首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Extravascular fibrin deposition is an early and persistent hallmark of inflammatory responses. Fibrin is generated from plasma-derived fibrinogen, which escapes the vasculature in response to endothelial cell retraction at sites of inflammation. Our ongoing efforts to define the physiologic functions of extravasated fibrin(ogen) have led to the discovery, reported here, that fibrinogen stimulates macrophage chemokine secretion. Differential mRNA expression analysis and RNase protection assays revealed that macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, MIP-2, and monocyte chemoattractant protein-1 are fibrinogen inducible in the RAW264.7 mouse macrophage-like cell line, and ELISA confirmed that both RAW264.7 cells and primary murine thioglycolate-elicited peritoneal macrophages up-regulate the secretion of monocyte chemoattractant protein-1 >100-fold upon exposure to fibrinogen. Human U937 and THP-1 precursor-1 (THP-1) monocytic cell lines also secreted chemokines in response to fibrinogen, upon activation with IFN-gamma and differentiation with vitamin D(3), respectively. LPS contamination could not account for our observations, as fibrinogen-induced chemokine secretion was sensitive to heat denaturation and was unaffected by the pharmacologic LPS antagonist polymyxin B. Nevertheless, fibrinogen- and LPS-induced chemokine secretion both apparently required expression of functional Toll-like receptor 4, as each was diminished in macrophages derived from C3H/HeJ mice. Thus, innate responses to fibrinogen and bacterial endotoxin may converge at the evolutionarily conserved Toll-like recognition molecules. Our data suggest that extravascular fibrin(ogen) induces macrophage chemokine expression, thereby promoting immune surveillance at sites of inflammation.  相似文献   

2.
A peroxisome proliferator-activated receptor gamma (PPARgamma) ligand, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), has been reported to possess anti-inflammatory activity in activated monocytes/macrophages. In this study, we investigated the effect of 15d-PGJ(2) on the lipopolysaccharide (LPS)-induced expression of chemokine mRNAs, especially macrophage inhibitory protein (MIP)-2 (CXCL2), in mouse peritoneal macrophages. The inhibitory actions of the natural PPARgamma ligands, 15d-PGJ(2) and prostaglandin A1 (PGA1), on the expression of RANTES (regulated upon activation, normal T expressed and secreted; CCL5), MIP-1beta (CCL4), MIP-1alpha (CCL3), IFN-gamma-inducible protein 10 kilodaltons (IP-10; CXCL10) and monocyte chemoattractant protein-1 (MCP-1; CCL2) mRNA in LPS-treated cells were stronger than those of the synthetic PPARgamma ligands troglitazone and ciglitazone. However, 15d-PGJ(2) enhanced the expression of LPS-induced MIP-2 (CXCL2) mRNA. A specific PPARgamma antagonist (GW9662) had no effect on the inhibitory action of 15d-PGJ(2) and PGA1 in LPS-induced chemokine mRNA expression and on the synergistic action of 15d-PGJ(2) in LPS-induced MIP-2 (CXCL2) expression. Moreover, LPS itself reduced the expression of PPARgamma. Although the synergistic effect of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) mRNA expression was remarkable, the production of MIP-2 (CXCL2) in cells treated with 15d-PGJ(2) and LPS did not increase compared to the production in cells treated with LPS alone. The synergistic action of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) mRNA expression was dependent on the activation of nuclear factor-kappaB (NF-kappaB), and 15d-PGJ(2) increased the phosphorylation of p38 and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in cells stimulated with LPS. These results suggest that the synergistic effect of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) expression is PPARgamma-independent, and is mediated by the p38 and SAPK/JNK pathway in mitogen-activated protein kinase signaling pathways, which activates NF-kappaB. Our data may give more insights into the different mechanisms contrary to the anti-inflammatory effect of 15d-PGJ(2) on the expression of chemokine genes.  相似文献   

3.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

4.
The macrophage occupies a central role in the host response to invasion, exerting its control over the developing inflammatory response largely through the elaboration of an assortment of endogenous mediators including many cytokines. The beta chemokine peptides, macrophage inflammatory protein [MIP]-1 alpha and MIP-1 beta, are two such effectors markedly up-regulated in macrophages following exposure to bacterial lipopolysaccharide (LPS). These highly homologous peptides, like the other members of the beta chemokine family, exhibit diverse but partially overlapping biological activity profiles, suggesting that the cellular participants and intensity of an inflammatory response may in part be regulated by selective expression of these chemokines. Studies reported here demonstrate that, in contrast to the "balanced" MIP-1 alpha/MIP-1 beta chemokine responses of LPS-stimulated macrophage cultures in vitro, circulating levels of MIP-1 beta are significantly higher than those of MIP-1 alpha following LPS administration in vivo. Further studies have revealed that several immunomodulatory cytokines known to be up-regulated in vivo as a consequence of exposure to an invasive stimulus (gamma-IFN, IL-10, IL-4, and transforming growth factor [TGF]-beta) down-regulated the LPS-induced release of MIP-1 alpha by macrophages in vitro, but spared the MIP-1 beta response. This altered pattern of secretion may explain, at least in part, the high circulating levels of MIP-1 beta relative to MIP-1 alpha observed in vivo in response to LPS challenge.  相似文献   

5.
We have previously demonstrated that lipopolysaccharide (LPS) induces production of macrophage inflammatory protein-2 (MIP-2), a C-X-C chemokine for neutrophil recruitment and activation, in primary cultured rat lung alveolar epithelial cells. We have also demonstrated that LPS depolymerizes microfilaments in rat alveolar epithelial cells. To determine whether the polymerization status of microfilaments affects LPS-induced MIP-2 production, we treated rat alveolar epithelial cells with cytochalasin D (CytoD), a microfilament-disrupting agent, before and during LPS stimulation. A lower concentration (0.1 microM) of CytoD inhibited LPS-induced MIP-2 production without affecting microfilament polymerization. In contrast, LPS-induced MIP-2 production was enhanced by a higher concentration (10 microM) of CytoD, which disrupted the filamentous structure of actin. Jasplakinolide (1 nM to 1 microM), a polymerizing agent for microfilaments, decreased LPS-induced MIP-2 secretion. Jasplakinolide (1 microM) also blocked LPS-induced depolymerization of microfilaments. These results suggest that, in alveolar epithelial cells, LPS-induced MIP-2 production is at least partially regulated by microfilament depolymerization.  相似文献   

6.
7.
8.
Chemokine amplification in mesangial cells.   总被引:5,自引:0,他引:5  
Mesangial cells are specialized cells of the renal glomerulus that share some properties of vascular smooth muscle cells and macrophages. They are implicated in the pathogenesis of many forms of nephritis. The murine CXC-chemokines macrophage inflammatory protein-2 (MIP-2) and KC induce migration of mouse mesangial cells. Mesangial cells also exhibit a unique chemokine feedback mechanism. Treatment with nanomolar concentrations of MIP-2 or KC markedly up-regulates monocyte chemoattractant protein-1 and RANTES expression in mesangial cells. Autoinduction of MIP-2 and KC mRNA was also noted. Low levels of MIP-1alpha, MIP-1beta, and IFN-gamma-inducible protein-10 were induced following treatment with higher doses of MIP-2 or KC. These effects are specific to mesangial cells, as MIP-2 or KC treatment of renal cortical epithelial cells or peritoneal macrophages failed to induce chemokine production. This cascade of chemokine interactions may contribute to renal infiltration and leukocyte activation. The abilities of MIP-2 or KC to stimulate their own synthesis may also contribute to the maintenance and chronic course of glomerular inflammation. The mesangial cell receptor for MIP-2 and/or KC is unknown but is not CXC-chemokine receptor-2.  相似文献   

9.
Liver and activation-regulated chemokine (LARC), also designated macrophage inflammatory protein-3alpha (MIP-3alpha), Exodus, or CCL20, is a C-C chemokine that attracts immature dendritic cells and memory T lymphocytes, both expressing CCR6. Depending on the cell type, this chemokine was found to be inducible by cytokines (IL-1beta) and by bacterial, viral, or plant products (including LPS, dsRNA, and PMA) as measured by a specific ELISA. Although coinduced with monocyte chemotactic protein-1 (MCP-1) and IL-8 by dsRNA, measles virus, and IL-1beta in diploid fibroblasts, leukocytes produced LARC/MIP-3alpha only in response to LPS. However, in myelomonocytic THP-1 cells LARC/MIP-3alpha was better induced by phorbol ester, whereas in HEp-2 epidermal carcinoma cells IL-1beta was the superior inducer. The production levels of LARC/MIP-3alpha (1-10 ng/ml) were, on the average, 10- to 100-fold lower than those of IL-8 and MCP-1, but were comparable to those of other less abundantly secreted chemokines. Natural LARC/MIP-3alpha protein isolated from stimulated leukocytes or tumor cell lines showed molecular diversity, in that NH(2)- and COOH-terminally truncated forms were purified and identified by amino acid sequence analysis and mass spectrometry. In contrast to other chemokines, including MCP-1 and IL-8, the natural processing did not affect the calcium-mobilizing capacity of LARC/MIP-3alpha through its receptor CCR6. Furthermore, truncated natural LARC/MIP-3alpha isoforms were equally chemotactic for lymphocytes as intact rLARC/MIP-3alpha. It is concluded that in addition to its role in homeostatic trafficking of leukocytes, LARC/MIP-3alpha can function as an inflammatory chemokine during host defense.  相似文献   

10.
Pro-inflammatory pathways participate in the pathogenesis of atherosclerosis. However, the role of endogenous anti-inflammatory pathways in atheroma has received much less attention. Therefore, using cDNA microarrays, we screened for genes regulated by prostaglandin E(2) (PGE(2)), a potential endogenous anti-inflammatory mediator, in lipopolysaccharide (LPS)-treated human macrophages (MPhi). PGE(2) (50 nm) attenuated LPS-induced mRNA and protein expression of chemokines including monocyte chemoattractant protein-1, interleukin-8, macrophage inflammatory protein-1alpha and -1beta, and interferon-inducible protein-10. PGE(2) also inhibited the tumor necrosis factor-alpha-, interferon-gamma-, and interleukin-1beta-mediated expression of these chemokines. In contrast to the case of MPhi, PGE(2) did not suppress chemokine expression in human endothelial and smooth muscle cells (SMC) treated with LPS and pro-inflammatory cytokines. To assess the potential paracrine effect of endogenous PGE(2) on macrophage-derived chemokine production, we co-cultured MPhi with SMC in the presence of LPS. In these co-cultures, cyclooxygenase-2-dependent PGE(2) production exceeded that in the mono-cultures, and MIP-1beta declined significantly compared with MPhi cultured without SMC. We further documented prominent expression of the PGE(2) receptor EP4 in MPhi in both culture and human atheroma. Moreover, a selective EP4 antagonist completely reversed PGE(2)-mediated suppression of chemokine production. Thus, endogenous PGE(2) may modulate inflammation during atherogenesis and other inflammatory diseases by suppressing macrophage-derived chemokine production via the EP4 receptor.  相似文献   

11.
We have recently demonstrated that primary cultured rat pneumocytes produce macrophage inflammatory protein-2 (MIP-2) in response to lipopolysaccharide (LPS) stimulation. In this study, we found that brefeldin A, by blocking anterograde transport from the endoplasmic reticulum (ER) to the Golgi apparatus, decreased LPS-induced MIP-2 in the culture medium and increased its storage in cells. This suggests that MIP-2 is secreted via a pathway from the ER to the Golgi apparatus, a process commonly regulated by microtubules. We further found that LPS induced depolymerization of microtubules as early as 1 min after LPS stimulation, and it lasted at least for 4 h. Preventing depolymerization of microtubules with paclitaxel (Taxol; 10 nM to 10 microM) partially inhibited LPS-induced MIP-2 production, whereas the microtubule-depolymerizing agents colchicine (1-10 microM) and nocodazole (1-100 microM) increased LPS-induced MIP-2 protein production without affecting MIP-2 mRNA expression. These results suggest that in pneumocytes, LPS-induced microtubule depolymerization is involved in LPS-induced MIP-2 production and that secretion of MIP-2 from pneumocytes is via the ER-Golgi pathway.  相似文献   

12.
In this study we have determined the role of endogenous interleukin (IL)-10 on leucocyte recruitment and production of the CC chemokine macrophage inflammatory protein-1alpha (MIP-1alpha) in a murine model of acute inflammation. Intraperitoneal injection of zymosan produced a dose-dependent cellular infiltration which was concomitant with MIP-1alpha release in the lavage fluids. Release of this chemokine had a functional role since treatment of mice with a specific anti-MIP-1alpha antibody reduced both neutrophil and monocyte accumulation into the peritoneal cavity. An unexpected increase in cell influx and MIP-1alpha production was measured following depletion of resident peritoneal macrophages, as achieved by a 3-day liposome treatment. A similar result was obtained when the zymosan peritonitis response was elicited in IL-10 knock-out mice. In summary we propose a functional cross talk between endogenous IL-10 and this CC chemokine during the host inflammatory response.  相似文献   

13.
14.
Pozo D  Guerrero JM  Calvo JR 《Cytokine》2002,18(1):35-42
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are neuropeptides with immunomodulatory properties, including the regulation of several proinflammatory mediators. Such mediators, for example chemokines, influence trafficking of inflammatory cells and contribute to shaping the immune response. In the present work, we studied the effect of VIP and PACAP on the CC chemokine macrophage inflammatory protein-1 alpha (MIP-1alpha) production in LPS-stimulated RAW 264.7 macrophage cell line. VIP and PACAP inhibited the production of MIP-1alpha in a dose-dependent manner and over a broad spectrum of LPS concentrations. The use of selective agonists and antagonists of VIP/PACAP receptors showed that type 1 VIP receptor (VPAC1) is the major receptor involved, but the type 2 VIP receptor (VPAC2) may be also implicated. By using selective PKA and PKC inhibitors and cAMP mimicked agents, we demonstrated a cAMP-dependent signalling pathway for the inhibitory effect of VIP/PACAP on MIP-1alpha production, although a minor non-mediated cAMP pathway was also involved. mRNA expression studies showed a down-regulation of MIP-1alpha gene expression by VIP and PACAP. Taken together, the present work strongly supports an anti-inflammatory role of VIP and PACAP by a new mechanism associated with impairment of a key component of the chemokine network.  相似文献   

15.
16.
The present study deals with whether lipopolysaccharide (LPS)-induced intra-uterine fetal death (IUFD) is related to LPS-susceptibility of either mother or fetus and how LPS or LPS-induced TNF causes IUFD. LPS-susceptible C3H/HeN or -hypo-susceptible C3H/HeJ pregnant mice and the mice mated reciprocally with these mice were used on days 14 to 16 of gestation for experiments. All of fetuses in pregnant C3H/HeN mice mated with either C3H/HeN males [HeN(HeN)] or C3H/HeJ males [HeN(HeJ)] were killed within 24 hr when injected intravenously (i.v.) with 50 or 100 microg of LPS. On the other hand, the majority of fetuses in C3H/HeJ females mated with either C3H/HeJ males [HeJ(HeJ)] or C3H/HeN males [HeJ(HeN)] survived when injected i.v. with even 400 microg of LPS. These findings indicate that LPS-induced IUFD depends on the maternal LPS-responsiveness. LPS injected into mothers could pass through placenta to fetuses, since an injection with 125I-labeled LPS or IgG into pregnant mice resulted in considerable levels of radioactivity in fetuses as well as placenta. Cultured peritoneal macrophages derived from F1 mice of HeJ(HeN) or HeN(HeJ) mice, produced nitric oxide (NO) and tumor necrosis factor (TNF) in response to LPS, although the levels of NO and TNF were lower in comparison with those of C3H/HeN macrophage cultures, suggesting a possibility that the fetus as well as F1 cells might be responsible to LPS. LPS-induced IUFD was not blocked by treatment with anti-TNF antibody which inhibited LPS-induced TNF production in pregnant females, although an injection of recombinant TNFalpha instead of LPS could induce IUFD, suggesting that the cause of IUFD cannot be attributed to mother-derived TNF alone. The roles of LPS passed through placenta and LPS-induced mediators on IUFD were discussed.  相似文献   

17.
C3H/HeJ mice are hyporesponsive to the biologic effects of bacterial lipopolysaccharide (LPS). The defect in the strain of mice is believed to be due to the expression of a mutant allele designated Lpsd at the chromosome four locus. The molecular basis of this hyporesponsiveness is not known, but it may result from some defective membrane signal transductions. To examine this possibility, we compared the abilities of interleukin 1 (IL-1) production by C3H/HeJ macrophages with those by C3H/He macrophages (LPS responsive) after stimulation with the calcium ionophore A23187 or phorbol myristate acetate (PMA). A23187 induced IL-1 production by C3H/He macrophages, but it did not induce IL-1 production by C3H/HeJ macrophages and neither did LPS. However, it had the ability to increase intracellular free Ca2+ in C3H/HeJ macrophages as well as in C3H/He macrophages, this being examined by the changes in cytosolic Ca2+ in the macrophages by using Quin 2. In contrast, PMA was able to induce IL-1 production by both C3H/He and C3H/HeJ macrophages without increasing intracellular Ca2+. Since polymyxin B did not inhibit A23187- or PMA-induced IL-1 production by C3H/He macrophages, these results are not due to the little amount of LPS in culture medium, but due to their own characteristics. A calmodulin antagonist W-7 effectively inhibited A23187-induced IL-1 production by C3H/He macrophages. However, it hardly inhibited LPS-induced IL-1 production except at high concentration, and it caused no inhibition of the PMA-stimulated one. These results suggest that the blocking sites expressed phenotypically by the Lpsd are shared by LPS- and A23187-stimulated cellular processes, although the actions of LPS and A23187 are different from each other. In addition to the direct study with LPS or lipid A, A23187 should provide another useful approach to clarify the molecular mechanisms of Lpsd defect in C3H/HeJ macrophages.  相似文献   

18.
19.
Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-alpha and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-alpha further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-alpha) by MLE-12 cells, whereas H/R induced TNF-alpha, MCP-1, RANTES, MIP-1alpha, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-alpha by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-alpha, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.  相似文献   

20.
Hemorrhagic shock renders patients susceptible to the development of acute lung injury in response to a second inflammatory stimulus by as yet unclear mechanisms. We investigated the role of neutrophils (PMN) in alveolar macrophage (AMphi) priming, specifically, the role in mediating Toll-like receptor (TLR)4 and TLR2 cross talk in AMphi. Using a mouse model of hemorrhagic shock followed by intratracheal administration of LPS, we explored a novel function of shock-activated PMN in the mechanism of TLR2 upregulation induced by LPS-TLR4 signaling in AMphi. We showed that antecedent hemorrhagic shock enhanced LPS-induced TLR2 upregulation in AMphi. In neutropenic mice subjected to shock, the LPS-induced TLR2 expression was significantly reduced, and the response was restored upon repletion with PMN obtained from shock-resuscitated mice but not by PMN from sham-operated mice. These findings were recapitulated in mouse AMphi cocultured with PMN. The enhanced TLR2 upregulation in AMphi augmented the expression of macrophage inflammatory protein-2, TNF-alpha, and macrophage migration inhibitory factor in the AMphi in response to sequential challenges of LPS and peptidoglycan, a prototypical TLR2 ligand, which physiologically associated with amplified AMphi-induced PMN migration into air pouch and lung alveoli. Thus TLR2 expression in AMphi, signaled by TLR4 and regulated by shock-activated PMN, is an important positive-feedback mechanism responsible for shock-primed PMN infiltration into the lung after primary PMN sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号