首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The speed with which individuals can learn to identify and react appropriately to predation threats when transitioning to new life history stages and habitats will influence their survival. This study investigated the role of chemical alarm cues in both anti-predator responses and predator identification during a transitional period in a newly settled coral reef damselfish, Pomacentrus amboinensis. Individuals were tested for changes in seven behavioural traits in response to conspecific and heterospecific skin extracts. Additionally, we tested whether fish could learn to associate a previously novel chemical cue (i.e. simulated predator scent) with danger, after previously being exposed to a paired cue combining the conspecific skin extract with the novel scent. Fish exposed to conspecific skin extracts were found to significantly decreased their feeding rate whilst those exposed to heterospecific and control cues showed no change. Individuals were also able to associate a previously novel scent with danger after only a single previous exposure to the paired conspecific skin extract/novel scent cue. Our results indicate that chemical alarm cues play a large role in both threat detection and learned predator recognition during the early post-settlement period in coral reef fishes.  相似文献   

2.
Predation is an important but often fluctuating selection factor for prey animals. Accordingly, individuals plastically adopt antipredator strategies in response to current predation risk. Recently, it was proposed that predation risk also plastically induces neophobia (an antipredator response towards novel cues). Previous studies, however, do not allow a differentiation between general neophobia and sensory channel-specific neophobic responses. Therefore, we tested the neophobia hypothesis focusing on adjustment in shoaling behavior in response to a novel cue addressing a different sensory channel than the one from which predation risk was initially perceived. From hatching onwards, juveniles of the cichlid Pelvicachromis taeniatus were exposed to different chemical cues in a split-clutch design: conspecific alarm cues which signal predation risk and heterospecific alarm cues or distilled water as controls. At 2 months of age, their shoaling behavior was examined prior and subsequent to a tactical disturbance cue. We found that fish previously exposed to predation risk formed more compact shoals relative to the control groups in response to the novel disturbance cue. Moreover, the relationship between shoal density and shoal homogeneity was also affected by experienced predation risk. Our findings indicate predator-induced, increased cross-sensory sensitivity towards novel cues making neophobia an effective antipredator mechanism.  相似文献   

3.
Chemical signaling is a vital mode of communication for most organisms, including larval amphibians. However, few studies have determined the identity or source of chemical compounds signaling amphibian defensive behaviors, in particular, whether alarm pheromones can be actively secreted from tadpoles signaling danger to conspecifics. Here we exposed tadpoles of the common toad Bufo bufo and common frog Rana temporaria to known cues signaling predation risk and to potential alarm pheromones. In both species, an immediate reduction in swimming activity extending over an hour was caused by chemical cues from the predator Aeshna cyanea (dragonfly larvae) that had been feeding on conspecific tadpoles. However, B. bufo tadpoles did not detectably alter their behavior upon exposure to potential alarm pheromones, neither to their own skin secretions, nor to the abundant predator-defense peptide bradykinin. Thus, chemicals signaling active predation had a stronger effect than general alarm secretions of other common toad tadpoles. This species may invest in a defensive strategy alternative to communication by alarm pheromones, given that Bufonidae are toxic to some predators and not known to produce defensive skin peptides. Comparative behavioral physiology of amphibian alarm responses may elucidate functional trade-offs in pheromone production and the evolution of chemical communication.  相似文献   

4.
In a series of experiments, we investigated the effects of food availability and risk frequency on the dynamics of predator-induced changes in growth and morphology of prey fish using goldfish (Carassius auratus) as our test species. In experiment 1, we fed goldfish high or low food rations and exposed them to either alarm cues from conspecifics, cues from swordtails or a water control. After 60 days, goldfish in the alarm cue treatment significantly increased their body depth and body weight but had smaller body length than goldfish exposed to swordtails cues or water, likely reducing their vulnerability to gape-limited predators. Importantly, food level had an impact on the amplitude of the morphological changes. In experiment 2, goldfish were exposed to two different frequencies of predation cues or a water control for 50 days. The cues were either continued or discontinued from day 51 to 100, and all cues were resumed from day 101 to 150. We found that goldfish exposed to predation cues increased their depth and weight at a faster rate than did the goldfish exposed to water, and of particular significance was the fact that frequency of risk had an effect on the amplitude of the change. When the cues were interrupted, the increase in growth rate parameters was reduced to the level of the goldfish exposed to water. However, when the cues were resumed, the rate increased to match the growth rate of the goldfish that were continuously exposed to the cues. Finally, we staged encounters between goldfish of differing morphologies and yellow perch (Perca flavescens) and found that deep-bodied goldfish had better survival than the shallow-bodied ones. These experiments illustrate the dynamic nature of inducible morphological defences.  相似文献   

5.
Assessment of predation risk is vital for the success of an individual. Primary cues for the assessment include visual and olfactory stimuli, but the relative importance of these sources of information for risk assessment has seldom been assessed for marine fishes. This study examined the importance of visual and chemical cues in assessing risk for the star goby, Asterropteryx semipunctatus. Visual and chemical cue intensities were used that were indicative of a high threat situation. The behavioural response elicited by both the visual cues of a predator (the rock cod, Cephalopholis boenak) and the chemical alarm cues from conspecifics were similar in magnitude, with responses including a decrease in feeding strikes and moves. A bobbing behaviour was exhibited when the predator was visible and not when only exposed to the chemical alarm cue. When visual and chemical cues were presented together they yielded a stronger antipredator response than when gobies were exposed solely to conspecific alarm cues. This suggests additivity of risk assessment information at the levels of threat used, however, the goby’s response is also likely to depend on the environmental and social context of the predator–prey encounter. This study highlights the importance of chemical cues in the assessment of predation risk for a coral reef fish.  相似文献   

6.
Chemical alarm cues released from injured tissue are not released under any other context and therefore reliably inform nearby prey of the presence of a predator. Laboratory and field studies have demonstrated that most aquatic taxa show antipredator responses to chemical alarm cues. Ostariophysan fish (e.g. minnows) possess specialized skin cells that contain an alarm chemical. Magurran et al. (1996, Proceedings of the Royal Society of London, Series B,263, 1551-1556) were the first to use underwater video to carefully document the behavioural response of free-ranging wild populations of minnows to minnow alarm cues. They found no evidence of an antipredator response, and challenged the assumption that the contents of these cells indicate risk in the field. They proposed that alarm responses are context dependent in that they are an artefact of enclosed environments such as laboratory aquaria and field traps. Here, we repeat their experiment on free-swimming field populations of littoral fish and report a significant decrease in the number of fish in areas where chemical alarm cues of blacknose shiners, Notropis heterolepis (Ostariophysi: Cyprinidae) were released. The effect of these chemical cues was equal in magnitude to the effect of the presentation of a model predator. The response to the approach of a model predator (visual cue) was intensified by pre-exposure to chemical alarm cues. We corroborated this interaction between chemical and visual indicators of predation risk in a laboratory study using glowlight tetras, Hemigrammus erythrozonus (Ostariophysi: Characidae). Response to the visual stimulus of a predator was significantly intensified by previous exposure to conspecific chemical alarm cues. We conclude that ostariophysan skin indeed contains an alarm cue that (1) informs nearby prey of imminent predation risk, (2) induces some form of antipredator behaviour in most contexts, and (3) affects subsequent behavioural responses to stimuli in other sensory modalities.  相似文献   

7.
The effects of temporal variation in exposure to predation risk on behavioral tradeoffs were tested in the rusty crayfish, Orconectes rusticus. Based on the risk allocation hypothesis, we predicted that increasing the frequency of encounter with predation risk would yield increasing responses to a food stimulus in the presence of both a risk stimulus and a food stimulus. Crayfish were exposed to risk every 12 h, every 6 h, or left undisturbed for 24 h prior to testing. The risk stimuli used were a plain water control, snapping turtle (Chelydra serpentina) cue, and conspecific alarm cue. After 24 h of conditioning, the crayfish were exposed to a combination of risk cue and food cue. The behavioral responses of the crayfish were recorded for 5 min immediately following the introduction of the cues and again for 5 min, 1 h after stimulus exposure. The crayfish were observed at the two times to determine how their responses to the combination of risk and food cues changed over time. The responses of the crayfish were significantly influenced by stimulus treatment, time, and the interaction of time and stimulus treatment. Further analysis indicated that responses to the stimulus treatments changed differently over time. Immediately after exposure, the crayfish were more active in the control and snapping turtle treatments than in the conspecific alarm treatment. The high levels of activity initially observed in the control and snapping turtle treatments waned over time, such that the behaviors recorded 1 h after exposure were not significantly affected by stimulus treatment. Neither frequency nor the interactions of frequency with stimulus and/or time significantly affected crayfish behavior. The results of this study did not support the risk allocation model and contrast with results from similar work on the virile crayfish, Orconectes virilis.  相似文献   

8.
In aquatic environments, chemical cues serve as an important source of information for the detection of predation risk. Here, we investigate the response of convict cichlids, Cichlasoma nigrofasciatum, to injury-released chemical cues. We exposed pairs of juvenile convict cichlids first to dechlorinated tap water (control), then later to one of two test stimuli: 1. chemical cues from injured convict cichlids; or 2. chemical cues from injured mosquito fish, Gambusia affinis. Gambusia are allopatric and phylogenetically unrelated to convict cichlids. Gambusia skin was used to control for a general response to injured fish. In response to conspecific cues, convict cichlids significantly increased time spent near the bottom of test aquaria and time under a shelter object. In response to Gambusia skin, convict cichlids tended to increase time spent near the tank bottom but did not increase use of the shelter object. There was a trade-off between antipredator and agonistic behaviours. In response to convict cichlid cues, there was a significant reduction in the frequency of approaches and bites. Gambusia skin extract had no significant effect on aggressive behaviour. These data suggest a species-specific antipredator response to conspecific alarm pheromones in a New World cichlid fish and demonstrate a trade-off between predator avoidance and intraspecific aggression. Further, the presence of an alarm response in this model species sets the stage for the use of chemical cues as a research tool to manipulate predation risk in studies of the interaction between predation risk and reproductive behaviour.  相似文献   

9.
Sensitivity to chemical cues associated with predation threat has been well observed in many freshwater zooplankters, yet few studies have highlighted such sensitivity in eury‐ and stenohaline metazoans. We aimed to assess sensitivity to conspecific chemical alarm cues in the estuarine copepod, Paracartia longipatella. Alarm cues associated with predation have been shown to have population level effects on certain zooplanktonic species. As such, we assessed the occurrence of such effects on population dynamics of P. longipatella over a 12 day period. Using experimental in situ mesocosms, we compared P. longipatella adult, copepodite and nauplii numbers between three treatments; one inoculated with conspecific alarm cues, one containing direct predation pressure (zooplanktivorous fish), and a control treatment containing no predation threat. Trends in population abundances were similar between the direct predation and alarm cue treatments for the six days of the experiment, decreasing in abundance. During the latter half of the study, however, P. longipatella abundances in the alarm cue treatment increased, while those in the presence of direct predation continued to decrease. In the treatment absent of any predation threat, P. longipatella abundances increased consistently over time for the duration of the study. We suggest that P. longipatella are indeed sensitive to conspecific alarm cues associated with predation threat. Furthermore, we propose that prolonged exposure to conspecific alarm cues in the absence of any real threat results in a reduction in sensitive to these cues.  相似文献   

10.
Animals use chemical cues to find food, locate mates, and detect potential predators. Detecting cues in a risky environment can induce behavioral changes to increase survival. Rusty crayfish (Orconectes rusticus) reduce activity, increase refuge use, and make defensive displays after detecting fish predator cues. However, no studies have introduced amphibian cues. We investigated crayfish responses to hellbender salamander (Cryptobranchus alleganiensis, a dominant predator of crayfish) cues and compared these to responses to largemouth bass (Micropterus salmoides) cues. Largemouth bass occur sympatrically with hellbenders and are known to induce distinct responses in rusty crayfish. We randomly assigned crayfish to predator cue and conspecific alarm cue combinations and recorded frozen behavior, appendage movement, locomotion, and refuge use. We found crayfish increased their proportion of time spent frozen and reduced their proportion of time spent active in the tank when exposed to either predator cue. Moreover, these responses were magnified when crayfish were exposed to predator cues in combination with conspecific alarm cues. Our experiment demonstrates evidence in support of the crayfish’s ability to detect and appropriately respond to predator cues alone and in combination with conspecific alarm cues. Future work should investigate the effects of these behavioral changes on trophic dynamics in a natural system.  相似文献   

11.
The alarm response to skin extract has been well documented in fish. In response to skin extract, there is a decline in both locomotion activity and aggressive interactions. Our observation herein of these responses in the cichlid Nile tilapia, Oreochromis niloticus, confirmed the existence of the alarm response in this species. However, so far there has been a paucity of information on the autonomic correlates of this response. In this study, the ventilatory change in response to the chemical alarm cue was evaluated. This parameter was measured 4 min before and 4 min after exposure to 1 mL of either conspecific skin extract or distilled water (extract vehicle). Skin extract induced an increase in the ventilation rate, which suggested an anticipatory adjustment to potentially harmful stimuli. The chemical cue (alarm substance) also interfered with the prioritisation of responses to different environmental stimuli (stimuli filtering); this was suggested by the observation that the Nile tilapia declined to fight after exposure to a cue that indicates a risk of predation. Furthermore, histological analysis of the Nile tilapia skin revealed the presence of putative alarm substance-producing (club) cells.  相似文献   

12.
Habitat degradation not only disrupts habitat‐forming species, but alters the sensory landscape within which most species must balance behavioural activities against predation risk. Rapidly developing a cautious behavioural phenotype, a condition known as neophobia, is advantageous when entering a novel risky habitat. Many aquatic organisms rely on damage‐released conspecific cues (i.e. alarm cues) as an indicator of impending danger and use them to assess general risk and develop neophobia. This study tested whether settlement‐stage damselfish associated with degraded coral reef habitats were able to use alarm cues as an indicator of risk and, in turn, develop a neophobic response at the end of their larval phase. Our results indicate that fish in live coral habitats that were exposed to alarm cues developed neophobia, and, in situ, were found to be more cautious, more closely associated with their coral shelters and survived four‐times better than non‐neophobic control fish. In contrast, fish that settled onto degraded coral habitats did not exhibit neophobia and consequently suffered much greater mortality on the reef, regardless of their history of exposure to alarm cues. Our results show that habitat degradation alters the efficacy of alarm cues with phenotypic and survival consequences for newly settled recruits.  相似文献   

13.
1. Predation incurs high fitness costs in aquatic organisms either through direct consumption or through avoidance responses that reduce time for activities such as feeding and reproduction. Hence, avoidance responses of aquatic organisms should vary to match closely the predation threat in their environment.
2. The freshwater gastropod Lymnaea stagnalis occurs in a variety of environments which vary in the presence or absence of predatory fish. We used naïve snails reared from six populations of this species experiencing different predator regimes (three co-occurring with molluscivorous fish and three without) to assess whether populations differed in the type and degree of their avoidance behaviours. Innate behavioural responses to four treatments (control, conspecific alarm cues, fish kairomones and fish kairomones paired with alarm cue) were compared in laboratory trials.
3. The primary anti-predator behaviour of L. stagnalis in response to fish kairomones was to crawl out of the water rather than seek refuge under water. This response was strongest when fish kairomones were paired with alarm cues, and varied depending on population origin; snails reared from populations co-occurring with predatory fish showed a stronger response than those raised from populations not experiencing such predators. In addition, populations co-occurring with predatory fish responded to the fish kairomones presented alone.
4. Our findings suggest that the degree of innate anti-predator behaviour shown by L. stagnalis , in terms of both the level of risk to which it responds and the degree of response, varies depending on the predator regime experienced by field populations. Together with previous work on cue association, this demonstrates that this gastropod is able to match its avoidance behaviour very closely to short and long term predation threats within its habitat.  相似文献   

14.
Rohr JR  Madison DM 《Oecologia》2003,135(4):657-664
One hypothesis for amphibian declines is that increased dryness attributed to global climate change exposes amphibians to greater biotic threat and, consequently, greater mortality. But, little is known about behavioral responses of terrestrial amphibians to dry conditions alone or in combination with biotic threats. We used field observations and laboratory experiments to test the response of efts (terrestrial juveniles) of the eastern red-spotted newt, Notophthalmus viridescens, to separate and combined desiccation and predation risks. When only at risk of desiccation, efts moved into shade, traveled down slope, decreased activity, and adopted water-conserving postures. Efts also significantly reduced the rate of water loss by huddling and were attracted to chemical cues from conspecific efts but not from conspecific adults. Thus, efts have a variety of behaviors that reduce the risk of dehydration associated with climate change. When faced only with a predation risk, represented by adult and eft newt tissue extracts (alarm chemicals), efts reduced their activity and avoided alarm cues from both sources. When exposed to combined desiccation and predation risks, efts were less active than when exposed to either risk separately and avoided adult tissue extracts, but not eft extracts. These results suggest that under dry conditions, conspecific tissue extracts contain both attractive (huddling) and repulsive (predator-related) chemical components that induce offsetting behavioral responses. This is the first study to demonstrate moisture-dependent responses to conspecific rinses and alarm substances, underscoring the importance of considering environmental moisture and animal hydration in studies examining responses to conspecific odors and/or alarm chemicals. These results support the hypothesis that elevated dehydration risk may compromise anti-predator behavior and exacerbate amphibian population declines.  相似文献   

15.
The threat sensitivity hypothesis predicts that organisms will evaluate the relative danger of and respond differentially to varying degrees of predation threat. Doing so allows potential prey to balance the costs and benefits of anti-predator behaviors. Threat sensitivity has undergone limited testing in the auditory modality, and the relative threat level of auditory cues from different sources is difficult to infer across populations when variables such as background risk and experience are not properly controlled. We experimentally exposed a single population of two sympatric gull species to auditory stimuli representing a range of potential threats in order to compare the relative threat of heterospecific alarm calls, conspecific alarms calls, predator vocalizations, and novel auditory cues. Gulls were able to discriminate among a diverse set of threat indicators and respond in a graded manner commensurate with the level of threat. Vocalizations of two potential predators, the human voice and bald eagle call, differed in their threat level compared to each other and to alarm calls. Conspecific alarm calls were more threatening than heterospecfic alarm calls to the larger great black-backed gull, but the smaller herring gull weighed both equally. A novel cue elicited a response intermediate between known threats and a known non-threat in herring gulls, but not great black-backed gulls. Our results show that the relative threat level of auditory cues from different sources is highly species-dependent, and that caution should be exercised when comparing graded and threshold threat sensitive responses.  相似文献   

16.
Predation risk is one of the major forces affecting phenotypic variation among and within animal populations. While fixed anti-predator morphologies are favoured when predation level is consistently high, plastic morphological responses are advantageous when predation risk is changing temporarily, spatially, or qualitatively. Three-spined sticklebacks (Gasterosteus aculeatus) are well known for their substantial variability in morphology, including defensive traits. Part of this variation might be due to phenotypic plasticity. However, little is known about sticklebacks’ plastic ability to react morphologically to changing risks of predation and about the proximate cues involved. Using a split-clutch design we show that odour of a predatory fish induces morphological changes in sticklebacks. Under predation risk, i.e., when exposed to odour of a predator, fish grew faster and developed a different morphology, compared to fish reared under low predation risk, i.e., exposed to odour of a non-predatory fish, or in a fish-free environment. However, fast growing comes at cost of increased body asymmetries suggesting developmental constraints. The results indicate that sticklebacks are able to distinguish between predatory and non-predatory fishes by olfactory cues alone. As fishes were fed on invertebrates, this reaction was not induced by chemical cues of digested conspecifics, but rather by predator cues themselves. Further, the results show that variation in body morphology in sticklebacks has not only a strong genetical component, but is also based on plastic responses to different environments, in our case different predation pressures, thus opening new questions for this model species in ecology and evolution.  相似文献   

17.
The ability to accurately assess local predation risk is criticalto prey individuals, as it allows them to maximize threat-sensitivetrade-offs between predator avoidance and other fitness relatedactivities. A wide range of taxonomically diverse prey (includingmany freshwater fishes) relies on chemical alarm cues (alarmpheromones) as their primary information source for local riskassessment. However, the value of chemical alarm cues has beenquestioned due to the availability of additional sensory inputs(i.e., visual cues) and the lack of an overt antipredator responseunder conditions of low perceived risk. In this paper, we testthe hypothesis that chemical alarm cues at concentrations belowthe point at which they elicit an overt behavioral responsefunction to increase vigilance towards other sensory modalities(i.e., visual alarm cues). Shoals of glowlight tetras (Hemigrammuserythrozonus) exposed to the subthreshold concentration of hypoxanthine-3-N-oxide(the putative Ostariophysan alarm pheromone) did not exhibitan overt antipredator response in the absence of secondary visualcues (not different than the distilled water control). However,when exposed to the sight of a visually alarmed conspecific,they significantly increased the intensity of their antipredatorresponse (not different from shoals exposed to the suprathresholdalarm cue). This study demonstrates that prey may benefit fromresponding to low concentration alarm cues by increasing vigilancetowards secondary cues during local risk assessment, even inthe absence of an overt behavioral response. By increasing vigilancetowards secondary risk assessment cues in the presence of alow risk chemical cue, individuals are likely able to maximizethe threat-sensitive trade-offs between predator avoidance andother fitness related activities.  相似文献   

18.
When a predators attack prey, damaged prey tissue releases chemical information that reliably indicates an actively foraging predator. Prey use these semiochemicals to cue anti-predator behaviour and reduce their probability of predation. Here, we test central mudminnows, Umbra limi (Kirtland 1840), for anti-predator behavioural responses to chemical cues in conspecific skin extract. In a field experiment, traps scented with mudminnow skin extract (alarm cue) caught fewer mudminnows than traps scented with water (control). Under controlled laboratory conditions, mudminnows showed a significant reduction in activity and movement to the bottom in response to alarm cues relative to water controls. Reduced activity and increased time on the bottom of the tank are both known components of an anti-predator response. Thus, based on field and lab data, mudminnows exhibited anti-predator behavioural responses to chemical alarm cues released by damaged epidermal tissue. Histological preparations of epidermal tissue did not reveal the presence of specialised “alarm substance” cells for the production of chemical alarm cues. This is the first report of an alarm reaction in an esociform, an order with a long evolutionary history of piscivory.  相似文献   

19.
Injury‐released chemical cues are reliable indicators of predation risk among many aquatic taxa. When a novel, neutral stimulus is presented in tandem with chemical cues from an injured conspecific, an association is formed between the novel stimulus and apparent risk. Learned recognition of predation risk is well documented for fathead minnows, Pimephales promelas. When minnows detect alarm cues in nature they are also potentially exposed to multiple environmental stimuli, few of which are likely to be relevant indicators of risk. How do minnows discern among candidate stimuli potentially associated with predation risk? Two possibilities are shape and motion. In this study, individual piscivore‐naïve minnows were presented simultaneously with conspecific chemical alarm cues and two stimulus objects. One object was a darkened tube with its long axis in the horizontal plane (fish‐like). The second object was a black disk. Following introduction of chemical alarm cues, one of the objects was raised and lowered repeatedly. After a single conditioning trial, minnows associated risk significantly more with the previously moving object than the previously stationary object, as indicated by reduced activity. Object shape had no significant effect on response intensity in test trials. Our data suggest that minnows have been selected to form aversive responses to moving objects at a site of recent predation because movement is a more predictable indicator of predator identity than shape.  相似文献   

20.
Leduc AO  Kelly JM  E Brown G 《Oecologia》2004,139(2):318-324
A variety of fishes possess damage-released chemical alarm cues, which play a critical role in the detection and avoidance of potential predation threats. Recently, we have demonstrated that the ability of fathead minnows (Pimephales promelas) and finescale dace (Phoxinus neogaeus) to detect and respond to conspecific alarm cues is significantly reduced under weakly acidic conditions (pH 6.0). Rainbow trout (Oncorhynchus mykiss) and brook charr (Salvelinus fontinalis) possess an analogous alarm cue system. However, it is unknown if the trout alarm cue system is likewise affected by relatively small changes in pH. In addition, previous studies have not verified this phenomenon under natural conditions. We conducted laboratory and field trials to examine the potential effects of acute exposure to weakly acidic (pH 6.0) conditions on the detection and response of conspecific alarm cues by juvenile trout. Our laboratory results demonstrate that while juvenile rainbow trout exhibit significant increases in antipredator behaviour under normal pH conditions (pH 7.0–7.2), they do not respond to the presence of conspecific chemical alarm cues (i.e. response is not different from controls) under weakly acidic conditions. Similarly, a wild strain of brook charr in their natural streams near Sudbury, Ontario, failed to detect conspecific alarm cues in a weakly acidic stream (mean pH 6.11) while they responded to these cues in a neutral stream (mean pH of 6.88). This is the first demonstration that relatively small changes in ambient pH can influence alarm responses under natural conditions. These data suggest significant, sub-lethal effects of acid precipitation on natural waterways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号