首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A lectin was isolated from fruiting bodies of Agrocybe cylindracea by two ion-exchange chromatographies and gel filtration on Toyopearl HW55F. The lectin was homogeneous on polyacrylamide gel electrophoresis and its molecular mass was determined to be 30 000 by gel filtration, and 15 000 by sodium dodecylsulfate polyacrylamide gel electrophoresis, signifying a dimeric protein. Its carbohydrate-binding specificity was investigated both by sugar-hapten inhibition of hemagglutination and by enzyme-linked immunosorbent assay. The inhibition tests showed the affinity of the lectin to be weakly directed toward sialic acid and lactose, and the enhanced affinity toward trisaccharides containing the NeuAcα2,3Galβ-structure. Importantly, the lectin strongly interacted with glycoconjugates containing NeuAcα2,3Galβ1,3GlcNAc-/GalNAc sequences. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
A new galactose-specific lectin was purified from seeds of a Caesalpinoideae plant, Bauhinia variegata, by affinity chromatography on lactose-agarose. Protein extracts haemagglutinated rabbit and human erythrocytes (native and treated with proteolytic enzymes), showing preference for rabbit blood treated with papain and trypsin. Among various carbohydrates tested, the lectin was best inhibited by D-galactose and its derivatives, especially lactose. SDS-PAGE showed that the lectin, named BVL, has a pattern similar to other lectins isolated from the same genus, Bauhinia purpurea agglutinin (BPA). The molecular mass of BVL subunit is 32 871 Da, determined by MALDI-TOF spectrometry. DNA extracted from B. variegata young leaves and primers designed according to the B. purpurea lectin were used to generate specific fragments which were cloned and sequenced, revealing two distinct isoforms. The bvl gene sequence comprised an open reading frame of 876 base pairs which encodes a protein of 291 amino acids. The protein carried a putative signal peptide. The mature protein was predicted to have 263 amino acid residues and 28 963 Da in size.  相似文献   

3.
The effect of chemical modification of amino acid residues essential for sugar binding in the α-D-galactoside specific jack fruit (Artocarpus integrifolia) seed lectin and the protection of the residues by specific sugar from modification were studied. Citraconylation or maleylation of 75 % of its lysyl residues or acetylation of 70 % of the tyrosyl residues completely abolished sugar binding and agglutination without dissociation of subunits. 1-O-methyl α-D-galactoside could protect its essential lysyl and tyrosyl groups from modification. Tryptophan could not be detected in the protein. Difference absorption spectra on binding of the above sugar confirmed the role of tyrosine residues and showed an association constantK = 0.4 × 103 M−1. Data suggests that the lectin could be immobilized without any loss of sugar binding activity  相似文献   

4.
A lectin present in seeds of Clitoria ternatea agglutinated trypsin-treated human B erythrocytes. The sugar specificity assay indicated that lectin belongs to Gal/Gal NAc-specific group. Hence the lectin, designated C. ternatea agglutinin (CTA), was purified by the combination of acetic acid precipitation, salt fractionation and affinity chromatography. HPLC gel filtration, SDS-polyacrylamide gel electrophoresis and mass spectrometry indicated that the native lectin is composed of two identical subunits of molecular weight 34.7 kDa associated by non covalent bonds. The N-terminal sequence of CTA shared homology with Glycine max and Pisum sativum. Complete sequence was also found to be homologous to S-64 protein of Glycine max, suggesting that CTA probably exhibits both hemagglutination and probably sugar uptake activity. The carbohydrate binding specificity of the lectin was investigated by quantitative turbidity measurements, and percent inhibition assays. Based on these assays, we conclude that CTA binds β-d-galactosides, and also may has an extended specificity towards non-reducing terminal Neu5Acα2,6Gal.  相似文献   

5.
Crude extract from the sponge Cinachyrella apion showed cross-reactivity with the polyclonal antibody IgG anti-CvL (Cliona varians lectin) and also a strong haemagglutinating activity towards human erythrocytes of all ABO groups. Thus, it was submitted to acetone fractionation, IgG anti-deglycosylated CvL Sepharose affinity chromatography, and Fast Protein Liquid Chromatography (FPLC-AKTA Purifier) gel filtration on a Superose 6 10/300 column to purify a novel lectin. C. apion lectin (CaL) agglutinated all types of human erythrocytes with preference for papainized type A erythrocytes. The haemagglutinating activity is independent of Ca2+, Mg2+ and Mn2+ ions, and it was strongly inhibited by the disaccharide lactose, up to a minimum concentration of 6.25 mM. CaL molecular mass, determined by FPLC-gel filtration on a Superose 12 10/300 column and SDS gel electrophoresis, was approximately 124 kDa, consisting of eight subunits of 15.5 kDa, assembled by hydrophobic interactions. The lectin was heat-stable between 0 and 60 °C and pH-stable. The N-terminal amino acid sequence of CaL was also determined and a blast search on amino acid sequences revealed that the protein showed similarity only with a silicatein. Leishmania chagasi promastigotes were agglutinated by CaL and this activity was abolished by lactose, indicating that lactose receptors could be presented in this parasite stage. These findings are indicative of the potential biotechnological application of CaL as diagnostic of pathogenic protozoa.  相似文献   

6.
We examined the expression of human cyclooxygenase-1 (COX-1) in Drososphila melanogaster S2 (S2) cells transformed with cDNAs encoding β1,4-galactosyltransferase (GalT) and Galβ1,4-GlcNAc α2,6-sialyltransferase (ST). Southern blot analysis indicated that multiple copies of the glycosyltransferases genes were integrated into the S2 cell genome. A lectin blot analysis also indicated that recombinant COX-1 from S2COX-1/GalT-ST cells contained the glycan residues of β1,4-linked galactose and α2,6-linked sialic acid. The specific peroxidase activity of recombinant sialylated COX-1 from S2COX-1/GalT-ST cells was 41,250 U mg−1, indicating an increase of approximately 22% compared with a non-sialylated control (33,850 U mg−1) from S2COX-1 cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
A lectin was isolated from the saline extract of Erythrina speciosa seeds by affinity chromatography on lactose-Sepharose. The lectin content was about 265 mg/100g dry flour. E. speciosa seed lectin (EspecL) agglutinated all human RBC types, showing no human blood group specificity; however a slight preference toward the O blood group was evident. The lectin also agglutinated rabbit, sheep, and mouse blood cells and showed no effect on horse erythrocytes. Lactose was the most potent inhibitor of EspecL hemagglutinating activity (minimal inhibitory concentration (MIC)=0.25 mM) followed by N-acetyllactosamine, MIC=0.5mM, and then p-nitrophenyl alpha-galactopyranoside, MIC=2 mM. The lectin was a glycoprotein with a neutral carbohydrate content of 5.5% and had two pI values of 5.8 and 6.1 and E(1%)(1 cm) of 14.5. The native molecular mass of the lectin detected by hydrodynamic light scattering was 58 kDa and when examined by mass spectroscopy and SDS-PAGE it was found to be composed of two identical subunits of molecular mass of 27.6 kDa. The amino acid composition of the lectin revealed that it was rich in acidic and hydroxyl amino acids, contained a lesser amount of methionine, and totally lacked cysteine. The N-terminal of the lectin shared major similarities with other reported Erythrina lectins. The lectin was a metaloprotein that needed both Ca(2+) and Mn(2+) ions for its activity. Removal of these metals by EDTA rendered the lectin inactive whereas their addition restored the activity. EspecL was acidic pH sensitive and totally lost its activity when incubated with all pH values between pH 3 and pH 6. Above pH 6 and to pH 9.6 there was no effect on the lectin activity. At 65 degrees C for more than 90 min the lectin was fairly stable; however, when heated at 70 degrees C for 10 min it lost more than 80% of its original activity and was totally inactivated at 80 degrees C for less than 10 min. Fluorescence studies of EspecL indicated that tryptophan residues were present in a highly hydrophobic environment, and binding of lactose to EspecL neither quenched tryptophan fluorescence nor altered lambda(max) position. Treating purified EspecL with NBS an affinity-modifying reagent specific for tryptophan totally inactivated the lectin with total modification of three tryptophan residues. Of these residues only the third modified residue seemed to play a crucial role in the lectin activity. Addition of lactose to the assay medium did not provide protection against NBS modification which indicated that tryptophan might not be directly involved in the binding of haptenic sugar D-galactose. Modification of tyrosine with N-acetylimidazole led to a 50% drop in EspecL activity with concomitant acetylation of six tyrosine residues. The secondary structure of EspecL as studied by circular dichroism was found to be a typical beta-pleated-sheet structure which is comparable to the CD structure of Erythrina corallodendron lectin. Binding of lactose did not alter the EspecL secondary structure as revealed by CD examination.  相似文献   

9.
Summary A quantitative evaluation of lectin binding to adult rat hepatocyte cell surfaces was done using cells isolated by two different collagenase perfusion methodologies and cultured as monolayers with two different tissue culture media formulations (protocol I vs. protocol II). The presence of α-D-mannosyl and α-D-glucosyl groups was detected by the binding of Concanavalin A (Con A), Lens culinaris agglutinin (LCA), and Pisum sativum agglutinin (PSA) to freshly isolated cells. Furthermore, β-D-galactose [Ricinus communis agglutinin (RCA)] and sialic acid residues [wheat germ (WGA)] were also found. Protocols I and II served as models for evaluation of: a) the stripping effect of collagenase separation procedures, b) the restoration in culture of collagenase-stripped sugar residues, c) the effect of the culture environment on cell viability [as measured by lactic acid dehydrogenase (LDH) leakage] and the protein content of hepatocytes, and d) the presence of cell surface sugar residues as a function of culture duration. The ultrastructural morphology of freshly isolated and cultured hepatocytes was also evaluated. These studies indicated that a decline in lectin binding invariably occurred earlier than a massive leakage of LDH and a decrease in the protein content of the cells in culture. Ultrastructurally, autophagocytosis was an early phenomenon in cells isolated and cultured by protocol I, which was also inferior to protocol II regarding the preservation of hepatocyte glycocalyces. Sugar residues lost due to the collagenase-stripping effect were restored, as shown by lectin binding, within the first 24 h of culture. This stripping effect was confirmed by quantitative evaluations of lectin binding to hepatocytes in culture after an incubation with collagenase. This study shows that the binding of peroxidase-labeled lectins is a useful tool for quantitative evaluation of the sugar composition of hepatocyte cultures. This study was supported by grant I-ROI-AM 26520 from the National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, Bethesda, MD, and by W. R. Grace Corporation.  相似文献   

10.
Lectins are carbohydrate-binding proteins present in a wide variety of plants and animals, which serve various important physiological functions. A soluble β-galactoside binding lectin has been isolated and purified to homogeneity from buffalo brain using ammonium sulphate precipitation (40–70%) and gel permeation chromatography on Sephadex G50–80 column. The molecular weight of buffalo brain lectin (BBL) as determined by SDS-PAGE under reducing and non-reducing conditions was 14.2 kDa, however, with gel filtration it was 28.5 kDa, revealing the dimeric form of protein. The neutral sugar content of the soluble lectin was estimated to be 3.3%. The BBL showed highest affinity for lactose and other sugar moieties in glycosidic form, suggesting it to be a β-galactoside binding lectin. The association constant for lactose binding as evidenced by Scatchard analysis was 6.6 × 103 M−1 showing two carbohydrate binding sites per lectin molecule. A total inhibition of lectin activity was observed by denaturants like guanidine HCl, thiourea and urea at 6 M concentration. The treatment of BBL with oxidizing agent destroyed its agglutination activity, abolished its fluorescence, and shifted its UV absorption maxima from 282 to 250 nm. The effect of H2O2 was greatly prevented by lactose indicating that BBL is more stable in the presence of its specific ligand. The purified lectin was investigated for its brain cell aggregation properties by testing its ability to agglutinate cells isolated from buffalo and goat brains. Rate of aggregation of buffalo brain cells by purified protein was more than the goat brain cells. The data from above study suggests that the isolated lectin may belong to the galectin-1 family but is glycosylated unlike those purified till date.  相似文献   

11.
The galactose-binding lectin from the seeds of the jequirity plant (Abrus precatorius) was subjected to various chemical modifications in order to detect the amino acid residues involved in its binding activity. Modification of lysine, tyrosine, arginine, histidine, glutamic acid and aspartic acid residues did not affect the carbohydrate-binding activity of the agglutinin. However, modification of tryptophan residues carried out in native and denaturing conditions with N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide led to a complete loss of its carbohydrate-binding activity. Under denaturing conditions 30 tryptophan residues/molecule were modified by both reagents, whereas only 16 and 18 residues/molecule were available for modification by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide respectively under native conditions. The relative loss in haemagglutinating activity after the modification of tryptophan residues indicates that two residues/molecule are required for the carbohydrate-binding activity of the agglutinin. A partial protection was observed in the presence of saturating concentrations of lactose (0.15 M). The decrease in fluorescence intensity of Abrus agglutinin on modification of tryptophan residues is linear in the absence of lactose and shows a biphasic pattern in the presence of lactose, indicating that tryptophan residues go from a similar to a different molecular environment on saccharide binding. The secondary structure of the protein remains practically unchanged upon modification of tryptophan residues, as indicated by c.d. and immunodiffusion studies, confirming that the loss in activity is due to modification only.  相似文献   

12.
T/Tn specificity of Artocarpus lakoocha agglutinin (ALA), isolated from the seeds of A. lakoocha (Moraceae) fruit and a heterodimer (16 kD and 12 kD) of molecular mass 28 kD, was further confirmed by SPR analysis using T/Tn glycan containing mammalian glycoproteins. N-terminal amino acid sequence analysis of ALA showed homology at 15, 19–21, 24–27, and 29 residues with other lectin members of Moraceae family viz., Artocarpus integrifolia (jacalin) lectin, Artocarpus hirsuta lectin, and Maclura pomifera agglutinin. It is mitogenic to human PBMC and the maximum proliferation was observed at 1 ng/ml. It showed an antiproliferative effect on leukemic cells, with the highest effect toward Jurkat cells (IC50 13.15 ng/ml). Synthesized CdS quantum dot-ALA nanoconjugate was employed to detect the expression of T/Tn glycans on Jurkat, U937, and K562 leukemic cells surfaces as well as normal lymphocytes by fluorescence microscopy. No green fluorescence was observed with normal lymphocytes indicating that T/Tn determinants, which are recognized as human tumor associated structures were cryptic on normal lymphocyte surfaces, whereas intense green fluorescent dots appeared during imaging of leukemic cells, where such determinants were present in unmasked form. The above results indicated that QD-ALA nanoconjugate is an efficient fluorescent marker for identification of leukemic cell lines that gives rise to high quality images.  相似文献   

13.
A lectin present in seeds of Trigonella foenumgraecum was isolated and purified by acid precipitation, salt fractionation, and affinity chromatography on mannan cross-linked agarose. SDS-PAGE revealed a single band corresponding to a molecular weight of 27,350 daltons. The lectin agglutinated trypsin-treated rat erythrocytes. Sugar specificity as determined by hemagglutination inhibition assay indicated that the lectin belongs to a glucose/mannose-specific group. The reaction of the lectin with glycoprotein was affected by pH changes. The carbohydrate binding specificity of the lectin was investigated by turbidity and activity measurements. As the lectin belongs to the Leguminoceae family, the specificity of the lectin for glucose/mannose renders it a valuable tool for Rhizobium-legume symbiosis. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 1, pp. 52–57.  相似文献   

14.
An endoparasitoid wasp, Cotesia plutellae, induces immunosuppression of the host diamondback moth, Plutella xylostella. To identify an immunosuppressive factor, the parasitized hemolymph of P. xylostella was separated into plasma and hemocyte fractions. When nonparasitized hemocytes were overlaid with parasitized plasma, they showed significant reduction in bacterial binding efficacy. Here, we considered a viral lectin previously known in other Cotesia species as a humoral immunosuppressive candidate in C. plutellae parasitization. Based on consensus regions of the viral lectins, the corresponding lectin gene was cloned from P. xylostella parasitized by C. plutellae. Its cDNA is 674 bp long and encodes 157 amino acid residues containing a signal peptide (15 residues) and one carbohydrate recognition domain. Open reading frame is divided by one intron (156 bp) in its genomic DNA. Amino acid sequence shares 80% homology with that of C. ruficrus bracovirus lectin and is classified into C-type lectin. Southern hybridization analysis indicated that the cloned lectin gene was located at C. plutellae bracovirus (CpBV) genome. Both real-time quantitative RT-PCR and immunoblotting assays indicated that CpBV-lectin showed early expression during the parasitization. A recombinant CpBV-lectin was expressed in a bacterial system and the purified protein significantly inhibited the association between bacteria and hemocytes of nonparasitized P. xylostella. In the parasitized P. xylostella, CpBV-lectin was detected on the surface of parasitoid eggs after 24 h parasitization by its specific immunostaining. The 24 h old eggs were not encapsulated in vitro by hemocytes of P. xylostella, compared to newly laid parasitoid eggs showing no CpBV-lectin detectable and easily encapsulated. These results support an existence of a polydnaviral lectin family among Cotesia-associated bracovirus and propose its immunosuppressive function.  相似文献   

15.
Lectin activity was found in tarsometatarsal skin of chick embryo. It was specific for β-linked galactosyl residues and required a thiol-reducing agent for hemagglutination activity. The lectin was extracted from dermis and epidermis (skin) with lactose and purified to apparent homogeneity by affinity chromatography on asialofetuin-Sepharose. Examination of their biochemical properties showed that although dermis and epidermis develop from different origins, they contain the same lectin. The apparent subunit Mr of lectin was 14 000 and its isoelectric point was 7.0. Under non-dissociating conditions, the lectin exists mainly as a dimer. Radioimmunoassay showed that this skin-type lectin is present in many tissues including skin, muscle, bone, eye, heart, liver and brain at various developmental stages. A wide distribution and a marked change in its content during development strongly suggest that the lectin might have a fundamental role in cellular function, embryonic development and tissue differentiation.  相似文献   

16.
Isolation and purification of a α-methyl-mannoside specific lectin (SL-I) of peanut was reported earlier [Singh and Das (1994) Glycoconj J 11:282–285]. Native SL-I is a glycoprotein having ∼31 kDa subunit molecular mass and forms dimer. The gene encoding this lectin is identified from a 6-day old peanut root cDNA library by anti-SL-I antibody and N-terminal amino acid sequence homology to the native lectin. Nucleotide sequence derived amino acid sequence of the re-SL-I shows amino acid sequence homology with the N-terminal and tryptic digests’ amino acid sequence of the native SL-I (nSL-I). Presence of a putative glycosylation (QNPS) site and a hydrophobic adenine-binding (VLVSYDANS) site is also identified in SL-I. Homology modeling of the lectin suggests it to be an archetype of legume lectins. It is expressed as a ~30 kDa apoprotein in E. coli and has the carbohydrate specificity and secondary structure identical to its natural counterpart. The lectin SL-I inhibits cytokinin 6-benzylaminopurine (BA)-induced “delayed leaf senescence” and “cotyledon expansion”. Equilibrium dialysis revealed a single high-affinity binding site for adenine (7.6 × 10−6 M) and BA (1.09 × 10−5 M) in the SL-I dimer and thus suggesting that the cytokinin antagonist effect of SL-I is mediated by the direct interaction of SL-I with BA.The nucleotide sequence data reported here are available in the DDBJ/EMBL/GenBank databases under the Accession No. AJ585523  相似文献   

17.
Fibromodulin from bovine articular cartilage has been subjected to lectin affinity chromatography by Sambucus nigra lectin which binds α(2-6)- linked N-acetylneuraminic acid, and the structure of the keratan sulphate in the binding and non-binding fractions examined by keratanase II digestion and subsequent high pH anion exchange chromatography. It has been confirmed that the keratan sulphate chains attached to fibromodulin isolated from bovine articular cartilage may have the chain terminating N-acetylneuraminic acid residue α(2-3)- or α(2-6)-linked to the adjacent galactose residue. Although the abundance of α(2-6)-linked N-acetylneuraminic acid (ca. 22%) is such that this could cap one of the four chains in almost all fibromodulin molecules, it was found that ca. 34% of the fibromodulin proteoglycan molecules from bovine articular cartilage were capped exclusively with α(2-3)-linked N-acetylneuraminic acid. The remainder of the fibromodulin proteoglycans, which bound to the lectin had a mixture of α(2-3)- and α(2-6)-linked N-acetylneuraminic acid capping structures. The keratan sulphates attached to fibromodulin molecules capped exclusively with α(2-3)- linked N-acetylneuraminic acid were found to have a higher level of galactose sulphation than those from fibromodulin with both α(2-3)- and α(2-6)-linked N-acetylneuraminic acid caps, which bound to the Sambucus nigra lectin. In addition, both pools contained chains of similar length (ca. 8–9 disaccharides). Both also contained α(1-3)-linked fucose, showing that this feature does not co-distribute with α(2-6)-linked N-acetylneuraminic acid, although these two features are present only in mature articular cartilage. These data show that there are discrete populations of fibromodulin within articular cartilage, which may have differing impacts upon tissue processes.  相似文献   

18.
Receptor cell responses in the largest labellar (LL) and tarsal (D) taste hairs of the housefly Musca domestica were investigated electrophysiologically using the tip-recording technique. In LL hairs, test series with lactose in concentrations of 12.5–400 mmol · l−1 yielded a threshold concentration around 12 mmol · l−1 and a calculated concentration eliciting half-maximal response of around 40 mmol · l−1, the maximal response varying between 18 and 30 impulses/300 ms. D hairs are more sensitive towards lactose, indicated by a slightly lower threshold and a by 60% higher response to 400 mmol · l−1 lactose. The high variation in the relative stimulating effectiveness of lactose and sucrose and experiments with sugar mixtures imply that these sugars bind to different receptor sites without noticeable cross affinity. A comparison of the concentration response characteristics for sucrose and lactose in LL and D hairs suggests that sucrose can combine with more than one site type, expressed in different proportions in both hair types. Results obtained with p-nitrophenyl-β-galactoside as stimulus indicate that a β-galactoside link is not sufficient for a substance to interact specifically with the lactose binding site. The exceptional lactose sensitivity of the sugar cell in M. domestica is discussed in the context of food acquirement and digestion. Accepted: 14 November 1997  相似文献   

19.
cDNA clones encoding frutalin, the α-d-galactose-binding lectin expressed in breadfruit seeds (Artocarpus incisa), were isolated and sequenced. The deduced amino acid sequences indicated that frutalin may be encoded by a family of genes. The NCBI database searches revealed that the frutalin sequence is highly homologous with jacalin and mornigaG sequences. Frutalin cDNA was re-amplified and cloned into the commercial expression vector pET-25b(+) for frutalin production in Escherichia coli. An experimental factorial design was employed to maximise the soluble expression of the recombinant lectin. The results indicated that temperature, time of induction, concentration of IPTG and the interaction between the concentration of IPTG and the time of induction had the most significant effects on the soluble expression level of recombinant frutalin. The optimal culture conditions were as follows: induction with 1 mM IPTG at 22°C for 20 h, yielding 16 mg/l of soluble recombinant frutalin. SDS-PAGE and Western blot analysis revealed that recombinant frutalin was successfully expressed by bacteria with the expected molecular weight (17 kDa). These analyses also showed that recombinant frutalin was mainly produced as insoluble protein. Recombinant frutalin produced by bacteria revealed agglutination properties and carbohydrate-binding specificity similar to the native breadfruit lectin.  相似文献   

20.
The ability to utilize lactose is requisite for lactic acid bacteria used as starters in the dairy industry. Modern genetic recombination techniques have facilitated the introduction of the lactose-positive phenotype into bacteria such as Pediococcus species, which traditionally have not been used as dairy starters. This study investigated lactose and galactose uptake along with phospho-β-galactosidase activity in pediococci that had been transformed with a Latococcus lactis lactose plasmid. Lactose-positive transformants, Pediococcus acidilactici SAL and Pediococcus pentosaceus SPL-2, demonstrated an ability to accumulate [14C]lactose at a rate greater than the Lactococcus lactis control. Phospho-β-galactosidase activity was also higher in transformants versus Lactococcus lactis. Studies of [3H]galactose uptake suggested that a wild-type galactose transport system and the introduced lactose phosphotransferase system both functioned in galactose uptake by Pediococcus spp. transformants. Significantly lower levels of free galactose were detected in milk fermented with Lactobacillus helveticus LH100 and SAL or SPL-2 than in milk fermented with a LH100 plus Streptococcus thermophilus TA061 control starter blend. Received: 16 September 1997 /  Received revision: 11 November 1997 / Accepted: 21 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号