首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A series of compounds has been prepared by reaction of dicyandiamide with alkyl/arylsulfonyl halides as well as arylsulfonylisocyanates to locate a lead for obtaining weakly basic thrombin inhibitors with sulfonyldicyandiamide moieties as the S1 anchoring group. The detected lead was sulfanilyl-dicyandiamide (K1 of 3 microM against thrombin, and 15 microM against trypsin), which has been further derivatized at the 4-amino group by incorporating arylsulfonylureido as well as amino acyl/dipeptidyl groups protected at the amino terminal moiety with benzyloxycarbonyl or tosylureido moieties. The best compound obtained (ts-D-Phe-Pro-sulfanilyl-dicyandiamide) showed inhibition constants of 9 nM against thrombin and 1400 nM against trypsin. pKa measurements showed that the new derivatives reported here do indeed possess a reduced basicity, with the pKa of the modified guanidine moieties in the range 7.9-8.3 pKa units. Molecular mechanics calculations showed that the preferred tautomeric form of these compounds is of the type ArSO2N=C(NH2) NH-CN, probably allowing for the formation of favorable interaction between this new anchoring group and the active site amino acid residue Asp 189, critical for substrate/inhibitor binding to this type of serine protease. Thus, the main finding of the present paper is that the sulfonyldicyandiamide group may constitute an interesting alternative for obtaining weakly basic, potent thrombin inhibitors, which bind with less affinity to trypsin.  相似文献   

2.
Three series of derivatives have been prepared by reaction of sulfanilylaminoguanidine with pyrylium salts, with the pyridinium derivatives of glycine and with the pyridinium derivatives of beta-alanine, respectively. The new compounds were assayed as inhibitors of two serine proteases, thrombin and trypsin. The study showed that in contrast to the leads, possessing KI's around 100-300 nM against thrombin, and 450-1420 nM against trypsin, respectively, the new derivatives showed inhibition constants in the range of 15-50 nM against thrombin, whereas their affinity for trypsin remained relatively low. Derivatives of beta-alanine were more active than the corresponding glycine derivatives, which in turn were more inhibitory than the pyridinium derivatives of sulfanilylaminoguanidine possessing the same substitution pattern at the pyridinium ring. Thus, the present study proposes two novel approaches for the preparation of high affinity, specific thrombin inhibitors: a novel S1 anchoring moiety in the already large family of arginine/amidine-based inhibitors, i.e., the SO2NHNHC(=NH)NH2 group, and novel non-peptidomimetic scaffolds obtained by incorporating alkyl-/aryl-substituted-pyridinium moieties in the hydrophobic binding site(s). The first one is important for obtaining bioavailable thrombin inhibitors, devoid of the high basicity of the commonly used arginine/amidine-based inhibitors, whereas the second one may lead to improved water solubility of such compounds.  相似文献   

3.
Three series of derivatives have been prepared by reaction of sulfanilylaminoguanidine with pyrylium salts, with the pyridinium derivatives of glycine and with the pyridinium derivatives of β-alanine, respectively. The new compounds were assayed as inhibitors of two serine proteases, thrombin and trypsin. The study showed that in contrast to the leads, possessing K1's around 100–300nM against thrombin, and 450–1420nM against trypsin, respectively, the new derivdtives showed inhibition constants in the range of 15–50nM against thrombin, whereas their affinity for trypsin remained relatively low. Derivatives of β-alanine were more active than the corresponding glycine derivatives, which in turn were more inhibitory than the pyridinium derivatives of sulfanilylaminoguanidine possessing the same substitution pattern at the pyridinium ring. Thus, the present study proposes two novel approaches for the preparation of high affinity, specific thrombin inhibitors: a novel S1 anchoring moiety in the already large family of arginine/amidine-based inhibitors, i.e., the SO2NHNHC(=NH)NH2 group, and novel non-peptidomimetic scaffolds obtained by incorporating alkyl-/aryl-substituted-pyridinium moieties in the hydrophobic binding site(s). The first one is important for obtaining bioavailable thrombin inhibitors, devoid of the high basicity of the commonly used arginine/amidine-based inhibitors, whereas the second one may lead to improved water solubility of such compounds.  相似文献   

4.
Several classes of compounds have been tested as potential inhibitors of the serine protease thrombin, an important regulator of blood coagulation cascades. We describe here the discovery of a new class of thrombin inhibitors based on an unnatural carbamate biopolymer. Oligocarbamate thrombin inhibitors were identified through the screening of diverse cyclic trimer, cyclic tetramer, and linear tetramer libraries using the one bead, one peptide method. Whereas the cyclic trimer oligocarbamate ligands bound thrombin with modest affinity, a cyclic tetramer oligocarbamate inhibited thrombin with an apparent Ki of 31 nM. Linear oligocarbamate tetramers bound thrombin with inhibition constants in the 100-nM range. These nonpeptidic, oligomeric molecules may provide the basis for further drug development and studies of thrombin ligand interactions.  相似文献   

5.
A series of novel peptidyl-alpha-ketoamide compounds were evaluated as inhibitors of the deltaNS3-NS4A serine protease from the hepatitis C virus. These peptidyl-alpha-ketoamide inhibitors with Ki values ranging from 0.17 nM to 5.6 microM exhibited slow-binding inhibition. Kinetic studies established one-step kinetic mechanisms and dissociation rate constants in the 3-7 x 10(-5) s(-1) range for these compounds. The association rate constants, which ranged from 10 to 263,000 M(-1) s(-1), were responsible for the greater than four order of magnitude overall binding affinity range exhibited by this series. An X-ray crystal structure of a protease-inhibitor complex revealed an unusual interaction between the oxyanion of the adduct and the protein as well as a significant movement in the S1' region of the protein loop comprising residues 35-42. These results are quite different from peptidyl-alpha-ketoacid inhibition of HCV protease, which reportedly undergoes no notable conformational changes and proceeds with a two-step slow-binding kinetic mechanism.  相似文献   

6.
An extensive structural manifold of short hydrogen bond-mediated, active site-directed, serine protease inhibition motifs is revealed in a set of over 300 crystal structures involving a large suite of small molecule inhibitors (2-(2-phenol)-indoles and 2-(2-phenol)-benzimidazoles) determined over a wide range of pH (3.5-11.4). The active site hydrogen-bonding mode was found to vary markedly with pH, with the steric and electronic properties of the inhibitor, and with the type of protease (trypsin, thrombin or urokinase type plasminogen activator (uPA)). The pH dependence of the active site hydrogen-bonding motif is often intricate, constituting a distinct fingerprint of each complex. Isosteric replacements or minor substitutions within the inhibitor that modulate the pK(a) of the phenol hydroxyl involved in short hydrogen bonding, or that affect steric interactions distal to the active site, can significantly shift the pH-dependent structural profile characteristic of the parent scaffold, or produce active site-binding motifs unique to the bound analog.Ionization equilibria at the active site associated with inhibitor binding are probed in a series of the protease-inhibitor complexes through analysis of the pH dependence of the structure and environment of the active site-binding groups involved in short hydrogen bond arrays. Structures determined at high pH (>11), suggest that the pK(a) of His57 is dramatically elevated, to a value as high as approximately 11 in certain complexes. K(i) values involving uPA and trypsin determined as a function of pH for a set of inhibitors show pronounced parabolic pH dependence, the pH for optimal inhibition governed by the pK(a) of the inhibitor phenol involved in short hydrogen bonds. Comparison of structures of trypsin, thrombin and uPA, each bound by the same inhibitor, highlights important structural variations in the S1 and active sites accessible for engineering notable selectivity into remarkably small molecules with low nanomolar K(i) values.  相似文献   

7.
Two conformationally constrained templates have been designed to provide selective inhibitors of the coagulation cascade serine protease, Factor Xa (FXa). The most active inhibitor, 2,7-bis[(Z)-p-amidinobenzylidene)]-3,3,6,6-tetramethylcycloheptanone, exhibits a K(i) of 42 nM against FXa, with strong selectivity against thrombin (1000-fold), trypsin (300-fold) and plasmin (900-fold). With only two freely rotatable bonds, molecular modeling suggests that one amidine group is positioned into the S1 pocket, forming hydrogen bonds with the side chain of Asp189, similar to other amidine-based inhibitors, with the second benzamidine positioned into the S4 pocket in a position to form strong cation-pi bonding with the S4 aryl cage. We suggest that this interaction plays an important role in the specificity of these inhibitors against other serine proteases.  相似文献   

8.
Two series of derivatives have been prepared and assayed as inhibitors of two physiologically relevant serine proteases, human thrombin and human trypsin. The first series includes alkyl-/ aralkyl-/aryl- and hetarylsulfonyl-aminoguanidines. It was thus observed that sulfanilyl-aminoguanidine possesses moderate but intrinsically selective thrombin inhibitory properties, with KI values around 90 and 1400 nM against thrombin and trypsin respectively. Further elaboration of this molecule afforded compounds that inhibited thrombin with KI values in the range 10-50 nM, whereas affinity for trypsin remained relatively low. Such compounds were obtained either by attaching benzyloxycarbonyl- or 4-toluenesulfonylureido-protected amino acids (such as D-Phe, L-Pro) or dipeptides (such as Phe-Pro, Gly His, beta-Ala-His or Pro-Gly) to the N-4 atom of the lead molecule, sulfanilyl-aminoguanidine, or by attaching substituted-pyridinium propylcarboxamido moieties to this lead. Thus, this study brings novel insights regarding a novel non-basic S1 anchoring moiety (i.e., SO2NHNHC(=NH)NH2), and new types of peptidomimetic scaffolds obtained by incorporating tosylureido-amino acids/pyridinium-substituted-GABA moieties in the hydrophobic binding site(s). Structure-activity correlations of the new serine protease inhibitors are also discussed based on a QSAR model described previously for a large series of structurally-related derivatives (Supuran et al. (1999) J. Med. Chem., in press).  相似文献   

9.
We describe a new serine protease inhibition motif in which binding is mediated by a cluster of very short hydrogen bonds (<2.3 A) at the active site. This protease-inhibitor binding paradigm is observed at high resolution in a large set of crystal structures of trypsin, thrombin, and urokinase-type plasminogen activator (uPA) bound with a series of small molecule inhibitors (2-(2-phenol)indoles and 2-(2-phenol)benzimidazoles). In each complex there are eight enzyme-inhibitor or enzyme-water-inhibitor hydrogen bonds at the active site, three of which are very short. These short hydrogen bonds connect a triangle of oxygen atoms comprising O(gamma)(Ser195), a water molecule co-bound in the oxyanion hole (H(2)O(oxy)), and the phenolate oxygen atom of the inhibitor (O6'). Two of the other hydrogen bonds between the inhibitor and active site of the trypsin and uPA complexes become short in the thrombin counterparts, extending the three-centered short hydrogen-bonding array into a tetrahedral array of atoms (three oxygen and one nitrogen) involved in short hydrogen bonds. In the uPA complexes, the extensive hydrogen-bonding interactions at the active site prevent the inhibitor S1 amidine from forming direct hydrogen bonds with Asp189 because the S1 site is deeper in uPA than in trypsin or thrombin.Ionization equilibria at the active site associated with inhibitor binding are probed through determination and comparison of structures over a wide range of pH (3.5 to 11.4) of thrombin complexes and of trypsin complexes in three different crystal forms. The high-pH trypsin-inhibitor structures suggest that His57 is protonated at pH values as high as 9.5. The pH-dependent inhibition of trypsin, thrombin, uPA and factor Xa by 2-(2-phenol)benzimidazole analogs in which the pK(a) of the phenol group is modulated is shown to be consistent with a binding process involving ionization of both the inhibitor and the enzyme. These data further suggest that the pK(a) of His57 of each protease in the unbound state in solution is about the same, approximately 6.8. By comparing inhibition constants (K(i) values), inhibitor solubilities, inhibitor conformational energies and corresponding structures of short and normal hydrogen bond-mediated complexes, we have estimated the contribution of the short hydrogen bond networks to inhibitor affinity ( approximately 1.7 kcal/mol). The structures and K(i) values associated with the short hydrogen-bonding motif are compared with those corresponding to an alternate, Zn(2+)-mediated inhibition motif at the active site. Structural differences among apo-enzymes, enzyme-inhibitor and enzyme-inhibitor-Zn(2+) complexes are discussed in the context of affinity determinants, selectivity development, and structure-based inhibitor design.  相似文献   

10.
This work describes the purification, gene cloning and expression of infestin, a thrombin inhibitor from midguts of Triatoma infestans. Infestin is located in the midgut and its purification was performed by anion-exchange and affinity chromatographies. The N-terminal sequence and the sequence of tryptic peptides were determined. Using RT-PCR, total RNA and infestin cDNA information, a DNA fragment was cloned which encodes a multi non-classical Kazal-type serine protease inhibitor. Isolated native infestin has two non-classical Kazal-type domains and shows an apparent molecular mass of 13 kDa, while its gene codes for a protein with four non-classical Kazal-type domains corresponding to an apparent molecular mass of 22 kDa. Two recombinant infestins, r-infestin 1-2 and r-infestin 1-4, were constructed using the vector pVT102U/alpha and expressed in S. cerevisiae. Native and r-infestin 1-2 showed very similar inhibitory activities towards thrombin and trypsin with dissociation constants of 43.5 and 25 pM for thrombin and 2.0 and 3.1 nM for trypsin, respectively. No other serine protease of the blood coagulation cascade was inhibited by the r-infestin 1-2. Surprisingly, r-infestin 1-4 inhibited not only thrombin and trypsin (K(i) of 0.8 and 5.2 nM, respectively), but also factor XIIa, factor Xa and plasmin (K(i) of 78 pM, 59.2 and 1.1 nM, respectively).  相似文献   

11.
Evolution of P(1)-argininal inhibitor prototypes led to a series of non-covalent P(3)-7-membered lactam inhibitors 1a-w, featuring novel peptidomimetic units that probe each of the S(1), S(2), and S(3) specificity pockets of thrombin. Rigid P(1)-arginine surrogates possessing a wide range of basicity (calcd pK(a)'s approximately neutral-14) were surveyed. The design, synthesis, and biological activity of these targets are presented.  相似文献   

12.
Abstract

For use as an antithrombotic agent, a thrombin inhibitor must be potent and specific, i.e., it should not significantly inhibit the proteases of the anticoagulation (activated protein C) and fibrinolytic systems (plasminogen activator and plasmin). Previous evaluation of potency and specificity has been based on inhibition constants (Ki values). However, consideration of the kinetic parameters for natural plasma serine protease inhibitors indicates that a low Ki value with thrombin is not sufficient; the inhibited complex must also form rapidly. Moreover, potent inhibition of activated protein C and plasmin could be tolerated providing the inhibited complex only forms slowly. An ideal profile of kinetic parameters with thrombin, activated protein C and plasmin is formulated and discussed in relation to various classes of thrombin inhibitors. Examination of kinetic data for thrombin inhibitors currently in clinical trials (hirudin and hirulog) indicates that they possess this ideal profile of kinetic parameters.  相似文献   

13.
X-ray diffraction studies of human thrombin revealed that compared with trypsin, two insertions (B and C) potentially limit access to the active site groove. When amino acids Glu146, Thr147, and Trp148, adjacent to the C-insertion (autolysis loop), are deleted the resulting thrombin (des-ETW) has dramatically altered interaction with serine protease inhibitors. Whereas des-ETW resists antithrombin III inactivation with a rate constant (Kon) approximately 350-fold slower than for thrombin, des-ETW is remarkably sensitive to the Kunitz inhibitors, with inhibition constants (Ki) decreased from 2.6 microM to 34 nM for the soybean trypsin inhibitor and from 52 microM to 1.8 microM for the bovine pancreatic trypsin inhibitor. The affinity for hirudin (Ki = 5.6 pM) is weakened at least 30-fold compared with recombinant thrombin. The mutation affects the charge stabilizing system and the primary binding pocket of thrombin as depicted by a decrease in Kon for diisopropylfluorophosphate (9.5-fold) and for N alpha-p-tosyl-L-lysine-chloromethyl ketone (51-fold) and a 39-fold increase in the Ki for benzamidine. With peptidyl p-nitroanilide substrates, the des-ETW deletion results in changes in the Michaelis (Km) and/or catalytic (kcat) constants, worsened as much as 85-fold (Km) or 100-fold (kcat). The specific clotting activity of des-ETW is less than 5% that of thrombin and the kcat/Km for protein C activation in the absence of cofactor less than 2%. Thrombomodulin binds to des-ETW with a dissociation constant of approximately 2.5 nM and partially restores its ability to activate protein C since, in the presence of the cofactor, kcat/Km rises to 6.5% that of thrombin. This study suggests that the ETW motif of thrombin prevents (directly or indirectly) its interaction with the two Kunitz inhibitors and is not essential for the thrombomodulin-mediated enhancement of protein C activation.  相似文献   

14.
A series of succinyl hydroxamates/bishydroxamates as well as a new structural type of matrix metalloproteinase (MMP)/bacterial protease (BP) inhibitors, incorporating iminodiacetic (IDA) hydroxamate/bishydroxamate moieties, has been synthesized and tested for interaction with four vertebrate proteases, MMP-1, MMP-2, MMP-8 and MMP-9, and a BP, the collagenase isolated from Clostridium histolyticum (ChC). The new derivatives generally showed inhibition constants in the range of 8-62 nM against the five proteases mentioned above.  相似文献   

15.
A series of succinyl hydroxamates/bishydroxamates as well as a new structural type of matrix metalloproteinase (MMP)/bacterial protease (BP) inhibitors, incorporating iminodiacetic (IDA) hydroxamate/bishydroxamate moieties, has been synthesized and tested for interaction with four vertebrate proteases, MMP-1, MMP-2, MMP-8 and MMP-9, and a BP, the collagenase isolated from Clostridium histolyticum (ChC). The new derivatives generally showed inhibition constants in the range of 8-62 nM against the five proteases mentioned above.  相似文献   

16.
The selective inhibition of thrombin by peptides of boroarginine   总被引:2,自引:0,他引:2  
Peptides containing alpha-aminoboronic acids with neutral side chains are highly effective reaction intermediate analog inhibitors of the serine proteases leukocyte elastase, pancreatic elastase, and chymotrypsin. A protocol has been developed for the synthesis of peptides containing alpha-aminoboronic acids with a basic, 3-guanidinopropyl side chain (boroArg) to extend the range of these compounds to trypsin-like proteases. Ac-(D)Phe-Pro-boroArg-OH, Boc-(D)Phe-Pro-boroArg-OH, and H-(D)Phe-Pro-boroArg-OH were prepared as inhibitors of thrombin based on earlier observations that it has a high affinity for this sequence. All three boronic acids are highly effective, slow-binding inhibitors of thrombin, inhibiting it with final inhibition constants and association rates of: 41 pM, 5.5 x 10(6) M-1 s-1; 3.6 pM, 9.3 x 10(6) M-1 s-1; less than 1 pM, 8.0 x 10(6) M-1 s-1, respectively. Comparison of their binding at equilibrium to thrombin, plasma kallikrein, factor Xa, plasmin, and two-chain tissue plasminogen activator has shown that all three inhibitors have at least 2 orders of magnitude greater affinity for thrombin, with the exception of the acetyl derivative which has a 40-fold greater affinity for thrombin than kallikrein. The boroarginine peptides are effective in inhibiting the action of thrombin in rabbit plasma against its physiological substrates. Activated partial thromboplastin time was significantly prolonged in vitro by all of the inhibitors at concentrations of 50-200 nM. Prolongations of activated partial thromboplastin time were also observed in rabbits after intravenous (40-80 micrograms/kg or subcutaneous (0.20-2 mg/kg) injections of Ac-(D)Phe-Pro-boroArg-OH. Results indicate that this new class of synthetic thrombin inhibitors may be clinically useful as antithrombotic agents.  相似文献   

17.
Cospin (PIC1) from Coprinopsis cinerea is a serine protease inhibitor with biochemical properties similar to those of the previously characterized fungal serine protease inhibitors, cnispin from Clitocybe nebularis and LeSPI from Lentinus edodes, classified in the family I66 of the MEROPS protease inhibitor classification. In particular, it exhibits a highly specific inhibitory profile as a very strong inhibitor of trypsin with K(i) in the picomolar range. Determination of the crystal structure revealed that the protein has a β-trefoil fold. Site-directed mutagenesis and mass spectrometry results have confirmed Arg-27 as the reactive binding site for trypsin inhibition. The loop containing Arg-27 is positioned between the β2 and β3 strands, distinguishing cospin from other β-trefoil-fold serine protease inhibitors in which β4-β5 or β5-β6 loops are involved in protease inhibition. Biotoxicity assays of cospin on various model organisms revealed a strong and specific entomotoxic activity against Drosophila melanogaster. The inhibitory inactive R27N mutant was not entomotoxic, associating toxicity with inhibitory activity. Along with the abundance of cospin in fruiting bodies of C. cinerea and the lack of trypsin-like proteases in the C. cinerea genome, these results suggest that cospin and its homologs are effectors of a fungal defense mechanism against fungivorous insects that function by specific inhibition of serine proteases in the insect gut.  相似文献   

18.
Microbial fibrinogenolytic serine proteases find therapeutic applications in the treatment of thrombosis- and hyperfibrinogenemia-associated disorders. However, analysis of structure–function properties of an enzyme is utmost important before its commercial application. In this study, an attempt has been made to understand the structure of a fibrinogenolytic protease enzyme, “Bacifrinase” from Bacillus cereus strain AB01. From the molecular dynamics trajectory analysis, the modelled three-dimensional structure of the protease was found to be stable and the presence of a catalytic triad made up of Asp102, His83 and Ser195 suggests that it is a serine protease. To understand the mechanism of enzyme–substrate and enzyme–inhibitor interactions, the equilibrated protein was docked with human fibrinogen (the physiological substrate of this enzyme), human thrombin and with ten selective protease inhibitors. The Bacifrinase–chymostatin interaction was the strongest among the selected protease inhibitors. The serine protease inhibitor phenyl methane sulphonyl fluoride was found to interact with the Ser134 residue of Bacifrinase. Furthermore, protein–protein docking study revealed the fibrinogenolytic property of Bacifrinase and its interaction with Aα-, Bβ- and Cγ-chains human fibrinogen to a different extent. However, biochemical analysis showed that Bacifrinase did not hydrolyse the γ-chain of fibrinogen. The in silico and spectrofluorometric studies also showed interaction of Bacifrinase with thrombin as well as fibrinogen with a Kd value of 16.5 and .81 nM, respectively. Our findings have shed light on the salient structural features of Bacifrinase and confirm that it is a fibrinogenolytic serine protease.  相似文献   

19.
A serine protease inhibitor was purified from plasma of the eastern oyster, Crassostrea virginica. The inhibitor is a 7609.6 Da protein consisting of 71 amino acids with 12 cysteine residues that are postulated to form 6 intra-chain disulfide bridges. Sequencing of the cloned cDNA identified an open reading frame encoding a polypeptide of 90 amino acids, with the 19 N-terminal amino acids forming a signal peptide. No sequence similarity with known proteins was found in sequence databases. The protein inhibited the serine proteases subtilisin A, trypsin and perkinsin, the major extracellular protease of the oyster protozoan parasite, Perkinsus marinus, in a slow binding manner. The mechanism of inhibition involves a rapid binding of inhibitor to the enzyme to form a weak enzyme-inhibitor complex followed by a slow isomerization to form a very tight binding enzyme-inhibitor complex. The overall dissociation constants K(i) with subtilisin A, perkinsin and trypsin were 0.29 nM, 13.7 nM and 17.7 nM, respectively. No inhibition of representatives of the other protease classes was detected. This is the first protein inhibitor of proteases identified from a bivalve mollusk and it represents a new protease inhibitor family. Its tight binding to subtilisin and perkinsin suggests it plays a role in the oyster host defense against P. marinus.  相似文献   

20.
The present work demonstrates that the 1,3-diazetidine-2,4-dione nucleus is effective as a scaffold of serine protease inhibitors. Compound 1 displayed high activity against human cathepsin G and alpha-chymotrypsin (0.39, 0.69 nM). Compound 6 exhibited 0.85 nM inhibition of human chymase. Compound 10 was a selective inhibitor against human neutrophil elastase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号