首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphoenolpyruvate carboxylase (PEPC) plays a central role in the anaplerotic provision of carbon skeletons for amino acid biosynthesis in leaves of C3 plants. Furthermore, in both C4 and CAM plants photosynthetic isoforms are pivotal for the fixation of atmospheric CO2. Potato PEPC was mutated either by modifications of the N-terminal phosphorylation site or by an exchange of an internal cDNA segment for the homologous sequence of PEPC from the C4 plant Flaveria trinervia. Both modifications resulted in enzymes with lowered sensitivity to malate inhibition and an increased affinity for PEP. These effects were enhanced by a combination of both mutated sequences and pulse labelling with 14CO2 in vivo revealed clearly increased fixation into malate for this genotype. Activity levels correlated well with protein levels of the mutated PEPC. Constitutive overexpression of PEPC carrying both N-terminal and internal modifications strongly diminished plant growth and tuber yield. Metabolite analysis showed that carbon flow was re-directed from soluble sugars and starch to organic acids (malate) and amino acids, which increased four-fold compared with the wild type. The effects on leaf metabolism indicate that the engineered enzyme provides an optimised starting point for the installation of a C4-like photosynthetic pathway in C3 plants.  相似文献   

2.
In order to elucidate the discrete steps in phospho enolpyruvate carboxylase (PEPC) evolution concerning K(m)-PEP and malate tolerance a comparison was made between C3, C3-C4 and C4 species of the dicot genus Flaveria. The PEPCs of this genus are encoded by a gene family comprising three classes: ppcA, ppcB and ppcC [J. Hermans and P. Westhoff (1990) Mol Gen Genet 224:459-468, (1992) Mol Gen Genet 234:275-284]. The ppcA of F trinervia (C4) codes for the C4 PEPC isoform but other plants of the genus contain ppcA orthologues too. The C3 plant F. pringlei showed the lowest levels of ppcA PEPC mRNA followed by F. pubescens (C3-C4) while the C4-like plant F. brownii displayed RNA amounts close to the C4 species F. trinervia. In contrast to the similar expression profiles of F. brownii (C4-like) and F. trinervia (C4) the PEPC amino acid sequence of F. brownii was more similar to the C3 and C3-C4 ppcA PEPCs than to the C4 PEPC. Similarly, the C3, C3-C4 and C4-like ppcA PEPCs showed almost identical PEP saturation kinetics when activated by glucose-6-phosphate ( K(m)-PEP: 17-20 microM) while the K(m)-PEP for the C4 PEPC was determined to be 53 microM. However, without activation the ppcA PEPCs of F. pubescens and F. brownii displayed C3-C4 intermediate values. A similar picture was obtained when the malate sensitivities were compared. In the non-activated state the F. trinervia (C4) enzyme was 10 times more tolerant to malate than the F. pringlei counterpart. The ppcA enzymes of F. pubescens (C3-C4) and F. brownii (C4-like) displayed intermediate values. In contrast, the inclusion of 5 mM glucose-6-phosphate in the reaction mixture changed the order totally. Interestingly, the activation rendered the C4 enzyme about 50% less tolerant to malate than the C3 PEPC. The activation had a positive effect on malate tolerance of the F. pubescens (C3-C4) PEPC while the ppcA PEPC of F. brownii (C4-like) was almost unaffected.  相似文献   

3.
The phosphoenolpyruvate carboxylase (PEPC) isozyme involved in C4 photosynthesis is known to undergo reversible regulatory phosphorylation under illuminated conditions, thereby decreasing the enzyme's sensitivity to its feedback inhibitor, L-malate. For the direct assay of this phosphorylation in intact maize leaves, phosphorylation state-specific antibodies to the C4-form PEPC were prepared. The antibodies were raised in rabbits against a synthetic phosphorylated 15-mer peptide with a sequence corresponding to that flanking the specific site of regulatory phosphorylation (Ser15) and subsequently purified by affinity-chromatography. Specificity of the resulting antibodies to the C4-form PEPC phosphorylated at Ser15 was established on the basis of several criteria. The antibodies did not react with the recombinant root-form of maize PEPC phosphorylated in vitro. By the use of these antibodies, the changes in PEPC phosphorylation state were semi-quantitatively monitored under several physiological conditions. When the changes in PEPC phosphorylation were monitored during the entire day with mature (13-week-old) maize plants grown in the field, phosphorylation started before dawn, reached a maximum by mid-morning, and then decreased before sunset. At midnight dephosphorylation was almost complete. The results suggest that the regulatory phosphorylation of C4-form PEPC in mature maize plants is controlled not only by a light signal but also by some other metabolic signal(s). Under nitrogen-limited conditions the phosphorylation was enhanced even though the level of PEPC protein was decreased. Thus there seems to be some compensatory regulatory mechanism for the phosphorylation.  相似文献   

4.
Phosphoenolpyruvate carboxylase (PEPC; EC4.1.1.31) plays a key role during C(4) photosynthesis. The enzyme is activated by metabolites such as glucose-6-phosphate and inhibited by malate. This metabolite sensitivity is modulated by the reversible phosphorylation of a conserved serine residue near the N terminus in response to light. The phosphorylation of PEPC is modulated by a protein kinase specific to PEPC (PEPC-PK). To explore the role PEPC-PK plays in the regulation of C(4) photosynthetic CO(2) fixation, we have transformed Flaveria bidentis (a C(4) dicot) with antisense or RNA interference constructs targeted at the mRNA of this PEPC-PK. We generated several independent transgenic lines where PEPC is not phosphorylated in the light, demonstrating that this PEPC-PK is essential for the phosphorylation of PEPC in vivo. Malate sensitivity of PEPC extracted from these transgenic lines in the light was similar to the malate sensitivity of PEPC extracted from darkened wild-type leaves but greater than the malate sensitivity observed in PEPC extracted from wild-type leaves in the light, confirming the link between PEPC phosphorylation and the degree of malate inhibition. There were, however, no differences in the CO(2) and light response of CO(2) assimilation rates between wild-type plants and transgenic plants with low PEPC phosphorylation, showing that phosphorylation of PEPC in the light is not essential for efficient C(4) photosynthesis for plants grown under standard glasshouse conditions. This raises the intriguing question of what role this complexly regulated reversible phosphorylation of PEPC plays in C(4) photosynthesis.  相似文献   

5.
Temperature caused phenomenal modulation of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in leaf discs of Amaranthus hypochondriacus (NAD-ME type C(4) species), compared to the pattern in Pisum sativum (a C(3) plant). The optimal incubation temperature for PEPC in A. hypochondriacus (C(4)) was 45 degrees C compared to 30 degrees C in P. sativum (C(3)). A. hypochondriacus (C(4)) lost nearly 70% of PEPC activity on exposure to a low temperature of 15 degrees C, compared to only about a 35% loss in the case of P. sativum (C(3)). Thus, the C(4) enzyme was less sensitive to supra-optimal temperature and more sensitive to sub-optimal temperature than that of the C(3) species. As the temperature was raised from 15 degrees C to 50 degrees C, there was a sharp decrease in malate sensitivity of PEPC. The extent of such a decrease in C(4) plants (45%) was more than that in C(3) species (30%). The maintenance of high enzyme activity at warm temperatures, together with a sharp decrease in the malate sensitivity of PEPC was also noticed in other C(4) plants. The temperature-induced changes in PEPC of both A. hypochondriacus (C(4)) and P. sativum (C(3)) were reversible to a large extent. There was no difference in the extent of phosphorylation of PEPC in leaves of A. hypochondriacus on exposure to varying temperatures, unlike the marked increase in the phosphorylation of enzyme on illumination of the leaves. These results demonstrate that (i) there are marked differences in the temperature sensitivity of PEPC in C(3) and C(4) plants, (ii) the temperature induced changes are reversible, and (iii) these changes are not related to the phosphorylation state of the enzyme. The inclusion of PEG-6000, during the assay, dampened the modulation by temperature of malate sensitivity of PEPC in A. hypochondriacus. It is suggested that the variation in temperature may cause significant conformational changes in C(4)-PEPC.  相似文献   

6.
Four enzymes, namely, the maize C(4)-specific phosphoenolpyruvate carboxylase (PEPC), the maize C(4)-specific pyruvate, orthophosphate dikinase (PPDK), the sorghum NADP-malate dehydrogenase (MDH), and the rice C(3)-specific NADP-malic enzyme (ME), were overproduced in the mesophyll cells of rice plants independently or in combination. Overproduction individually of PPDK, MDH or ME did not affect the rate of photosynthetic CO(2) assimilation, while in the case of PEPC it was slightly reduced. The reduction in CO(2) assimilation in PEPC overproduction lines remained unaffected by overproduction of PPDK, ME or a combination of both, however it was significantly restored by the combined overproduction of PPDK, ME, and MDH to reach levels comparable to or slightly higher than that of non-transgenic rice. The extent of the restoration of CO(2) assimilation, however, was more marked at higher CO(2) concentrations, an indication that overproduction of the four enzymes in combination did not act to concentrate CO(2) inside the chloroplast. Transgenic rice plants overproducing the four enzymes showed slight stunting. Comparison of transformants overproducing different combinations of enzymes indicated that overproduction of PEPC together with ME was responsible for stunting, and that overproduction of MDH had some mitigating effects. Possible mechanisms underlying these phenotypic effects, as well as possibilities and limitations of introducing the C(4)-like photosynthetic pathway into C(3) plants, are discussed.  相似文献   

7.
Illumination increased markedly the affinity to bicarbonate of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) in leaves of Amaranthus hypochondriacus L., a C4 plant. When leaves were illuminated, the apparent Km for (HCO3-) of PEPC decreased by about 50% concurrent with a 2- to 5-fold increase in Vmax and 3- to 4-fold increase in Ki for malate. The inclusion of ethoxyzolamide, an inhibitor of carbonic anhydrase, during the assay had no effect on kinetic and regulatory properties of PEPC indicating that carbonic anhydrase was not involved during light-induced sensitization of PEPC to HCO3-. Pretreatment of leaf discs with cycloheximide (CHX), a cytosolic protein synthesis inhibitor, suppressed significantly the light-enhanced decrease in apparent Km (HCO3-). Further, in vitro phosphorylation of purified dark-form PEPC by protein kinase A (PKA) decreased the apparent Km (HCO3-) of the enzyme, in addition increasing Ki (malate) as expected. Such changes, due to in vitro phosphorylation of purified PEPC by PKA, occurred only with wild-type PEPC, but not in the mutant form of maize (S15D) which is already a mimic of the phosphorylated enzyme. These results suggest that phosphorylation of the enzyme is important during the sensitization of PEPC to HCO3- by illumination in C4 leaves. Since illumination is expected to increase the cytosolic pH and the availability of dissolved HCO3- in mesophyll cells, the sensitization by light of PEPC to HCO3- could be physiologically quite significant.  相似文献   

8.
Phosphoenolpyruvate carboxylase (PEPC) is a "multifaceted," allosteric enzyme involved in C4 acid metabolism in green plants/microalgae and prokaryotes. Before the elucidation of the three-dimensional structures of maize C4 leaf and Escherichia coli PEPC, our truncation analysis of the sorghum C4 homologue revealed important roles for the enzyme's C-terminal alpha-helix and its appended QNTG961 tetrapeptide in polypeptide stability and overall catalysis, respectively. Collectively, these functional and structural observations implicate the importance of the PEPC C-terminal tetrapeptide for both catalysis and negative allosteric regulation. We have now more finely dissected this element of PEPC structure-function by modification of the absolutely conserved C-terminal glycine of the sorghum C4 isoform by site-specific mutagenesis (G961(A/V/D)) and truncation (DeltaC1/C4). Although the C4 polypeptide failed to accumulate in a PEPC- strain (XH11) of E. coli transformed with the Asp mutant, the other variants were produced at wild-type levels. Although neither of these four mutants displayed an apparent destabilization of the purified PEPC homotetramer, all were compromised catalytically in vivo and in vitro. Functional complementation of XH11 cells under selective growth conditions was restricted progressively by the Ala, DeltaC1 and Val, and DeltaC4 modifications. Likewise, steady-state kinetic analysis of the purified mutant enzymes revealed corresponding negative trends in kcat and kcat/K0.5 (phosphoenolpyruvate) but not in K0.5 or the Hill coefficient. Homology modeling of these sorghum C-terminal variants against the structure of the closely related maize C4 isoform predicted perturbations in active-site molecular cavities and/or ion-pairing with essential, invariant Arg-638. These collective observations reveal that even a modest, neutral alteration of the PEPC C-terminal hydrogen atom side chain is detrimental to enzyme function.  相似文献   

9.
磷酸烯醇式丙酮酸羧化酶(PEPC)广泛存在于高等植物、藻类及大多数细菌中,催化C4光合作用固定CO2的第一步反应。在过去的10年中关于PEPC分子的一级结构研究已取得显著的进展,最近,通过X-射线衍射分析阐明了大肠杆菌和玉米C4型PEPC分子的三维结构,就这些研究进展进行总结。  相似文献   

10.
A full-length cDNA for maize root-form phosphoenolpyruvate carboxylase(PEPC) was isolated. In the coding region, the root-form PEPCshowed 76 and 77% identity with the C4- and C3-form PEPCs ofmaize, respectively, at the nucleotide level. At the amino acidlevel, the root-form was 81 and 85% identical to the C4- andC3-form PEPCs, respectively. The entire coding region was insertedinto a pET32a expression vector so that it was expressed underthe control of T7 promoter. The purified recombinant root-formPEPC had a Vmax value of about 28 mol min–1(mg protein)1at pH 8.0. The Km values of root-form PEPC for PEP and Mg2+were one-tenth or less of those of C4-form PEPC when assayedat either pH 7.3 or 8.0, while the value for HCO3 wasabout one-half of that of C4-form PEPC at pH 8.0. Glucose 6-phosphateand glycine had little effect on the root-form PEPC at pH 7.3;they caused two-fold activation of the C4-form PEPC. The Ki(L-malate) values at pH 7.3 were 0.12 and 0.43 raM for the root-and C4-form PEPCs, respectively. Comparison of hydropathy profilesamong the maize PEPC isoforms suggested that several stretchesof amino acid sequences may contribute in some way to theircharacteristic kinetic properties. The root-form PEPC was phosphorylatedby both mammalian cAMP-dependent protein kinase and maize leafprotein kinase, and the phosphorylated enzyme was less sensitiveto L-malate. 1These authors contributed equally to this work. 2Present address: Otsuka Chemical Co. Ltd., 463 Kagasuno, Kawauchi-cho,Tokushima, 771-0130 Japan. 3Present address: Sumitomo Pharmaceuticals Research Center,1-98, Kasugade, Naka 3-cho-me, Konohana-ku, Osaka, 554-0022Japan.  相似文献   

11.
Here, the kinetic properties and immunolocalization of phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in young stems of Fagus sylvatica were investigated. The aim of the study was to test the hypothesis that there is a C4-like photosynthesis system in the stems of this C3 tree species. The activity, optimal pH and L-malate sensitivity of PEPC, and the Michaelis-Menten constant (Km) for phosphoenolpyruvate (PEP), were measured in protein extracts from current-year stems and leaves. A gel blot experiment and immunolocalization studies were performed to examine the isozyme complexity of PEPC and the tissue distribution of PEPC and Rubisco in stems. Leaf and stem PEPCs exhibited similar, classical values characteristic of C3 PEPCs, with an optimal pH of c. 7.8, a Km for PEP of c. 0.3 mM and a IC50 for L-malate (the L-malate concentration that inhibits 50% of PEPC activity at the Km for PEP) of c. 0.1 mM. Western blot analysis showed the presence of two PEPC subunits (molecular mass c. 110 kDa) both in leaves and in stems. Immunogold labelling did not reveal any differential localization of PEPC and Rubisco, neither between nor inside cells. This study suggests that C4-type photosynthesis does not occur in stems of F. sylvatica and underlines the importance of PEPC in nonphotosynthetic carbon fixation by most stem tissues (fixation of respired CO2 and fixation via the anaplerotic pathway).  相似文献   

12.
Inhibition of phosphoenolpyruvate carboxylase by malate   总被引:6,自引:6,他引:0       下载免费PDF全文
Malate has been noted to be a `mixed' inhibitor of phosphoenolpyruvate (PEP) carboxylase. The competitive portion of this inhibition appears to be fairly constant regardless of the condition of the enzyme being measured, but the noncompetitive (V-type) inhibition is subject to variation depending on the source of the enzyme, its storage condition, the presence or absence of various ligands, and differences in pH. In the case of the maize (Zea mays L.) phosphoenolpyruvate carboxylase (PEPC), the V-type inhibition by malate is much less pronounced at pH 8 than at pH 7. Examination of the response of the maize PEPC to PEP concentration reveals a pronounced cooperativity at pH 8 which is not present at pH 7, and which results in the disappearance of the V-type inhibition at pH 8. The ability of high concentrations of PEP to convert PEPC from a form readily inhibited by malate to one resistant to malate inhibition has been previously demonstrated and we attribute the cooperativity shown at pH 8 to this response to high levels of PEP. Support for this proposal is provided by studies of the enzyme at pH 7 and pH 8 run in 20% glycerol. In this case there was no V-type inhibition of PEPC at either pH. Treatment with 20% glycerol has been shown to result in the aggregation of maize PEPC.  相似文献   

13.
Regulation of the light activation of C4 phosphoenolpyruvate-carboxylase (PEPC) protein kinase (PEPC-PK) and the ensuing phosphorylation of its cytosolic target protein were studied in intact mesophyll cells (MC) and protoplasts (MP) isolated from dark-adapted leaves of Digitaria sanguinalis [L.] Scop, (hairy crabgrass). The apparent in-situ phosphorylation state of PEPC (EC 4.1.1.31) was assessed by the sensitivity of its activity in desalted MC- and MP-extracts to l-malate under suboptimal assay conditions, while the activity-state of PEPC-PK was determined by in-vitro 32P-labeling of purified maize or recombinant sorghum PEPC by these extracts. In-situ pretreatment of intact MC at pH 8.0 by illumination and calcium addition led to significant decreases in PEPC malate sensitivity and increases in PEPC-kinase activity that were negated by the addition of EGTA to the external cell medium. Similarly, in-situ pretreatment of MP with light plus NH4Cl at pH 7.6 led to significant decreases in malate sensitivity which did not occur when a Ca2+ ionophore and EGTA were included in the suspension medium. In contrast, neither EGTA nor exogenous Ca2+ had a major direct effect on the in-vitro activity of PEPC-PK extracted from Digitaria MC and MP. Preincubation of intact MC with 5 mM 3-phosphoglycerate or pyruvate at pH 8.0 in the dark led to significant decreases in PEPC malate sensitivity and increases in PEPC-PK activity which were not observed with various other exogenous metabolites. These collective in-situ experiments with isolated C4 MC and MP (i) support our earlier hypothesis that alkalization of cytosolic pH is involved in the PEPC-PK signal-transduction cascade (see J.-N. Pierre et al., Eur J Biochem, 1992,210: 531–537), (ii) suggest that intracellular calcium is involved in the PEPC-kinase signal-transduction chain, but at a step upstream of PEPC-PK per se, and (iii) provide direct evidence that the bundle-sheath-derived, C4-pathway intermediates 3-PGA and/or pyruvate also play a role in this signal-transduction cascade which ultimately effects the up-regulation of PEPC in the C4 mesophyll cytosol.Abbreviations BS bundle-sheath - CAM Crassulacean acid metabolism - DHAP dihydroxyacetone phosphate - FPLC fast-protein liquid chromatography - Glc6P glucose 6-phosphate - I0.5 50% inhibition constant - MC mesophyll cell(s) - MP me-sophyll protoplast(s) - PEP phosphoenolpyruvate - PEPC PEP carboxylase - PEPC-PK PEPC protein-Ser/Thr kinase - 2-PGA 2-phosphoglycerate - 3-PGA 3-phosphoglycerate - PPFD photosynthetic photon flux density - Pyr pyruvate - Ser serine The authors thank Ms. Jill Myatt for her help with some of the MC preparations. This work was supported in part by grants INT-9115566 and MCB-9315928 from the U.S. National Science Foundation (to R.C.). S.M.G.D. was a recipient of an NSERC of Canada Post-Doctoral Fellowship. This paper is Journal Series No. 11 395 of the University of Nebraska Agricultural Research Division.  相似文献   

14.
15.
Sipes DL  Ting IP 《Plant physiology》1989,91(3):1050-1055
Kinetic characteristics of phosphoenolpyruvate carboxylase (PEPC) from the epiphytic C3 or C4: CAM intermediate plant, Peperomia camptotricha, were investigated. Few day versus night differences in Vmax,Km(PEP)), or malate inhibition were observed, even in extracts from water-stressed plants which characteristically perform CAM, regardless of efforts to stabilize day/night forms. The PEPC extracted from plants during the light period remained stable, without much of an increase or decrease in activity for at least 22 hours at 0 to 4°C. Extracts from mature, fully developed leaves had slightly greater PEPC activity than from very young, developing leaves. Generally, however, the kinetic properties of PEPC extracted from mature leaves of plants grown under short day (SD), long day (LD), or 1-week water-stress conditions, as well as from young, developing leaves, were similar. The PEPC inhibitor, l-malate, decreased the Vmax and increased the Km(PEP) for all treatments. Under specific conditions, malate did not inhibit PEPC rates in the dark extracts as much as the light. The PEPC activator, glucose-6-phosphate (G-6-P), lowered the Km(PEP) for all treatments. At saturating PEP concentrations, PEPC activity was independent of pH in the range of 7.5 to 9.0. At subsaturating PEP concentrations, the pH optimum was 7.8. The rates of PEPC activity were lower in the light period extracts than the dark, at pH 7.1, but day/night PEPC was equally active at pH 7.8. At pH 7.5 and a subsaturating PEP concentration, G-6-P significantly activated PEPC. At pH 8, however, only slight activation by G-6-P was observed. The lower pH of 7.5 combined with l-malate addition, greatly inhibited PEPC, particularly in extracts from young, developing leaves which were completely inhibited at an l-malate concentration of 1 millimolar. However, malate did not further inhibit PEPC activity in mature leaves when assayed at pH 7.1. The fairly constant day/night kinetic and regulatory properties of PEPC from P. camptotricha are unlike those of PEPC from CAM or C4 species studied, and are consistent with the photosynthetic metabolism of this plant.  相似文献   

16.
Isolated mesophyll cells from darkened leaves of the C(4) plant Digitaria sanguinalis keep functional plasmodesmata that allow the free exchange of low molecular mass compounds with the surrounding medium. This cell suspension system has been used to measure C(4) PEPC activity in situ using a spectrophotometric assay. Compared to the extracted enzyme assayed in vitro, the essentially non-phosphorylated 'in-cell' C(4) PEPC showed altered functional and regulatory properties. While the S (0.5) for PEP at pH 7.3 was only modestly changed (0.4-0.6 mM), the response to pH was shifted towards the acidic range, being close to the maximal value at pH 7.3. Using expected physiological concentrations of the metabolites, at pH 7.3, the IC(50) for malate showed a five-fold increase, from 1.5 to 8 mM, and was increased further to 22 mM in the presence of the allosteric activator glucose-6-phosphate (4 mM). Thiol compounds like DTT, mercaptoethanol and reduced glutathione weakened the in-situ sensitivity of C(4) PEPC to malate. However, none of them had any effect on this process in vitro. This was not due to thioredoxin-mediated or phoshorylation-dependent processes. Since glutathione is a physiological compound that is present mostly in the reduced state in the cell cytosol, a possible contribution of this thiol to the protection of the enzyme against malate in situ is proposed.  相似文献   

17.
Crassulacean acid metabolism (CAM) in Mesembryanthemum crystallinumwas induced by transfer of plants from 100 to 400 mM NaCl. Diurnalmalate fluctuations developed slowly; maximum rates of net malatesynthesis in the dark were reached only on the 10th day afterNaCl was increased to 400 mM. In contrast, phosphoenolpyruvatecarboxylase (PEPC) activity, assayed at optimum pH of 8–0,had nearly reached its maximum on the 5th day after plants weretransferred to 400 mM NaCl. Characteristics of PEPC changedduring the first 12 d of exposure of plants to 400 mM NaCl.There were increases in the ratio of PEPC activity at pH 7 0/PEPCactivity at pH 8.0, and decreases in the Km for PEP measuredat pH 7.0, and possibly in the degree of malate inhibition.All further measurements were made once CAM was well established.In vivo rates of malate synthesis were 14–18 times smallerthan PEPC activity at 2 mM PEP, both processes being measuredat 15 °C. It is suggested that the high PEPC levels favourrapid, preferential flow of carbon to malate, by maintainingvery low PEP levels in the cytoplasm. PEPC changed in characteristicsduring the diurnal cycle. During the first few minutes afterisolation, extracts made during the first hours of the day,when malate was consumed, showed very low PEPC activity at pH7.0 but high activity at pH 8.0. The activity of PEPC at pH7.0 rose gradually during storage of the extracts at 0 °C,usually reaching the activity at pH 8.0 after about 30–50min. In contrast, extracts obtained during the first hours ofthe night, when malate was synthesized, showed high PEPC activityat both pH 7.0 and 8–0 within 30–50 s after extraction.The results indicate that PEPC of M. crystallinum, performingdistinct CAM, may exist in two states. One state would favourrapid malate synthesis and transport to the vacuoles and wouldfunction during the night. The second state, with little activitybelow pH 7.5, would occur during the day, thus preventing complicationsof continued synthesis of malate while it is converted to carbohydrates.  相似文献   

18.
Phosphoenolpyruvate carboxylase is an ubiquitous cytosolic enzyme that catalyzes the ß-carboxylation of phosphoenolpyruvate (PEP) and is encoded by multigene family in plants. It plays an important role in carbon economy of plants by assimilating CO2 into organic acids for subsequent C4 or CAM photosynthesis or to perform several anaplerotic roles in non-photosynthetic tissues. In this study, a cDNA clone encoding for PEPC polypeptide possessing signature motifs characteristic to ZmC4PEPC was isolated from Pennisetum glaucum (PgPEPC). Deduced amino acid sequence revealed its predicted secondary structure consisting of forty alpha helices and eight beta strands is well conserved among other PEPC homologs irrespective of variation in their primary amino acid sequences. Predicted PgPEPC quartenary structure is a tetramer consisting of a dimer of dimers, which is globally akin to maize PEPC crystal structure with respect to major chain folding wherein catalytically important amino acid residues of active site geometry are conserved. Recombinant PgPEPC protein expressed in E. coli and purified to homogeneity, possessed in vitro ß-carboxylation activity that is determined using a coupled reaction converting PEP into malate. Tetramer is the most active form, however, it exists in various oligomeric forms depending upon the protein concentration, pH, ionic strength of the media and presence of its substrate or effecters. Recombinant PgPEPC protein confers enhanced growth advantage to E. coli under harsh growth conditions in comparison to their respective controls; suggesting that PgPEPC plays a significant role in stress adaptation.  相似文献   

19.
Our previous research characterized two phosphoenolpyruvate (PEP) carboxylase (PEPC) isoforms (PEPC1 and PEPC2) from developing castor oil seeds (COS). The association of a shared 107-kD subunit (p107) with an immunologically unrelated bacterial PEPC-type 64-kD polypeptide (p64) leads to marked physical and kinetic differences between the PEPC1 p107 homotetramer and PEPC2 p107/p64 heterooctamer. Here, we describe the production of antiphosphorylation site-specific antibodies to the conserved p107 N-terminal serine-6 phosphorylation site. Immunoblotting established that the serine-6 of p107 is phosphorylated in COS PEPC1 and PEPC2. This phosphorylation was reversed in vitro following incubation of clarified COS extracts or purified PEPC1 or PEPC2 with mammalian protein phosphatase type 2A and is not involved in a potential PEPC1 and PEPC2 interconversion. Similar to other plant PEPCs examined to date, p107 phosphorylation increased PEPC1 activity at pH 7.3 by decreasing its K(m)(PEP) and sensitivity to L-malate inhibition, while enhancing glucose-6-P activation. By contrast, p107 phosphorylation increased PEPC2's K(m)(PEP) and sensitivity to malate, glutamic acid, and aspartic acid inhibition. Phosphorylation of p107 was promoted during COS development (coincident with a >5-fold increase in the I(50) [malate] value for total PEPC activity in desalted extracts) but disappeared during COS desiccation. The p107 of stage VII COS became fully dephosphorylated in planta 48 h following excision of COS pods or following 72 h of dark treatment of intact plants. The in vivo phosphorylation status of p107 appears to be modulated by photosynthate recently translocated from source leaves into developing COS.  相似文献   

20.
T4 RNA ligase 1 (Rnl1) exemplifies an ATP-dependent RNA ligase family that includes fungal tRNA ligase (Trl1) and a putative baculovirus RNA ligase. Rnl1 acts via a covalent enzyme-AMP intermediate generated by attack of Lys-99 N zeta on the alpha phosphorus of ATP. Mutation of Lys-99 abolishes ligase activity. Here we tested the effects of alanine mutations at 19 conserved positions in Rnl1 and thereby identified 9 new residues essential for ligase activity: Arg-54, Lys-75, Phe-77, Gly-102, Lys-119, Glu-227, Gly-228, Lys-240, and Lys-242. Seven of the essential residues are located within counterparts of conserved nucleotidyltransferase motifs I (99KEDG102), Ia (118SK119), IV (227EGYVA231), and V (238HFKIK242) that comprise the active sites of DNA ligases, RNA capping enzymes, and T4 RNA ligase 2. Three other essential residues, Arg-54, Lys-75 and Phe-77, are located upstream of the AMP attachment site within a conserved domain unique to the Rnl1-like ligase family. We infer a shared evolutionary history and active site architecture in Rnl1 (a tRNA repair enzyme) and Trl1 (a tRNA splicing enzyme). We determined structure-activity relationships via conservative substitutions and examined mutational effects on the isolated steps of Rnl1 adenylylation (step 1) and phosphodiester bond formation (step 3). Lys-75, Lys-240, and Lys-242 were found to be essential for step 1 and overall ligation of 5'-phosphorylated RNA but not for phosphodiester bond formation. These results suggest that the composition of the Rnl1 active site is different during steps 1 and 3. Mutations at Arg-54 and Lys-119 abolished the overall RNA ligation reaction without affecting steps 1 and 3. Arg-54 and Lys-119 are thereby implicated as specific catalysts of the RNA adenylation reaction (step 2) of the ligation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号