首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cardiac fibroblasts are reported to be relatively resistant to stress stimuli compared to cardiac myocytes and fibroblasts of non-cardiac origin. However, the mechanisms that facilitate their survival under conditions of stress remain unclear. We explored the possibility that NF-κB protects cardiac fibroblasts from hypoxia-induced cell death. Further, we examined the expression of the antiapoptotic cIAP-2 and Bcl-2 in hypoxic cardiac fibroblasts, and their possible regulation by NF-κB. Phase contrast microscopy and propidium iodide staining revealed that cardiac fibroblasts are more resistant than pulmonary fibroblasts to hypoxia. Electrophoretic Mobility Shift Assay showed that hypoxia activates NF-κB in cardiac fibroblasts. Supershift assay indicated that the active NF-κB complex is a p65/p50 heterodimer. An I-κB-super-repressor was constructed that prevented NF-κB activation and compromised cell viability under hypoxic but not normoxic conditions. Similar results were obtained with Bay 11-7085, an inhibitor of NF-κB. Western blot analysis showed constitutive levels of Bcl-2 and hypoxic induction of cIAP-2 in these cells. NF-κB inhibition reduced cIAP-2 but not Bcl-2 levels in hypoxic cardiac fibroblasts. The results show for the first time that NF-κB is an important effector of survival in cardiac fibroblasts under hypoxic stress and that regulation of cIAP-2 expression may contribute to its pro-survival role.  相似文献   

3.
Myocardium consists of diverse cell types suggesting a role for cell-cell interaction in maintaining the structural and functional integrity of the heart. Cardiac fibroblasts are the source of extracellular matrix, growth factors and cytokines in the heart and their interactions with cardiac myocytes are recognized. Their effects on biological responses of endothelial cells, however, are vastly unexplored. Proliferation of endothelial cells is an essential stage of angiogenesis and contributes to development of coronary collaterals. This study was designed to evaluate the effect of soluble factors produced by cardiac fibroblasts on endothelial cell proliferation. Human cardiac fibroblast-conditioned medium (CF-CM) caused a significant increase (47%, P < 0.0001) in DNA synthesis in human umbilical vein endothelial cells (HUVEC), as determined by [(3)H]thymidine incorporation. This effect was dependent on de novo protein synthesis and activation of MAP kinases. Consistently, CF-CM induced the expression and activation of ERK2 in HUVEC. The CF-CM from which heparin-binding proteins were removed, had a significantly enhanced stimulatory effect on DNA synthesis in HUVEC compared to that of 'whole CF-CM'. Western analysis showed the presence of VEGF, bFGF, PDGF, TGF-beta(1), fibronectin and thrombospondin-1 in whole CF-CM. The individual immunodepletion of each factor from whole CF-CM showed that all were necessary for full activity of CF-CM. CF-CM caused a significant reversal of hypoxia-induced inhibition of DNA synthesis and enhanced expression of survival-associated protein, Bcl(2), in HUVEC. Together, these data show that cardiac fibroblasts release inhibitory and stimulatory factors, the net effect of which is an enhancement of DNA synthesis in endothelial cells. These results point to the role that cardiac fibroblasts may play in angiogenesis in the heart.  相似文献   

4.
Hypoxic stress induces cardiotrophin-1 expression in cardiac myocytes.   总被引:4,自引:0,他引:4  
Cardiotrophin-1 (CT-1), a novel cytokine that belongs to the interleukin-6 cytokine family, activates gp130 dependent signaling pathway to transduce hypertrophic and cytoprotective signals in cardiac myocytes. To investigate the pathophysiological significance of CT-1 in myocardial disease, the expression of CT-1 was examined after hypoxic stimulation in cardiac myocytes. Highly expressed CT-1 mRNA was observed in embryonic and adult hearts by RNase protection assay. Cardiac myocytes subjected to hypoxic stimulation augmented CT-1 mRNA expression. Although CT-1 mRNA was expressed to a higher extent in non-myocardial cells, the expression was not affected with the stimulation. Conditioned medium from cultured cardiac myocytes presented the ability to tyrosine phosphorylate STAT3 through gp130 and that was further augmented with hypoxic conditioned medium. These results demonstrated for the first time that CT-1 expression is augmented after hypoxic stimulation and hypoxic conditioned medium presented enhanced ability to activate STAT3 in cardiac myocytes. CT-1 might play an important role in the pathogenesis of ischemic heart disease.  相似文献   

5.
6.
Under hypoxic conditions, cells suppress energy-intensive mRNA translation by modulating the mammalian target of rapamycin (mTOR) and pancreatic eIF2alpha kinase (PERK) pathways. Much is known about hypoxic inhibition of mTOR activity; however, the cellular processes activating PERK remain unclear. Since hypoxia is known to increase intracellular reactive oxygen species (ROS), we hypothesized that hypoxic ROS regulate mTOR and PERK to control mRNA translation and cell survival. Our data indicate that although exogenous ROS inhibit mTOR, eIF2alpha, and eEF2, mTOR and eEF2 were largely refractory to ROS generated under moderate hypoxia (0.5% O(2)). In direct contrast, the PERK/eIF2alpha/ATF4 integrated stress response (ISR) was activated by hypoxic ROS and contributed to global protein synthesis inhibition and adaptive ATF4-mediated gene expression. The ISR as well as exogenous growth factors were critical for cell viability during extended hypoxia, since ISR inhibition decreased the viability of cells deprived of O(2) and growth factors. Collectively, our data support an important role for ROS in hypoxic cell survival. Under conditions of moderate hypoxia, ROS induce the ISR, thereby promoting energy and redox homeostasis and enhancing cellular survival.  相似文献   

7.
Ghrelin is a multifunctional peptide that actively protects against cardiovascular ischemic diseases, but the underlying mechanisms are unclear. We used CoCl2 to mimic hypoxic conditions in cardiac H9c2 cells in order to study the mechanism by which ghrelin protects cardiac myocytes against hypoxic injury by regulating the content of intracellular ROS and autophagy levels. Cell apoptosis and necrosis were evaluated by the flow cytometry assay, Hoechst staining, and LDH activity. Cell viability was detected by the WST-1 assay; ROS levels were assessed using DCFH2-DA; and Nox1, catalase and Mn-SOD were assayed by real-time PCR and activity assays. LC3II was measured by Western blot analysis. We observed that CoCl2 induced apoptosis and death of H9c2 cells in a dose- and time-dependent manner. This was characterized by an increase in cell apoptosis, LDH activity, ROS content, Nox1 expression, and autophagy levels and a decrease in cell viability, catalase, and Mn-SOD activities. Ghrelin treatment significantly attenuated CoCl2-induced hypoxic injury by decreasing cell apoptosis, LDH activity, ROS content, and Nox1 expression and increasing cell viability, autophagy levels, catalase, and Mn-SOD mRNA levels and activities. Further experiments revealed that inhibiting autophagy using 3-MA or AMPK pathway with compound C almost abrogated the induction of ghrelin in autophagy. This was associated with a decrease in cell viability and an increase in LDH activity. Our results indicate that ghrelin protected cardiac myocytes against CoCl2-induced hypoxic injury by decreasing Nox1 expression, increasing the expression and activity of endogenous antioxidant enzymes, and inducing protective autophagy in an AMPK-dependent manner.  相似文献   

8.
Incubation of alpha 1-antichymotrypsin-cathepsin G complexes with human lung fibroblasts caused a nearly 5-fold increase in synthesis of the cytokine interleukin-6. In turn, the fibroblast-conditioned medium induced significant synthesis of the acute phase proteins haptoglobin, fibrinogen, and alpha 1-antichymotrypsin in human Hep G2 cells, whereas a mixture of interleukin-1 and conditioned medium was considerably less stimulatory. These data indicate that proteinase-proteinase inhibitor complexes formed between plasma serpins and their target enzymes could play major roles in signaling for acute phase protein synthesis in response to injury.  相似文献   

9.
Summary Neonatal rat cardiac myocytes were isolated and cultured to evaluate the effects of growth factors and inhibitors on proliferation, survival, and functions in a serum-free medium. Insulin and transferrin in MCDB 107 nutrient medium elicited DNA and protein synthesis in cells on a fibronectin-coated culture surface in serum-free medium. Insulin was most effective on both DNA and protein synthesis in serum-free culture conditions. The serum-free, hormone-supplemented medium eliminated the contamination of noncardiac myocytes and supported the long-term survival (over 18 d) of cardiac myocytes. Dexamethasone was required to induce optimal contractility with or without insulin and transferrin. Serum contained both negative and positive effectors of DNA and protein synthesis of the cardiac myocytes. Concentrations of serum (above 5%) inhibited DNA and protein synthesis. Low density lipoprotein (LDL) accounted in part for the inhibitory activity. The serum-free culture system provides a useful model to elucidate the role of hormones, growth factors, and drugs in heart cell regeneration and function.  相似文献   

10.
We have previously demonstrated that cells adapt to hypoxia using different metabolic reprogramming mechanisms depending on metabolism. We now investigate how the different adapting mechanisms affect reactive oxygen species (ROS) levels, and how ROS levels and cellular metabolism are linked. We show that when skin fibroblasts grew under short-term hypoxia (1% oxygen tension) ROS level markedly decreased (-50%) whatever substrate was available to the cells. Indeed, cellular ROS level linearly and directly decreased with oxygen tension. However, these relationships cannot explain the progressive ROS level decrease observed after prolonged cells hypoxia exposure. In glucose-enriched medium reduced mitochondrial mass and greater fragmentation are observed, both clear-cut indications of mitophagy suggesting that this is responsible for cellular ROS level decrease. Otherwise, in glucose-free medium exposure to prolonged hypoxia resulted in only minor mass reduction, but significantly enhanced expression of antioxidant enzymes. Interestingly, cellular ROS levels were lower in glucose-free compared to glucose-enriched medium under either normoxic or hypoxic conditions. Taken together, these findings reveal that in primary human fibroblasts hypoxia induces a decline in ROS and that different metabolism-dependent mechanisms contribute it, besides the major oxygen concentration decrease. In addition, the present data support the notion that metabolisms generating fewer ROS are associated with lower HIF-1α stabilization.  相似文献   

11.
The roles of endothelial nitric oxide synthase (eNOS), and its putative association with protein kinase B (PKB), and inducible nitric oxide synthase (iNOS) are not well characterized in hypoxic cardiac cells and there is a lack of studies that measure nitric oxide (NO) directly. Objective To measure NO production in cardiomyocytes and cardiac microvascular endothelial cells (CMECs) under baseline and hypoxic conditions and to evaluate the expression, regulation and activation of eNOS, iNOS and PKB. The effect of PI3-K/PKB inhibition on NO production and eNOS expression/activation was also investigated. Methods Adult rat cardiomyocytes and rat CMECs were made hypoxic by cell pelleting and low PO2 incubation. Intracellular NO was measured by FACS analysis of DAF-2/DA fluorescence, and eNOS, iNOS and PKB were evaluated by Western blotting or flow cytometry. Upstream PKB inhibition was achieved with wortmannin. Results (1) NO levels increased in both cell types after exposure to hypoxia. (2) In hypoxic CMECs, eNOS was upregulated and activated, no iNOS expression was observed and PKB was activated. (3) In myocytes, hypoxia did not affect eNOS expression, but increased its activation. Activated PKB also increased during hypoxia. FACS analysis showed increased iNOS in hypoxic myocytes. (4) Wortmannin resulted in decreased hypoxia-induced NO production and reduced activated eNOS levels. Conclusions Cardiomyocytes and CMECs show increased NO production during hypoxia. eNOS seems to be the main NOS isoform involved as source of the increased NO generation, although there may be a role for iNOS and other non-eNOS sources of NO in the hypoxic myocytes. Hypoxia-induced PKB and eNOS activation occurred simultaneously in both cell types, and the PI3-K/PKB pathway was associated with hypoxia-induced NO production via eNOS activation.  相似文献   

12.
13.
We have shown that increased production of reactive oxygen species (ROS) was required for ouabain-induced hypertrophy in cultured cardiac myocytes. In the present study we assessed whether long-term exposure of myocytes to nontoxic ROS stress alone is sufficient to induce hypertrophy. A moderate amount of H2O2 was continuously generated in culture media by glucose oxidase. This resulted in a steady increase in intracellular ROS in cultured cardiac myocytes for at least 12 h. Such sustained, but not transient, increase in intracellular ROS at a level comparable to that induced by ouabain was sufficient to stimulate protein synthesis, increase cell size, and change the expression of several hypertrophic marker genes. Like ouabain, glucose oxidase increased intracellular Ca2+ and activated extracellular signal-regulated kinases 1 and 2 (ERK1/2). These effects of glucose oxidase were additive to ouabain-induced cellular changes. Furthermore, glucose oxidase stimulated endocytosis of the plasma membrane Na+/K+-ATPase, resulting in significant inhibition of sodium pump activity. While inhibition of ERK1/2 abolished glucose oxidase-induced increases in protein synthesis, chelating intracellular Ca2+ by BAPTA-AM showed no effect. These results, taken together with our prior observations, suggest that ROS may cross talk with Na+/K+-ATPase, leading to the activation of hypertrophic pathways in cardiac myocytes.  相似文献   

14.
Rapid adaptation to a hypoxic environment is an unanswered question that we are committed to exploring. At present, there is no suitable strategy to achieve rapid hypoxic adaptation. Here, we demonstrate that fasting preconditioning for 72 h reduces tissue injuries and maintains cardiac function, consequently significantly improving the survival rates of rats under extreme hypoxia, and this strategy can be used for rapid hypoxic adaptation. Mechanistically, fasting reduces blood glucose and further suppresses tissue mTOR activity. On the one hand, fasting-induced mTOR inhibition reduces unnecessary ATP consumption and increases ATP reserves under acute hypoxia as a result of decreased protein synthesis and lipogenesis; on the other hand, fasting-induced mTOR inhibition improves mitochondrial oxygen utilization efficiency to ensure ATP production under acute hypoxia, which is due to the significant decrease in ROS generation induced by enhanced mitophagy. Our findings highlight the important role of mTOR in acute hypoxic adaptation, and targeted regulation of mTOR could be a new strategy to improve acute hypoxic tolerance in the body.Subject terms: Autophagy, Metabolism  相似文献   

15.
16.
Lack of pharmacological strategies in clinics restricts the patient prognosis with myocardial ischemia/reperfusion (I/R) injury. The aim of this study was to evaluate the cardioprotection of combined salvianolic acid B (SalB) and ginsenoside Rg1 (Rg1) against myocardial I/R injury and further investigate the underlying mechanism. I/R injury was induced by coronary artery ligation for Wistar male rats and hypoxia/reoxygenation injury was induced on H9c2 cells. Firstly, the best ratio between SalB and Rg1was set as 2:5 based on their effects on heart function detected by hemodynamic measurement. Then SalB-Rg1 (2:5) was found to maintain mitochondrial membrane potential and resist apoptosis and necrosis in H9c2 cell with hypoxia/reoxygenation injury. Companying with same dose of SalB or Rg1 only, SalB-Rg1 showed more significant effects on down-regulation of myocardial infarct size, maintenance of myocardium structure, improvement on cardiac function, decrease of cytokine secretion including TNF-α, IL-1β, RANTES and sVCAM-1. Finally, the SalB-Rg1 improved the viability of cardiac myocytes other than cardiac fibroblasts in rats with I/R injury using flow cytometry. Our results revealed that SalB-Rg1 was a promising strategy to prevent myocardial I/R injury.  相似文献   

17.
Fatty acids are the preferred substrate of ischemic, reperfused myocardium and may account for the decreased cardiac efficiency during aerobic recovery. Neonatal cardiac myocytes in culture respond to hypoxia/serum- and glucose-free medium by a slow decline in ATP which reverses upon oxygenation. This model was employed to examine whether carnitine palmitoyltransferase I (CPT-I) modulates high rates of -oxidation following oxygen deprivation. After 5 h of hypoxia, ATP levels decline to 30% control values and CPT- I activity is significantly stimulated in hypoxic myocytes with no alteration in cellular carnitine content or in the release of the mitochondrial matrix marker, citrate synthase. This stimulation was attributed to an increase in the affinity of hypoxic CPT-I for carnitine, suggesting that the liver CPT-I isoform is more dominant following hypoxia. However, there was no alteration in hypoxic CPT-I inhibition by malonyl-CoA. DNP-etomoxiryl-CoA, a specific inhibitor of the liver CPT-I isoform, uncovered identical Michaelis kinetics of the muscle isoform in control and hypoxic myocytes with activation of the liver isoform. Northern blotting did not reveal any change in the relative abundance of mRNA for the liver vs. the muscle CPT-I isoforms. The tyrosine phosphatase inhibitor, pervanadate, reversed the hypoxia-induced activation of CPT-I and returned the affinity of cardiac CPT-I for carnitine to control. Reoxygenation was also associated with a return of CPT-I activity to control levels. The data demonstrate that CPT-I is activated upon ATP depletion. Lower enzyme activities are present in control and reoxygenated cells where ATP is abundant or when phosphatases are inhibited. This is the first suggestion that phosphorylation may modulate the activity of the liver CPT-I isoform in heart.  相似文献   

18.
This study was designed to determine whether: (1) hypoxia could directly affect ROS production in isolated mitochondria and mitochondrial complex III from pulmonary artery smooth muscle cells (PASMCs) and (2) Rieske iron-sulfur protein in complex III might mediate hypoxic ROS production, leading to hypoxic pulmonary vasoconstriction (HPV). Our data, for the first time, demonstrate that hypoxia significantly enhances ROS production, measured by the standard ROS indicator dichlorodihydrofluorescein/diacetate, in isolated mitochondria from PASMCs. Studies using the newly developed, specific ROS biosensor pHyPer have found that hypoxia increases mitochondrial ROS generation in isolated PASMCs as well. Hypoxic ROS production has also been observed in isolated complex III. Rieske iron-sulfur protein silencing using siRNA abolishes the hypoxic ROS formation in isolated PASM complex III, mitochondria, and cells, whereas Rieske iron-sulfur protein overexpression produces the opposite effect. Rieske iron-sulfur protein silencing inhibits the hypoxic increase in [Ca(2+)](i) in PASMCs and hypoxic vasoconstriction in isolated PAs. These findings together provide novel evidence that mitochondria are the direct hypoxic targets in PASMCs, in which Rieske iron-sulfur protein in complex III may serve as an essential, primary molecule that mediates the hypoxic ROS generation, leading to an increase in intracellular Ca(2+) in PASMCs and HPV.  相似文献   

19.
The effects of catechin, a well-known in vitro antioxidant, on 3T3 Swiss fibroblasts are studied under different conditions of oxidative stress leading to cell proliferation or cytotoxicity. Various levels of reactive oxygen species (ROS), generated extracellularly by the xanthine-xanthine oxidase (X-XO) system, are at the origin of the biphasic effect on DNA synthesis by 3T3 Swiss fibroblasts. The addition of 10?2 U XO/mL, in the absence of exogenous X, catalyzes the production of low levels of $O_2 ^{\dot - } $ and H2O2 in the extracellular medium, which stimulate DNA synthesis and cell division. The increase in the level of ROS, by addition of increasing X concentrations, did not enhance this effect proportionally. On the contrary, high levels of ROS inhibit DNA synthesis, the cytotoxicity induced being proportional to the level of H2O2 generated by the enzyme system. Catechin does not significantly modify DNA synthesis induced by low levels of ROS, but protects in a dose-dependent manner against the cytoxicity of high levels of ROS.  相似文献   

20.
Hypoxia is associated with extracellular matrix remodeling in several inflammatory lung diseases, such as fibrosis, chronic obstructive pulmonary disease, and asthma. In a human cell culture model, we assessed whether extracellular matrix modification by hypoxia and platelet-derived growth factor (PDGF) involves the action of matrix metalloproteinases (MMPs) and thereby affects cell proliferation. Expression of MMP and its activity were assessed by zymography and enzyme-linked immunosorbent assay in human lung fibroblasts and pulmonary vascular smooth muscle cells (VSMCs), and synthesis of soluble collagen type I was assessed by enzyme-linked immunosorbent assay. In both cell types, hypoxia up-regulated the expression of MMP-1, -2, and -9 precursors without subsequent activation. MMP-13 was increased by hypoxia only in fibroblasts. PDGF-BB inhibited the synthesis and secretion of all hypoxia-dependent MMP via Erk1/2 mitogen-activated protein (MAP) kinase activation. Hypoxia and PDGF-BB induced synthesis of soluble collagen type I via Erk1/2 and p38 MAP kinase. Hypoxia-induced cell proliferation was blocked by antibodies to PDGF-BB or by inhibition of Erk1/2 but not by the inhibition of MMP or p38 MAP kinase in fibroblasts. In VSMCs, hypoxia-induced proliferation involved Erk1/2 and p38 MAP kinases and was further increased by fibroblast-conditioned medium or soluble collagen type I via Erk1/2. In conclusion, hypoxia controls tissue remodeling and proliferation in a cell type-specific manner. Furthermore, fibroblasts may affect proliferation of VSMC indirectly by inducing the synthesis of soluble collagen type I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号