首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulation of pyruvate dehydrogenase (PDH) improves functional recovery of postischemic hearts. This study examined the potential for a mechanism mediated by substrate-dependent proton production and intracellular pH. After 20 min of ischemia, isolated rabbit hearts were reperfused with or without 5 mM dichloroacetate (DCA) in the presence of either 5 mM glucose, 5 mM glucose + 2.5 mM lactate, or 5 mM glucose + 2.5 mM pyruvate. DCA inhibits PDH kinase, increasing the proportion of dephosphorylated, active PDH. Unlike pyruvate or glucose alone, lactate + glucose did not support the effects of DCA on the recovery of rate-pressure product (RPP) (without DCA, RPP = 14,000 +/- 1,200, n = 6; with DCA, RPP = 13,700 +/- 1,800, n = 9). Intracellular pH, from (31)P nuclear magnetic resonance spectra, returned to normal within 2.1 min of reperfusion with all substrates except for lactate + glucose + DCA or lactate + DCA, which delayed pH recovery for up to 12 min (at 2.1 min pH = 6. 00 +/- 0.08, lactate + glucose + DCA; pH = 6.27 +/- 0.34, for lactate + DCA). Hearts were also reperfused after 10 min of ischemia with 0.5 mM palmitate + 5 mM DCA and either 2.5 mM pyruvate or 2.5 mM lactate. Again, intracellular pH recovery was delayed in the presence of lactate. PDH activation in the presence of lactate also decreased coupling of oxidative metabolism to mechanical work. These findings have implications for therapeutic use of stimulated carbohydrate oxidation in stunned hearts.  相似文献   

2.
Stimulationg of glucose oxidation by dichloroacetate (DCA) treatment is beneficial during recovery of ischemic hearts from non-diabetic rats. We therfore determined whether DCA treatment of diabetic rat hearts (in which glucose use is extremely low), increases recovery of function of hearts reperfused following ischemia. Isolated working hearts from 6 week streptozotocindiabetic rats were perfused with 11 mM [2-3H/U-14C]glucose, 1.2 mM palmitate, 20 μU/ml insulin, and subjected to 30 min of no flow ischemia followed by 60 min reperfusion. Heart function (expressed as the product of heart rate and peak systolic pressure), prior to ischemia, was depressed in diabetic hearts compared to controls (HR × PSP × 10?3 was 18.2 ± 1 and 24.3 ± 1 beats/mm Hg/min in diabetic and control hearts respectively) but recover to pre-ischemic levels following ischemia, whereas recovery of control of control hearts was significantly decreased (17.8 ± 1 and 11.9 ± 3 beats/mm Hg/min in diabetic and control hearts respectively). This enhanced recovery of diabetic rat hearts occurred even though glucose oxidation during reperfusion was significantly reduced as compared to controls (39 ± 6 and 208 ± 42 nmol/min/g dry wt, in diabetic and control hearts respectively). Glycolytic rate (3G2O production) during reperfusion were similar in diabetic and control hearts (1623 ± 359 and 2071 ± 288 nmol/min/g dry wt, respectively). If DCA (1 mM) was added at reperfusion, hearts from control animals exhibited a significant improvement in function (HR × PSP × 10? recovered to 20 ± 4 beats/mm Hg/min) that was accompanied by a 4-fold increase in glucose oxidation (from 208 ± 42 to 753 ± 111 nmol/min/g dry wt). DCA was without effect on functional recovery of diabetic rat hearts during reperfusion but did significantly increase glucose oxidation from 39 ± 6 to 179 ± 44 nmol/min/g dry wt). These data suggests that, unlike control hearts, low glucose oxidation rates are not an important factor in reperfusion recovery of previouskly ischemic diabetic rat hearts.  相似文献   

3.
High levels of fatty acids decrease the extent of mechanical recovery of hearts reperfused following a transient period of severe ischemia. Glucose oxidation rates during reperfusion are low under these conditions, which can result in a decreased recovery of mechanical function. Stimulation of glucose oxidation with the carnitine palmitoyl transferase I inhibitor, Etomoxir, or by directly stimulating pyruvate dehydrogenase activity with dichloroacetate (DCA) results in an improvement in mechanical function during reperfusion of previously ischemic hearts. Addition of DCA (1 mM) to hearts perfused with 11 mM glucose and 1.2 mM palmitate results in an increase in contribution of glucose oxidation to overall ATP production from 6 to 23%, with a parallel decrease in that of fatty acid oxidation from 90 to 69%. In aerobic hearts, endogenous myocardial triglycerides are an important source of fatty acids for -oxidation. Using hearts in which the myocardial triglycerides were pre-labeled, the contribution of both endogenous and exogenous fatty acid oxidation to myocardial ATP production was determined in hearts perfused with 11 mM glucose, 1.2 mM palmitate and 500 µU/ml insulin. In hearts reperfused following a 30 min period of global no flow ischemia, 91.9% of ATP production was derived from endogenous and exogenous fatty acid oxidation, compared to 87.7% in aerobic hearts. This demonstrates that fatty acid oxidation quickly recovers following a transient period of severe ischemia. Furthermore, therapy aimed at overcoming fatty acid inhibition of glucose oxidation during reperfusion of ischemic hearts appears to be beneficial to recovery of mechanical function.  相似文献   

4.
Dichloroacetate (DCA) is a pyruvate dehydrogenase activator that increases cardiac efficiency during reperfusion of ischemic hearts. We determined whether DCA increases efficiency of mitochondrial ATP production by measuring proton leak in mitochondria from isolated working rat hearts subjected to 30 min of ischemia and 60 min of reperfusion. In untreated hearts, cardiac work and efficiency decreased during reperfusion to 26% and 40% of preischemic values, respectively. Membrane potential was significantly lower in mitochondria from reperfused (175.6 +/- 2.2 mV) versus aerobic (185.8 +/- 3.1 mV) hearts. DCA (1 mM added at reperfusion) improved recovery of cardiac work (1.9-fold) and efficiency (1.5-fold) but had no effect on mitochondrial membrane potential (170.6 +/- 2.9 mV). At the maximal attainable membrane potential, O(2) consumption (nmol O(2) x mg(-1) x min(-1)) did not differ between untreated or DCA-treated hearts (128.3 +/- 7.5 and 120.6 +/- 7.6, respectively) but was significantly greater than aerobic hearts (76.6 +/- 7.6). During reperfusion, DCA increased glucose oxidation 2.5-fold and decreased H(+) production from glucose metabolism to 53% of untreated hearts. Because H(+) production decreases cardiac efficiency, we suggest that DCA increases cardiac efficiency during reperfusion of ischemic hearts by increasing the efficiency of ATP use and not by increasing the efficiency of ATP production.  相似文献   

5.
We tested the hypothesis that glycogen levels at the beginning of ischemia affect lactate production during ischemia and postischemic contractile function.Isolated working rat hearts were perfused at physiological workload with bicarbonate buffer containing glucose (10 mmol/L). Hearts were subjected to four different preconditioning protocols, and cardiac function was assessed on reperfusion. Ischemic preconditioning was induced by either one cycle of 5 min ischemia followed by 5, 10, or 20 min of reperfusion (PC5/5, PC5/10, PC5/20), or three cycles of 5 min ischemia followed by 5 min of reperfusion (PC3 × 5/5). All hearts were subjected to 15 min total, global ischemia, followed by 30 min of reperfusion. We measured lactate release, timed the return of aortic flow, compared postischemic to preischemic power, and determined tissue metabolites at selected time points.Compared with preischemic function, cardiac power during reperfusion improved in groups PC5/10 and PC5/20, but was not different from control in groups PC5/5 and PC3 × 5/5. There was no correlation between preischemic glycogen levels and recovery of function during reperfusion. There was also no correlation between glycogen breakdown (or resynthesis) and recovery of function. Lactate accumulation during ischemia was lowest in group PC5/20 and highest in the group with three cycles of preconditioning (PC3 × 5/5). Lactate release during reperfusion was significantly higher in the groups with low recovery of power than in the groups with high recovery of power.In glucose-perfused rat heart recovery of function is independent from both pre- and postischemic myocardial glycogen content over a wide range of glycogen levels. The ability to utilize lactate during reperfusion is an indicator for postischemic return of contractile function.  相似文献   

6.
In isolated diaphragms from rats fed on a high-fat diet, oxfenicine (S-4-hydroxyphenylglycine) stimulated the depressed rates of pyruvate decarboxylation (2-fold) and glucose oxidation (5-fold). In diaphragms from normal-fed rats, oxfenicine had no effect on pyruvate decarboxylation but doubled the rate of glucose oxidation and inhibited the oxidation of palmitate. Treatment of fat-fed rats with oxfenicine restored the proportion of myocardial pyruvate dehydrogenase in the active form to that observed in normal-fed rats. In rat hearts perfused in the presence of glucose, insulin and palmitate, oxfenicine increased carbohydrate oxidation and stimulated cardiac performance with no increase in oxygen consumption - i.e. improved myocardial efficiency. Working rat hearts perfused with glucose, insulin and palmitate and subjected to 10 min global ischaemia recovered to 81% of their pre-ischaemic cardiac output after 30 min reperfusion, and released large amounts of lactate dehydrogenase into the perfusate. Hearts perfused with oxfenicine had slightly higher pre-ischaemic cardiac outputs and, on reperfusion, recovered more completely (to 96% of the pre-ischaemic value). Oxfenicine reduced the amount of lactate dehydrogenase released by 73%. We conclude that, in rat hearts with high rates of fatty acid oxidation, a relative increase in carbohydrate oxidation will improve myocardial efficiency, and preserve mechanical function and cellular integrity during acute ischaemia.  相似文献   

7.
Insulin improves contractile function after ischemia, but does not increase glucose uptake in the isolated working rat heart. We tested the hypothesis that the positive inotropic effect of insulin is independent of the signaling pathway responsible for insulin-stimulated glucose uptake. We inhibited this pathway at the level of phosphatidyl inositol 3-kinase (PI3K) with wortmannin. Hearts were perfused for 70 min at physiological workload with Krebs-Henseleit buffer containing [2-3H] glucose (5 mM, 0.05 Ci/ml) and oleate (0.4 mM, 1% BSA) in the presence (WM, n = 5) or absence (control, n = 7) of wortmannin (WM, 3 mol/L). After 20 min, hearts were subjected to 15 min of total global ischemia followed by 35 min of reperfusion. Insulin (1 mU/ml) was added at the beginning of reperfusion (WM + insulin n = 8, insulin n = 8). Cardiac power before ischemia was 8.1 ± 0.7 mW. Recovery of contractile function after ischemia was significantly increased in the presence of insulin (73.5 ± 8.9% vs. 38.5 ± 6.7%, p < 0.01). The addition of wortmannin completely abolished the effect of insulin on recovery (32.6 ± 6.4%). Glucose uptake was 1.84 ± 0.32 mol/min/g dry before ischemia and was slightly elevated during reperfusion (2.68 ± 0.35 mol/min/g dry, n.s.). Insulin did not affect postischemic glucose uptake. In the presence of wortmannin, glucose uptake was lowest during reperfusion (n.s.). The results suggest that PI3K is involved in the insulin-induced improvement in postischemic recovery of contractile function. This effect of insulin is independent of its effect on glucose uptake.  相似文献   

8.
Acute effects of triiodothyronine (T3) on postischemic myocardial stunning and intracellular Ca2+ contents were studied in the isolated working hearts of streptozotocin-induced diabetic rats and age-matched controls. After two weeks of diabetes, serum T3 and T4 levels were decreased to 62.5% and 33.9% of control values. Basal preischemic cardiac performance did not differ between diabetic and control rats. In contrast, during reperfusion after 20-min ischemia, diabetic rats exhibited an impaired recovery of heart rate (at 30-min reperfusion 57.5% of baseline vs. control 88.5%), left ventricular (LV) systolic pressure (44.1% vs. 89.5%), and cardiac work (23.1% vs. 66.0%). When 1 and 100 nM T3 was added before ischemia, heart rate was recovered to 77.2% and 81.8% of baseline, LV systolic pressure to 68.3% and 81.9%, and cardiac work to 50.8% and 59.0%, respectively. Diabetic rat hearts showed a higher Ca2+ content in the basal state and a further increase after reperfusion (4.96+/-1.17 vs. control 3.78+/-0.48 micromol/g, p<0.01). In diabetic hearts, H+ release was decreased after reperfusion (5.24+/-2.21 vs. 8.70+/-1.41 mmol/min/g, p<0.05). T3 administration caused a decrease in the postischemic Ca2+ accumulation (lnM T3 4.66+/-0.41 and 100 nM T3 3.58+/-0.36) and recovered the H+ release (lnM T3 16.2+/-3.9 and 100 nM T3 11.6+/-0.9). T3 did not alter myocardial O2 consumption. Results suggest that diabetic rat hearts are vulnerable to postischemic stunning, and T3 protects the myocardial stunning possibly via inhibiting Ca2+ overload.  相似文献   

9.
Recent studies have demonstrated that increased expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 2a improves myocardial contractility and Ca2+ handling at baseline and in disease conditions, including myocardial ischemia-reperfusion (I/R). Conversely, it has also been reported that pharmacological inhibition of SERCA might improve postischemic function in stunned hearts or in isolated myocardium following I/R. The goal of this study was to test how decreases in SERCA pump level/activity affect cardiac function following I/R. To address this question, we used a heterozygous SERCA2a knockout (SERCA2a+/-) mouse model with decreased SERCA pump levels and studied the effect of myocardial stunning (20-min ischemia followed by reperfusion) and infarction (30-min ischemia followed by reperfusion) following 60-min reperfusion. Our results demonstrate that postischemic myocardial relaxation was significantly impaired in SERCA2a+/- hearts with both stunning and infarction protocols. Interestingly, postischemic recovery of contractile function was comparable in SERCA2a+/- and wild-type hearts subjected to stunning. In contrast, following 30-min ischemia, postischemic contractile function was reduced in SERCA2a+/- hearts with significantly larger infarction. Rhod-2 spectrofluorometry revealed significantly higher diastolic intracellular Ca2+ in SERCA2a+/- hearts compared with wild-type hearts. Both at 30-min ischemia and 2-min reperfusion, intracellular Ca2+ levels were significantly higher in SERCA2a+/- hearts. Electron paramagnetic resonance spin trapping showed a similar extent of postischemic free-radical generation in both strains. These data provide direct evidence that functional SERCA2a level, independent of oxidative stress, is crucial for postischemic myocardial function and salvage during I/R.  相似文献   

10.
Hearts from type 2 diabetic (db/db) mice demonstrate altered substrate utilization with high rates of fatty acid oxidation, decreased functional recovery following ischemia, and reduced cardiac efficiency. Although db/db mice show overall insulin resistance in vivo, we recently reported that insulin induces a marked shift toward glucose oxidation in isolated perfused db/db hearts. We hypothesize that such a shift in metabolism should improve cardiac efficiency and consequently increase functional recovery following low-flow ischemia. Hearts from db/db and nondiabetic (db/+) mice were perfused with 0.7 mM palmitate plus either 5 mM glucose (G), 5 mM glucose and 300 microU/ml insulin (GI), or 33 mM glucose and 900 microU/ml insulin (HGHI). Substrate oxidation and postischemic recovery were only moderately affected by GI and HGHI in db/+ hearts. In contrast, GI and particularly HGHI markedly increased glucose oxidation and improved postischemic functional recovery in db/db hearts. Cardiac efficiency was significantly improved in db/db, but not in db/+ hearts, in the presence of HGHI. In conclusion, insulin and glucose normalize cardiac metabolism, restore efficiency, and improve postischemic recovery in type 2 diabetic mouse hearts. These findings may in part explain the beneficial effect of glucose-insulin-potassium therapy in diabetic patients with cardiac complications.  相似文献   

11.
The resveratrol-induced cardiac protection was studied in Zucker obese rats. Rats were divided into five groups: group 1, lean control; group 2, obese control (OC); group 3, obese rats treated orally with 5 mg kg(-1) day(-1) of resveratrol (OR) for 2 wk; group 4, obese rats received 10% glucose solution ad libitum for 3 wk (OG); and group 5, obese rats received 10% glucose for 3 wk and resveratrol (OGR) during the 2nd and 3rd wk. Body weight, serum glucose, and insulin were measured, and then hearts were isolated and subjected to 30 min of ischemia followed by 120 min of reperfusion. Heart rate, coronary flow, aortic flow, developed pressure, the incidence of reperfusion-induced ventricular fibrillation, and infarct size were measured. Resveratrol reduced body weight and serum glucose in the OR compared with the OC values (414 +/- 10 g and 7.08 +/- 0.41 mmol/l, respectively, to 378 +/- 12 g and 6.11 +/- 0.44 mmol/l), but insulin levels were unchanged. The same results were obtained for the OG vs. OGR group. Resveratrol improved postischemic cardiac function in the presence or absence of glucose intake compared with the resveratrol-free group. The incidence of ventricular fibrillation and infarct size was reduced by 83 and 20% in the OR group, and 67 and 16% in the OGR group, compared with the OC and OG groups, respectively. Resveratrol increased GLUT-4 expression and reduced endothelin expression and cardiac apoptosis in ischemic-reperfused hearts in the presence or absence of glucose intake. Thus the protective effect of resveratrol could be related to its direct effects on the heart.  相似文献   

12.
Whole-body heat shock (HS) leads to an enhancement of postischemic mechanical function and an improvement in glucose use by the rat heart. Here, we examine the effect of HS on isolated mitochondrial metabolism during reperfusion in the working rat heart. Rats were anesthetized, and their body temperature was raised to 41-42 degrees C for 15 min. Control rats were treated the same way but were not exposed to hyperthermia. Twenty-four hours after HS or sham treatment, rats were reanesthetized and the hearts were removed for perfusion with Krebs-Henseleit buffer, containing 11 mmol glucose/L and 1.2 mmol palmitate/L prebound to 3% albumin. Hearts were subjected to 25 min of global ischemia followed by 30 min of reperfusion. At the end of reperfusion, heart mitochondria were isolated using differential centrifugation and respiration measured in the presence of pyruvate, glutamate, or palmitoylcarnitine. Hearts subjected to HS showed an enhanced recovery of function, expressed as aortic flow, during the reperfusion period, compared with sham hearts. This improved functional status was associated with a significant increase in state 3 respiration in the presence of pyruvate, glutamate, or palmitoylcarnitine. These results show that HS offers protection against ischemic damage, and that a possible mechanism might be the enhanced myocardial metabolism of fuels.  相似文献   

13.
Intermittent hypobaric hypoxia (IHH) protects hearts against ischemia-reperfusion (I/R) injury, but the underlying mechanisms are far from clear. ROS are paradoxically regarded as a major cause of myocardial I/R injury and a trigger of cardioprotection. In the present study, we investigated whether the ROS generated during early reperfusion contribute to IHH-induced cardioprotection. Using isolated perfused rat hearts, we found that IHH significantly improved the postischemic recovery of left ventricular (LV) contractile function with a concurrent reduction of lactate dehydrogenase release and myocardial infarct size (20.5 ± 5.3% in IHH vs. 42.1 ± 3.8% in the normoxic control, P < 0.01) after I/R. Meanwhile, IHH enhanced the production of protein carbonyls and malondialdehyde, respective products of protein oxidation and lipid peroxidation, in the reperfused myocardium and ROS generation in reperfused cardiomyocytes. Such effects were blocked by the mitochondrial ATP-sensitive K(+) channel inhibitor 5-hydroxydecanoate. Moreover, the IHH-improved postischemic LV performance, enhanced phosphorylation of PKB (Akt), PKC-ε, and glycogen synthase kinase-3β, as well as translocation of PKC-ε were not affected by applying H(2)O(2) (20 μmol/l) during early reperfusion but were abolished by the ROS scavengers N-(2-mercaptopropionyl)glycine (MPG) and manganese (III) tetrakis (1-methyl-4-pyridyl)porphyrin. Furthermore, IHH-reduced lactate dehydrogenase release and infarct size were reversed by MPG. Consistently, inhibition of Akt with wortmannin and PKC-ε with εV1-2 abrogated the IHH-improved postischemic LV performance. These findings suggest that IHH-induced cardioprotection depends on elevated ROS production during early reperfusion.  相似文献   

14.
The goal of the present study was to assess the effects of a restricted feeding schedule (RFS) on postischemic contractile recovery in relation to triacylglycerol (TAG), glycogen, and ATP content. Glucose-6-phosphate dehydrogenase (G6PDH) activity, reduced/oxidized glutathione ratio (GSH/GSSG), and thiobarbituric acid reactive substances (TBARS) levels were also determined. Isolated rat hearts entrained to daily RFS (2 h food access starting at 1200) or fed ad libitum (FED) for 3 weeks were Langendorff-perfused (25 min ischemia, 30 min reperfusion) with Krebs-Ringer bicarbonate solution (10?mmol/L glucose). RFS improved the recovery of contractility and reduced creatine kinase (CK) release upon reperfusion. Further, at the end of reperfusion, RFS hearts exhibited increased G6PDH activity and repletion of tissue glycogen, TAG, and ATP that was not observed in the FED hearts. GSH/GSSG at the end of reperfusion fell to the same value in both nutritional states, and TBARS levels were higher in the RFS hearts. In conclusion, RFS improved postischemic functional recovery, which was accompanied by a reduction in CK release and a striking energy recovery. Although enhanced G6PDH activity was displayed, RFS was unable to reduce lipid peroxidation, supporting a clear dissociation between protection against mechanical dysfunction and CK release on the one hand and oxidative damage on the other.  相似文献   

15.
Triglyceride turnover in reperfused/ischemic rat hearts was investigated. Hearts were initially perfused under aerobic conditions for a 1-h "pulse" perfusion with 1.2 mM [1-14C]palmitate to label the endogenous lipid pools, followed by a 30-min period of no-flow ischemia or a 10-min period of retrograde perfusion (control). Hearts were then reperfused under aerobic conditions with buffer containing 1.2 mM [9,10-3H]palmitate. All buffers contained 11 mM glucose and 500 microunits/ml insulin. Rates of endogenous triglyceride lipolysis and synthesis were measured during reperfusion, whereas rates of exogenous palmitate oxidation were measured both prior to ischemia and during reperfusion following ischemia. During reperfusion of ischemic hearts, a 20% increase in exogenous fatty acid oxidation rates was seen compared with pre-ischemic rates. Despite an initial burst of endogenous fatty acid oxidation, no acceleration of steady state endogenous triglyceride lipolysis was seen compared with their nonischemic hearts. In contrast, a significant increase in triglyceride synthesis was observed. Triglyceride turnover was also measured in a series of hearts reperfused following ischemia in the absence of exogenous fatty acids. A significant enhancement of functional recovery was seen compared with hearts reperfused with 1.2 mM palmitate. In addition, a significant increase in fatty acid oxidation from endogenous triglyceride lipolysis was observed. We conclude that the heart quickly recovers its ability to oxidize exogenous fatty acids during reperfusion and that although triglyceride lipolysis is not accelerated during reperfusion of ischemic hearts in the presence of 1.2 mM palmitate, a significant increase in triglyceride synthesis does occur.  相似文献   

16.
Preexisting magnesium deficiency may alter the susceptibility of rat hearts to postischemic oxidative injury (free radicals). This was examined in rats maintained for 3 weeks on a magnesium-deficient (Mg-D) diet with or without concurrent vitamin E treatment (1.2 mg/day, SC). Magnesium-sufficient (Mg-S) rats received the same diet supplemented with 100 mmol Mg/kg feed. Following sacrifice, isolated working hearts were subjected to 30-, 40-, or 60-min global ischemia and 30-min reperfusion. Postischemic production of free radicals was monitored using electron spin resonance (ESR) spectroscopy and spin trapping with -phenyl-N-tert butylnitrone (PBN, 3 mM final); preischemic and postischemic effluent samples were collected and then extracted with toluene. PBN/alkoxyl adduct(s) (PBN/RO·; H = 1.93 G,N = 13.63 G) were the dominant signals detected in untreated Mg-S and Mg-D postischemic hearts, with comparably higher signal intensities observed for the Mg-D group following any ischemic duration. Time courses of postischemic PBN/RO· detection were biphasic for both groups (maxima: 2–4 and 8.5–12.5 min), and linear relationships between the extent of PBN/RO· production and the severity of both mechanical dysfunction and tissue injury were determined. Following each duration of ischemia, Mg-D hearts displayed greater levels of total PBN adduct production (1.7 –2.0 times higher) and lower recovery of cardiac function (42–48% less) than Mg-S hearts. Pretreating Mg-D rats with vitamin E prior to imposing 40-min ischemia/reperfusion, led to a 49% reduction in total PBN/RO· production, a 55% lower LDH release and a 2.2-fold improvement in functional recovery, compared to untreated Mg-D hearts. These data suggest that magnesium deficiency predisposes postischemic hearts to enhanced oxidative injury and functional loss, and that antioxidants may offer significant protection against pro-oxidant influence(s) of magnesium deficiency.  相似文献   

17.
The effects of apelin-12, a 12 amino acid peptide (H-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe-OH, A-12), on recovery of energy metabolism and cardiac function have been studied in isolated working rat hearts perfused with Krebs buffer (KB) containing 11 mM glucose and subjected to global ischemia and reperfusion. Infusion of 140 μM A-12 before ischemia enhanced myocardial ATP, the total pool of adenine nucleotides (ΣAN = ATP+ADP+AMP) and the energy charge of cardiomyocytes ((ATP + 0.5ADP)/ΣAN) at the end of reperfusion compared with control (KB infusion) and decreased lactate content and lactate/pyruvate ratio in the reperfused myocardium up to the initial values. This was accompanied by improved recovery of coronary flow and cardiac function. Co-administration of A-12 and 100 μM L-NAME (an inhibitor of NO synthases) significantly attenuated the A-12 effects on metabolic and functional recovery of reperfused hearts. These results indicate involvement of NO in mechanisms of cardioprotection that are tightly associated with recovery of energy metabolism in the postischemic heart.  相似文献   

18.
Postischemic recovery of contractile function is better in hearts from fasted rats than in hearts from fed rats. In this study, we examined whether feeding-induced inhibition of palmitate oxidation at the level of carnitine palmitoyl transferase I is involved in the mechanism underlying impaired recovery of contractile function. Hearts isolated from fasted or fed rats were submitted to no-flow ischemia followed by reperfusion with buffer containing 8 mM glucose and either 0.4 mM palmitate or 0.8 mM octanoate. During reperfusion, oxidation of palmitate was higher after fasting than after feeding, whereas oxidation of octanoate was not influenced by the nutritional state. In the presence of palmitate, recovery of left ventricular developed pressure was better in hearts from fasted rats. Substitution of octanoate for palmitate during reperfusion enhanced recovery of left ventricular developed pressure in hearts from fed rats. However, the chain length of the fatty acid did not influence diastolic contracture. The results suggest that nutritional variation of mitochondrial fatty acid transfer may influence postischemic recovery of contractile function.  相似文献   

19.
To assess whether extrapancreatic effects of sulfonylureas in vivo are detectable in the absence of endogenous insulin secretion, insulin sensitivity was determined in six insulin-deficient type 1-diabetic subjects. Peripheral uptake and hepatic production of glucose and lipolysis were measured during hyperinsulinemia using the euglycemic clamp technique and 3-3H-glucose infusions twice, once during a period with glibornuride treatment (50 mg b.i.d.), and once without. Hepatic glucose production decreased in diabetic subjects during hyperinsulinemia (insulin infusion of 20 mU/m2 X min; plasma free insulin levels of 40 +/- 4 mU/l) from 2.9 +/- 0.6 mg/kg min to 0.2 +/- 0.1 mg/kg X min after 120 min, and plasma free fatty acid (FFA) concentrations decreased from 1.33 +/- 0.29 to 0.38 +/- 0.08 mmol/l. Hepatic production, peripheral uptake of glucose and plasma FFA concentrations before and during hyperinsulinemia were not influenced by pretreatment with glibornuride. Compared to 8 non-diabetic subjects, type 1-diabetics demonstrated a diminished effect of hyperinsulinemia on peripheral glucose clearance (2.4 +/- 0.04 vs 4.2 +/- 0.5 ml/kg X min, P less than 0.01), whereas hepatic glucose production and plasma FFA levels were similarly suppressed by insulin. The data indicate that sulfonylurea treatment did not improve the diminished insulin sensitivity of peripheral glucose clearance in type 1-diabetic subjects; insulin action on hepatic glucose production and lipolysis was unimpaired in diabetics and remained uninfluenced by glibornuride. Thus, extrapancreatic effects of sulfonylureas in vivo are dependent on the presence of functioning beta-cells.  相似文献   

20.
Controversy exists as to whether platelet-activating factor (PAF), a potent phospholipid mediator of inflammation, can actually protect the heart from postischemic injury. To determine whether endogenous activation of the PAF receptor is cardioprotective, we examined postischemic functional recovery in isolated hearts from wild-type and PAF receptor-knockout mice. Postischemic function was reduced in hearts with targeted deletion of the PAF receptor and in wild-type hearts treated with a PAF receptor antagonist. Furthermore, perfusion with picomolar concentrations of PAF improved postischemic function in hearts from wild-type mice. To elucidate the mechanism of a PAF-mediated cardioprotective effect, we employed a model of intracellular Ca2+ overload and loss of function in nonischemic ventricular myocytes. We found that PAF receptor activation attenuates the time-dependent loss of shortening and increases in intracellular Ca2+ transients in Ca2+ -overloaded myocytes. These protective effects of PAF depend on nitric oxide, but not activation of cGMP. In addition, we found that reversible S-nitrosylation of myocardial proteins must occur in order for PAF to moderate Ca2+ overload and loss of myocyte function. Thus our data are consistent with the hypothesis that low-level PAF receptor activation initiates nitric oxide-induced S-nitrosylation of Ca2+ -handling proteins, e.g., L-type Ca2+ channels, to attenuate Ca2+ overload during ischemia-reperfusion in the heart. Since inhibition of the PAF protective pathway reduces myocardial postischemic function, our results raise concern that clinical therapies for inflammatory diseases that lead to complete blockade of the PAF receptor may eliminate a significant, endogenous cardioprotective pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号