and 6 mo after a complete spinal cord transection (ST). In addition, the proportional content of lactate dehydrogenase (LDH) isozymes was used as a marker for oxidative and glycolytic capacities. The myosin heavy chain (MHC) isoform content of a fiber served as a marker of phenotype. In general, MHC isoforms shifted from MHC1 toward MHC2, particularly MHC2x, after ST. Mean SDH and CS activities were higher in ST than control at all time points. The elevated SDH and CS activities were indicative of an enhanced oxidative capacity. GPD activities were higher in ST than control rats at all time points. The increase in activity of SDH was larger than GPD. Thus the GPD-to-SDH (glycolytic-to-oxidative) ratio was decreased after ST. Compared with controls, total LDH activity increased transiently, and the LDH isozyme profile shifted from LDH-1 toward LDH-5, indicative of an enhanced glycolytic capacity. Combined, these results indicate that 1) the metabolic capacities of soleus fibers were not compromised, but the interrelationships among oxidative and glycolytic capacity and MHC content were apparently dissociated after ST; 2) enhancements in oxidative and glycolytic enzyme activities are not mutually exclusive; and 3) chronic reductions in skeletal muscle activity do not necessarily result in a reduced oxidative capacity.  相似文献   

9.
We tested the hypothesis that positive inotropic factors decrease fatigue and improve recovery from fatigue in mammalian skeletal muscle in vitro. To induce fatigue, we stimulated mouse soleus and extensor digitorum longus (EDL) to perform isometric tetanic contractions (50 impulses x s(-1) for 0.5 s) at 6 contractions x min(-1) for 60 min in soleus and 3 contractions x min(-1) for 20 min in EDL. Muscles were submerged in Krebs-Henseleit bicarbonate solution (Krebs) at 27 degrees C gassed with 95% nitrogen - 5% carbon dioxide (anoxia). Before and for 67 min after the fatigue period, muscles contracted at 0.6 contractions x min(-1) in 95% oxygen - 5% carbon dioxide (hyperoxia). We added a permeable cAMP analog (N6, 2'-O-dibutyryladenosine 3':5'-cyclic monophosphate at 10(-3) mol x L(-1) (dcAMP)), caffeine (2 x 10(-3) mol x L(-1), or Krebs as vehicle control at 25 min before, during, or at the end of the fatigue period. In soleus and EDL, both challenges added before fatigue significantly increased developed force but only caffeine increased developed force when added during the fatigue period. At the end of fatigue, the decrease in force in challenged muscles was equal to or greater than in controls so that the force remaining was the same or less than in controls. EDL challenged with dcAMP or caffeine at any time recovered more force than controls. In soleus, caffeine improved recovery except when added before fatigue. With dcAMP added to soleus, recovery was better after challenges at 10 min and the end of the fatigue period. Thus, increased intracellular concentrations of cAMP and (or) Ca2+ did not decrease fatigue in either muscle but improved recovery from fatigue in EDL and, in some conditions, in soleus.  相似文献   

10.
Ten rats were trained to perform approximately 30 jumps/day, 5 days/wk for at least 8 wk, from a force platform that enabled the number and height of jumps to be quantified. There was considerable variation in height jumped during an activity session both within and between rats. The two highest-jumping rats attained a displacement of center of mass of approximately 30 cm, estimated to be approximately 67% of the maximum attainable. The two lowest-jumping rats jumped to approximately 30% of the estimated maximum. The activity was described as "habitual activity" rather than "training" because there were no significant increases in the height of jumping by any rat over the period of activity. The isometric properties of medial gastrocnemius (MG) and soleus muscles were studied in terminal experiments on anesthetised rats. Five significant effects on MG were evoked by this pattern of exercise ("habituation"): 1) a 15-18% increase in force at frequencies of stimulation between 60 and 150 Hz and a 15% increase in maximum tetanic tension to 14.9 N, 2) a 3% increase in the maximum rate of rise of tetanic force to 3.4% of maximum tetanic tension per millisecond, 3) an increase in fatigability expressed as a smaller fatigue index in active rats (33%) than in controls (58%), 4) a decrease of 4% in the percentage of type IIa muscle fibers, and 5) an increase of 6% in the percentage of type II fibers that could not be classified with certainty as IIa or IIb.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Peak absolute force, specific tension (peak absolute force per cross-sectional area), cross-sectional area, maximal unloaded shortening velocity (Vo; determined by the slack test), and myosin heavy chain (MHC) isoform compositions were determined in 124 single skeletal fibers from the soleus muscle of 12-, 24-, 30-, 36-, and 37-mo-old Fischer 344 Brown Norway F1 Hybrid rats. All fibers expressed the type I MHC isoform. The mean Vo remained unchanged from 12 to 24 mo but did decrease significantly from the 24- to 30-mo time period (from 1.71 +/- 0.13 to 0.85 +/- 0.09 fiber lengths/s). Fiber cross-sectional area remained constant until 36 mo of age, at which time there was a 20% decrease from the values at 12 mo of age (from 5,558 +/- 232 to 4,339 +/- 280 micrometer2). A significant decrease in peak absolute force of single fibers occurred between 12 and 24 mo of age (from 51 +/- 2 x 10(-5) to 35 +/- 2 x 10(-5) N) and then remained constant until 36 mo, when another 43% decrease occurred. Like peak absolute force, the specific tension decreased significantly between 12 and 24 mo by 20%, and another 32% decline was observed at 37 mo. Thus, by 24 mo, there was a dissociation between the loss of fiber cross-sectional area and force. The results suggest time-specific changes of the contractile properties with aging that are independent of each other. Underlying mechanisms responsible for the time-dependent and contractile property-specific changes are unknown. Age-related changes in the molecular dynamics of myosin may be the underlying mechanism for altered force production. The presence of more than one beta/slow MHC isoform may be the mechanism for the altered Vo with age.  相似文献   

12.
目的:探讨去负荷后小鼠比目鱼肌的收缩特性与骨骼肌纤维类型转化之间的关系。方法:采用离体肌肉灌流技术和电刺激方法,在小鼠后肢去负荷28 d引起骨骼肌萎缩后,观察比目鱼肌单收缩、强直收缩能力和肌疲劳指标等收缩特性的改变,同时利用组织免疫荧光染色和实时定量聚合酶链式反应(real-time PCR)等技术检测去负荷后比目鱼肌快慢肌纤维组成和纤维类型转化的变化。结果:去负荷28 d后,小鼠比目鱼肌单收缩力、强直收缩能力和疲劳指数(fatigue index)均有显著性下降,同时伴有快肌纤维亚型的增加和慢肌纤维亚型的减少。结论:去负荷28 d后小鼠比目鱼肌收缩特性的改变和快慢肌纤维类型的转化有关。  相似文献   

13.
Neuromuscular function in adult male rats was studied following 30 days of exposure to a 60-Hz electric field at 100 kV/m (unperturbed field strength). Isometric force transducers were attached to the tendons of the plantaris (predominantly fast twitch), and soleus (predominantly slow twitch) muscles in the urethan-anesthetized rat. Square-wave stimuli were delivered to the distal stump of the transected sciatic nerve. Several measurements were used to characterize neuromuscular function, including twitch characteristics, chronaxie, tetanic and posttetanic potentiation, and fatigue and recovery. The results from three independent series of experiments are reported. Only recovery from fatigue in slow-twitch muscles was consistently and significantly affected (enhanced) by electrifield exposure. This effect does not appear to be mediated by field-induced changes in either neuromuscular transmission, or in the contractile mechanism itself. It is suggested that the effect may be mediated secondary to an effect on mechanisms regulating muscle blood flow or metabolism.  相似文献   

14.
Chronic hypoxia alters respiratory muscle force and fatigue, effects that could be attributed to hypoxia and/or increased activation due to hyperventilation. We hypothesized that chronic hypoxia is associated with phenotypic change in non-respiratory muscles and therefore we tested the hypothesis that chronic hypobaric hypoxia increases limb muscle force and fatigue. Adult male Wistar rats were exposed to normoxia or hypobaric hypoxia (PB=450 mm Hg) for 6 weeks. At the end of the treatment period, soleus (SOL) and extensor digitorum longus (EDL) muscles were removed under pentobarbitone anaesthesia and strips were mounted for isometric force determination in Krebs solution in standard water-jacketed organ baths at 25 °C. Isometric twitch and tetanic force, contractile kinetics, force-frequency relationship and fatigue characteristics were determined in response to electrical field stimulation. Chronic hypoxia increased specific force in SOL and EDL compared to age-matched normoxic controls. Furthermore, chronic hypoxia decreased endurance in both limb muscles. We conclude that hypoxia elicits functional plasticity in limb muscles perhaps due to oxidative stress. Our results may have implications for respiratory disorders that are characterized by prolonged hypoxia such as chronic obstructive pulmonary disease (COPD).  相似文献   

15.
This investigation examined the effects of hypokinesia/hypodynamia (H/H) on fatigability and contractile properties of rat soleus (S) and gastrocnemius (G) muscles. Whole-body suspension for 1 wk was used to eliminate hindlimb load-bearing functions and simultaneously permit voluntary isotonic contractions. Train stimulations (45/min, 16 min) resulted in significantly (P less than 0.05) faster rates of fatigue to lower asymptotes in G from H/H rats. Fatigue in the S was minimal at this stimulation frequency and differences between H/H and control animals were not significant. Contractile properties (twitch and tetanic) were measured before and after train stimulations. H/H suspension resulted in an increased twitch tension in G. However, H/H did not change train or tetanic tensions per gram or other G contractile properties. Peak twitch, train, and tetanic tensions, time to peak tension, one-half relaxation time, and twitch and tetanic peak rates of tension development and decline were unchanged by H/H in S muscles. These results indicate that 1 wk of H/H-induced muscle atrophy significantly increases fatigability in G but does not effect contractile properties of fast-twitch (G) or slow-twitch (S) muscles.  相似文献   

16.
Diabetes induces changes in the structural, biochemical, electrical, and contractile properties of skeletal muscles. Neuropeptide Y (NPY) administered locally can induce angiogenesis in a rat ischemic limb model and restore the contractile function of the ischemic muscle. The effects of NPY on the contractile characteristics of limb skeletal muscles were examined in streptozotocin-induced diabetic rats. Rats were treated with sham pellets (control groups) or NPY-containing pellets (1 mg of NPY/pellet, 14 days releasing time) administered locally to the rat hind limb 2 months after induction of diabetes. Contractile properties and fatigability of the slow-twitch soleus and fast-twitch gastrocnemius medials muscle were compared in control (sham), control NPY, diabetic (sham), and diabetic NPY groups. In order to induce fatigue trains of repetitive tetanic stimulation were used (600 ms/1 s simulation-rest cycle per train, 112 trains at an 85-Hz fusion frequency). Two months of untreated diabetes significantly prolonged soleus contraction and slowed its relaxation, but had minimal effects on soleus tension. NPY ameliorated the diabetic effects on soleus speed-related contractile properties, restoring its contraction and relaxation times. Diabetes significantly reduced gastrocnemius medials tetanic tension, leaving its contractile characteristics mostly unaffected. NPY partially restored gastrocnemius tetanic tension production capacity. Diabetes significantly increased fatigability of both muscles, which was partially restored by NPY, as evidenced by restored endurance of soleus muscle. The results suggest that NPY administered locally tends to normalize muscle performance and improve fatigue resistance of skeletal muscles in streptozotocin diabetes. Further examination is needed to establish the mechanisms of local NPY action on muscle contractile properties in streptozotocin-induced diabetes.  相似文献   

17.
The 24 h recovery pattern of contractile properties of the triceps surae muscle, following a period of muscle fatigue, was compared in physically active young (25 years, n = 10) and elderly (66 years, n = 7) men. The fatigue test protocol consisted of 10 min of intermittent submaximal 20 Hz tetani. The maximal twitch (Pt) and tetanic force at 3 frequencies (10, 20 and 50 Hz) were determined at baseline and at 15 min, 1, 4 and 24 h after fatiguing the muscle. Maximal voluntary contraction (MVC) and vertical jump (MVJ) were also assessed. The loss of force during the fatigue test was not significantly different between the young (18 +/- 13%) and elderly (22 +/- 15%). Both groups showed similar and significant reductions of Pt (15%), tetanic force (10 to 35%) and rate of force development (dp/dt) (20%) 15 min and 1 h into recovery. The loss of force was greater at the lower stimulation frequencies of 10 and 20 Hz. Time-to-peak tension was unchanged from baseline during recovery in either group. The average rate of relaxation of twitch force (-dPt/dt) was decreased (p less than 0.05) and half-relaxation time significantly increased at 15 min and 1 h in the elderly but not the young. The findings indicate that after fatiguing contractions, elderly muscle demonstrates a slower return to resting levels of the rate and time course of twitch relaxation compared to the young.  相似文献   

18.
The purpose of the current study was to examine IGFBP-3, -4, and -5 mRNA and protein expression levels as a function of muscle type, age, and regrowth from an immobilization-induced atrophy in Fischer 344 x Brown Norway rats. IGFBP-3 mRNA expression in the 4-mo-old animals was significantly higher in the red and white portions of the gastrocnemius muscle compared with the soleus muscle. However, there were no significant differences in IGFBP-3 mRNA expression among any of the muscle groups in the 30-mo-old animals. There were no significant differences in IGFBP-5 mRNA expression in any of the muscle groups, whereas in the 30-mo-old animals there was significantly less IGFBP-5 mRNA expression in the white gastrocnemius compared with the red gastrocnemius muscles. Although IGFBP-3 and -5 proteins were detected in the type I soleus muscle with Western blot analyses, no detection was observed in the type II red and white portions of the gastrocnemius muscle. Aging from adult (18 mo) to old animals (30 mo) was associated with decreases in IGFBP-3 mRNA and protein and IGFBP-5 protein only in the soleus muscle. After 10 days of recovery from 10 days of hindlimb immobilization, IGFBP-3 mRNA and protein increased in soleus muscles from young (4-mo) rats; however, only IGFBP-3 protein increased in the old (30-mo) rats. Whereas there were no changes in IGFBP-5 mRNA expression during recovery, IGFBP-5 protein in the 10-day-recovery soleus muscle did increase in the young, but not in the old, rats. Because one of the functions of IGFBPs is to modulate IGF-I action on muscle size and phenotype, it is hypothesized that IGFBP-3 and -5 proteins may have potential modulatory roles in type I fiber-dominated muscles, aging, and regrowth from atrophy.  相似文献   

19.
The force produced by cat muscles over time with two stimuli separated by a short interval is approximately three times that produced by a twitch of cat muscles. This facilitation of force production by a second stimulus involves both increases in magnitude and duration of the contraction. Increased magnitude is relatively more important in the fast-twitch plantaris muscle, whereas increased duration is more important in the slow-twitch soleus muscle. The facilitation decays in an approximately exponential manner with the interval between stimuli, having a time constant between one and two times the twitch contraction time in different muscles. If a third stimulus is added, the greatest facilitation is seen at intervals longer than the twitch contraction time. The drug Dantrolene, which specifically reduces Ca++ release from the sarcoplasmic reticulum, eliminates the delayed peak in facilitation with three stimuli. Associated with the increases in force with one or more stimuli are increases in muscle stiffness, which can be measured with small, brief stretches and releases that do not alter the time- course of contraction. The stiffness of soleus muscle reaches a peak after the peak in force. The increasing stiffness of the muscle can considerably facilitate transmission of force generated internally, in addition to any facilitation arising from Ca++-release mechanisms.  相似文献   

20.
Diaphragm atrophy and weakness in cortisone-treated rats   总被引:3,自引:0,他引:3  
Despite frequent therapeutic use, the potential of corticosteroids to produce respiratory muscle myopathy is unknown. We studied effects of chronic steroid treatment on diaphragm mass and function. Eleven Sprague-Dawley rats were treated with cortisone acetate (100 mg.kg-1.day-1 im) for 10 days. Controls (injected with vehicle) included 11 freely eating rats and 11 animals pair fed to match food intake of cortisone rats. Steroid treatment depressed body weight 30% compared with controls. Mass of diaphragm, gastrocnemius, and extensor digitorum longus showed significant atrophy (30%); heart and soleus were unaffected. Isometric contractile properties of costal diaphragm strips were studied in vitro using direct stimulation. The force-frequency relationship was markedly depressed by steroid treatment, both at low and high frequencies. However, force developed per unit cross-sectional area was similar among all three groups, as were twitch characteristics. When stimulated every minute, forces developed by control strips fell progressively, whereas the forces of cortisone-treated strips remained unchanged. When stimulated every 5 s, the fall in force was not different between groups. We conclude that cortisone weakened the diaphragm by decreasing muscle mass but made the diaphragm more resistant to one form of fatigue in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号