首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel, red-pigmented, pleomorphic and short rod-shaped haloarchaeon, designated B8T, was isolated from a salt-fermented seafood. Strain B8T was found to be able to grow at 20–45 °C, in the presence of 15–30 % (w/v) NaCl and at pH 7.0–9.0. The optimum requirements were found to be a temperature range of 35–40 °C, pH 8.0 and the presence of 25 % NaCl. The cells of strain B8T were observed to be Gram-staining negative and lysed in distilled water. Anaerobic growth did not occur in the presence of nitrate, l-arginine, dimethyl sulfoxide or trimethylamine N-oxide. The catalase and oxidase activities were found to be positive and nitrate was reduced in aerobic conditions. Tween 20, 40 and 80 were found to be hydrolyzed, whereas casein, gelatin and starch were not hydrolyzed. Indole or H2S was not formed and urease activity was not detected. A phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain B8T is most closely related to members of the genus Halorubrum in the family Halobacteriaceae. Strain B8T was found to have three 16S rRNA genes, rrnA, rrnB and rrnC; similarities between the 16S rRNA gene sequences are 99.0–99.8 %. Strain B8T shared 99.0 % 16S rRNA gene sequence similarity with Halorubrum (Hrr.) lipolyticum JCM 13559T and Hrr. saccharovorum DSM 1137T, 98.8 % with Hrr. kocurii JCM 14978T, 98.3 % with Hrr. lacusprofundi DSM 5036T, 98.0 % with Hrr. arcis JCM 13916T, 97.7 % with Hrr. aidingense JCM 13560T and 97.0 % with Hrr. aquaticum JCM 14031T, as well as 93.7–96.5 % with other type strains in the genus Halorubrum. The RNA polymerase subunit B′ gene sequence similarity of strain B8T with Hrr. kocurii JCM 14978T is 97.2 % and lower with other members of the genus Halorubrum. DNA–DNA hybridization experiments showed that strain B8T shared equal or lower than 50 % relatedness with reference species in the genus Halorubrum. The genomic DNA G+C content of strain B8T was determined to be 64.6 mol%. The major isoprenoid quinone of strain B8T was identified as menaquinone-8 and the major polar lipids as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, sulfated mannosyl glucosyl diether and an unidentified phospholipid. Based on this polyphasic taxonomic study, strain B8T is considered to represent a new species in the genus Halorubrum, for which the name Hrr. halophilum sp. nov. is proposed. The type strain is B8T (=JCM 18963T = CECT 8278T).  相似文献   

2.
A Gram-negative, non-motile, rod shaped, and orange-pigmented chemoheterotrophic bacterium, strain MS-31T was isolated from the marine sponge Hymeniacidon flavia, collected from near Jeju Island, Korea. The Strain MS-31T was subjected to a polyphasic taxonomic study. The phylogenetic analysis based on the 16S rRNA gene sequences revealed that the novel isolate could be affiliated within the genus Sphingomonas. The strain MS-31T showed 95.6% of 16S rRNA gene sequence similarity with the most closely related species Sphingomonas koreensis JSS26T. The DNA G+C content of the strain MS-31T was 69.4 mol%. The major isoprenoid quinone was ubiqunone 10 and predominant cellular fatty acids were summed feature 7 (comprising C18:1 ω7c, C18:1 Ω9t and/or C18:1 ωl2t, 39.7%), C16:0 (16.3%), C14:0 2OH (15.9%) and summed feature 3 (comprising C16:1 ω7c and/or C15:0 iso 2OH, 11.7%). The polar lipids were sphingoglycolipid, phosphatidyletha-nolamine, phosphatidylglycerol, diphosphatidylglycerol and unidentified glycolipid. Based on the evidence from the polyphasic taxonomic study, the strain should be classified as a new species of the genus Sphingomonas. As a result, the name Sphingomonas jejuensis sp. nov. (type strain MS-31T =KCTC 23321T =NBRC 107775T) is proposed.  相似文献   

3.
A novel actinobacterium designated as MSL-26T was isolated from soil in Bigeum Island Korea. A polyphasic study was undertaken to establish the taxonomic position of isolate MSL-26T. Strain MSL-26T was found to have chemical and morphological characteristics similar to Nocardioides. The strain grew optimally at pH 7·5 and 28°C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MSL-26T forms a distinct line of descent within the radiation enclosed by the genus Nocardioides. The cell wall of strain MSL-26T contained LL-2, 6-diaminopimelic acid. The principal menaquinone was MK-8 (H4). The phospholipids detected were diphosphatidylglycerol, phosphatidylglycerol and some unidentified lipids. C18:1 w7c (50.38%) was the major fatty acid. The DNA G + C content of strain MSL-26T was 71.4 mol%. The 16S rRNA gene sequence of strain MSL-26T shares the highest sequence similarity with Nocardioides kribbensis KCTC 19038T (95.78%) and Nocardioides aquaticus DSM 11439T (95.52%). Based on the morphological, physiological, biochemical and chemotaxonomical data presented in this study, strain MSL-26T should be classified as a novel species, for which the name Nocardioides islandiensis sp. nov. is proposed. The type strain is MSL-26T (=KCTC 19275T =DSM 19321T)  相似文献   

4.
The taxonomic position of a Gram-positive, endo-spore forming bacterium isolated from a haematite ore sample was analyzed by a polyphasic approach. The strain designated as HIO-4T matched most of the phenotypic and chemical characteristics of the genus Cohnella and represents a novel species. The sequence of the almost complete 16S rRNA (1489 bases) was compared with those of previously studied Cohnella type strains and confirmed that the strain belongs to the genus Cohnella. Strain HIO-4T differs from all other species of Cohnella by at least 3.9% at the 16S rRNA level and the moderately related species are Cohnella phaseoli (96.1%) and Cohnella yongneupensis (96.1%), respectively. Predominant polar lipids are diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE); few unknown phospholipids, mannose containing lipid, aminophospholipid and aminophosphoglycolipids. The results of physiological and biochemical tests allowed the genotypic and phenotypic distinctiveness of strain HIO-4T with its phylogenetic relatives and suggest that the strain HIO-4T should be recognized as a novel species, for which the name Cohnella ferri sp. nov. is proposed. The type strain is HIO-4T (=MTCC 8365T = JCM 16139T)  相似文献   

5.
The halophilic archaeal strain GX71T was isolated from the Gangxi marine solar saltern near the Weihai city of Shandong Province, China. Cells of the strain were pleomorphic and lysed in distilled water, stained Gram-negative and formed red-pigmented colonies. Strain GX71T was able to grow at 25–45 °C (optimum 30 °C), in the presence of 1.7–4.8 M NaCl (optimum 2.6 M NaCl), with 0.005–0.7 M MgCl2 (optimum 0.05 M MgCl2) and at pH 5.5–9.5 (optimum pH 7.0–7.5). Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 10 % (w/v). The major polar lipids of the strain were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-3) and an unidentified lipid was also detected. The 16S rRNA gene sequence of strain GX71T showed 94.0–97.0 % similarity to members of the genus Halorubrum of the family Halobacteriaceae. The rpoB′ gene sequence of strain GX71T was 87.3–93.4 % similarity to current members of the genus Halorubrum. The DNA G+C content of GX71T was 67.1 mol%. Strain GX71T showed low DNA–DNA relatedness with Halorubrum lipolyticum CGMCC 1.5332T, Halorubrum saccharovorum CGMCC 1.2147T, Halorubrum kocurii CGMCC 1.7018T and Halorubrum arcis CGMCC 1.5343T, the most closely related members of the genus Halorubrum. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain GX71T represents a novel species of the genus Halorubrum, for which the name Halorubrum salinum sp. nov. is proposed. The type strain is GX71T (= CGMCC 1.10458T = JCM 17093T).  相似文献   

6.
A polyphasic taxonomic study was performed on seven Bacillus-like bacteria isolated from three hypersaline and alkaline lakes located in China, Kenya and Tanzania. All strains were moderately halophilic and alkaliphilic, Gram positive, motile rods. The DNA G+C content from the seven isolates ranged from 42.2 to 43.4 mol% and their major fatty acid was anteiso-C15:0. Strain CG1T, selected as representative strain of the isolates, possesses meso-diaminopimelic acid in the cell wall peptidoglycan, MK-7 as the predominant menaquinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as the major polar lipids. Comparative 16S rRNA gene sequence analysis indicated that the isolates belonged to the genus Bacillus. The seven isolates shared 97.7–99.9% 16S rRNA gene sequence similarity, and formed a branch that was distinct from the type strains of the recognized species of the genus Bacillus. They were most closely related to Bacillus agaradhaerens DSM 8721T (92.6–93.8% 16S rRNA sequence similarity). DNA–DNA hybridization values between the seven isolates were 85–100%. According to the polyphasic characterization, the strains represent a novel species, for which the name Bacillus locisalis sp. nov. is proposed. The type strain is CG1T (CCM 7370T = CECT 7152T = CGMCC 1.6286T = DSM 18085T).  相似文献   

7.
A novel bacterium B9T was isolated from tidal flat sediment. Its morphology, physiology, biochemical features, and 16S rRNA gene sequence were characterized. Colonies of this strain are yellow and the cells are Gram-negative, rod-shaped, and do not require NaCl for growth. The 16S rRNA gene sequence similarity indicated that strain B9T is associated with the genus Lysobacter (≤ 97.2%), Xanthomonas (≤ 96.8%), Pseudomonas (≤ 96.7%), and Luteimonas (≤ 96.0%). However, within the phylogenetic tree, this novel strain shares a branching point with the species Luteimonas composti CC-YY255T (96.0%). The DNA-DNA hybridization experiments showed a DNA-DNA homology of 23.0% between strain B9T and Luteimonas mephitis B1953/27.1T. The G+C content of genomic DNA of the type strain is 64.7 mol% (SD, 1.1). The predominant fatty acids are iso-C11:0, iso-C15:0, iso-C16:0, iso-C17:0, iso-C17:0 ω9c, and iso-C11:0 3-OH. Combined analysis of the 16S rRNA gene sequences, fatty acid profile, and results from physiological and biochemical tests indicated that there is genotypic and phenotypic differentiation of the isolate from other Luteimonas species. For these reasons, strain B9T was proposed as a novel species, named Luteimonas aestuarii. The type strain of the new species is B9T (= KCTC 22048T, DSM 19680T).  相似文献   

8.
A Gram-staining positive, endospore-forming, motile and rod-shaped bacterial strain, BR-29T, was isolated from soil from west coast of the Korean peninsula, and its taxonomic position was investigated by a polyphasic study. Strain BR-29T grew optimally at around pH 7.5, at 30°C and in the presence of 0.5% (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain BR-29T fell into a clade comprising the type strains of Cohnella species, with which it exhibited 16S rRNA gene sequence similarity values of 92.8–96.4%. Strain BR-29T contained a cell wall peptidoglycan based on meso-diaminopimelic acid and MK-7 as the predominant menaquinone. The major fatty acids were anteiso-C15:0, C16:0 and iso-C16:0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, lysylphosphatidylglycerol and two unidentified phospholipids; a minor amount of phosphatidylglycerol was present. The DNA G+C content was 54.9 mol%. Strain BR-29T could be differentiated from phylogenetically related Cohnella species by differences in phenotypic characteristics. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain BR-29T represents a novel species of the genus Cohnella, for which the name Cohnella boryungensis sp. nov., is proposed. The type strain is BR-29T (= KCTC 13735T = CCUG 59598T).  相似文献   

9.
A novel Gram-positive, halotolerant, non-sporulating, non-motile, catalase-positive, oxidase-negative and aerobic bacterium, designated strain JSM 078085T, was isolated from sea water collected from the South China Sea. Strain JSM 078085T exhibited a rod-coccus growth cycle and produced a yellow pigment. The strain was able to grow in the presence of 0–12% (w/v) NaCl and at pH 6.0–9.5 and 4–35°C; optimum growth was observed at pH 7.0 and 25–30°C in the absence of NaCl. The peptidoglycan type was A4α (l-Lys–l-Ala–l-Glu). Cell-wall sugars contained galactose and glucose. Strain JSM 078085T contained menaquinone MK-9(H2) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the major polar lipids. The major cellular fatty acids were anteiso-C15:0, iso-C15:0 and anteiso-C17:0 and the DNA G + C content was 63.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 078085T should be assigned to the genus Arthrobacter, being most closely related to the type strain of Arthrobacter rhombi (sequence similarity 97.1%), and the two strains formed a distinct lineage in the phylogenetic tree. The level of DNA–DNA relatedness between strain JSM 078085T and the type strain of Arthrobacter rhombi was 10.6%. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 078085T represents a novel species of the genus Arthrobacter, for which the name Arthrobacter halodurans sp. nov. is proposed. The type strain is JSM 078085T (=DSM 21081T=KCTC 19430T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 078085T is EU583729.  相似文献   

10.
A new haloalkaliphilic archaeon, strain B4T, was isolated from the former lake Texcoco in Mexico. The cells were Gram-negative, pleomorphic-shaped, pink to red pigmented and aerobic. Strain B4T required at least 2.5 M NaCl for growth, with optimum growth at 3.4 M NaCl. It was able to grow over a pH range of 7.5–10.0 and temperature of 25–50 °C, with optimal growth at pH 9 and 37 °C. Cells are lysed in hypotonic treatment with less than 1.3 M NaCl. The major polar lipids of strain B4T were phosphatidylglycerol and methyl-phosphatidylglycerophosphate. Phospholipids were detected, but not glycolipids. The nucleotide sequence of the 16S rRNA gene revealed that the strain B4T was phylogenetically related to members of the genus Natronorubrum. Sequence similarity with Natronorubrum tibetense was 96.28 %, with Natronorubrum sulfidifaciens 95.06 % and Natronorubrum sediminis 94.98 %. The G+C content of the DNA was 63.3 mol%. The name of Natronorubrum texcoconense sp. nov. is proposed. The type strain is B4T (=CECT 8067T = JCM 17497T).  相似文献   

11.
Halophilic archaeal strain GX31T was isolated from a marine solar saltern of China. The cells of the strain were rod-shaped and lysed in distilled water, stain Gram-negative and formed red-pigmented colonies. It was neutrophilic, and required at least 0.9 M NaCl and 0–1.0 M MgCl2 for growth under the optimum growth temperature of 37 °C. The major polar lipids of the strain were phosphatidylglycerol (PG), PG phosphate methyl ester, PG sulphate, and two major glycolipids chromatographically identical to sulphated mannosyl glucosyl diether (S-DGD-1) and mannosyl glucosyl diether (DGD-1), respectively. Trace amounts of two unidentified lipids were also detected. On the basis of 16S rRNA gene sequence analysis, strain GX31T was closely related to the members of Halobellus of the family Halobacteriaceae with similarities of 94.1–98.7 %. Strain GX31T showed 89.8–95.4 % of the rpoB′ gene similarity to the members of Halobellus. The DNA G+C content of strain GX31T was 66.8 mol%. Strain GX31T showed low DNA–DNA relatedness with two most related members of the genus Halobellus. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain GX31T represent a novel species of the genus Halobellus, for which the name Halobellus litoreus sp. nov. is proposed. The type strain is GX31T (=CGMCC 1.10387T = JCM 17118T).  相似文献   

12.
A taxonomic study was carried out on Gsoil 142T, a bacterial strain isolated from the soil collected in a ginseng field in Pocheon province, South Korea. Comparative 16S rRNA gene sequence studies showed a clear affiliation of this bacterium to the Gammaproteobacteria, and it was most closely related to Hydrocarboniphaga effusa ATCC BAA 332T (94.4%, 16S rRNA gene sequence similarity), Nevskia ramosa DSM 11499T (94.1%) and Alkanibacter difficilis MN154.3T (92.0%). Strain Gsoil 142T was a Gram-negative, strictly aerobic, motile, and rod-shaped bacterium. The G+C content of the genomic DNA was 69.9% and predominant ubiquinone was Q-8. Major fatty acids were summed feature 8 (C18:1 ω7c and/or ω6c, 36.3%), summed feature 3 (iso-C15:0 2-OH and/or C16:1 ω7c, 20.6%) and C16:0 (17.4%). The major polar lipids detected in strain Gsoil 142T were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unknown glycolipid. On the basis of polyphasic evidence, it is proposed that strain Gsoil 142T should be placed in a novel genus and species, for which the name Panacagrimonas perspica gen. nov., sp. nov. is proposed. The type strain is Gsoil 142T (= KCTC 12982T = LMG 23239T).  相似文献   

13.
Two halophilic archaeal strains, YC87T and YCA11, were isolated from Yuncheng salt lake in Shanxi, China. Cells of the two strains were observed to be pleomorphic rod-shaped, stained Gram-negative and produced red-pigmented colonies. Strain YC87T was able to grow at 20–50 °C (optimum 37 °C), at 1.4–4.8 M NaCl (optimum 2.1 M NaCl), at 0.05–1.0 M MgCl2 (optimum 0.3 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.0) while strain YCA11 was able to grow at 20–50 °C (optimum 37 °C), at 2.1–4.8 M NaCl (optimum 3.1 M NaCl), at 0.01–0.7 M MgCl2 (optimum 0.1 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.5). The cells of both isolates were observed to lyse in distilled water. The minimum NaCl concentrations that prevented cell lysis were determined to be 8 % (w/v) for strain YC87T and 12 % (w/v) for strain YCA11. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether; another major glycolipid and trace amounts of several unidentified lipids were also detected. The 16S rRNA gene sequences of the two strains were 99.8 % identical, showing 93.2–98.2 % similarity to members of the genus Halorubrum of the family Halobacteriaceae. The rpoB′ gene similarity between strains YC87T and YCA11 was 99.3 % and showed 87.5–95.2 % similarity to the closest relative members of the genus Halorubrum. The DNA G+C content of strains YC87T and YCA11 were determined to be 64.9 and 64.5 mol%, respectively. The DNA–DNA hybridization value between strain YC20T and strain YC77 was 87 % and the two strains showed low DNA–DNA relatedness with Halorubrum cibi JCM 15757T and Halorubrum aquaticum CGMCC 1.6377T, the most related members of the genus Halorubrum. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains YC87T and YCA11 represent a novel species of the genus Halorubrum, for which the name Halorubrum rubrum sp. nov. is proposed. The type strain is YC87T (=CGMCC 1.12124T = JCM 18365T).  相似文献   

14.
A novel bacterium, strain blls-2T was isolated from Pu’er tea. The isolate was Gram-positive, endospore-forming motile rod that grew at 15∼42°C and pH 6.0∼10.2. The DNA G+C content was 48.3 mol%, the predominant isoprenoid quinone was MK-7, and the predominant cellular fatty acid was anteiso-C15:0 (54.2%) followed by C16:0 (15.5%) and iso-C16:0 (8.2%). The polar lipid pattern of blls-2T was characterized by the presence of diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. Phy-logenetic analysis based on 16S rRNA gene sequence showed that the strain was affiliated within the Paenibacillaceae. The strain was most closely related to Paenibacillus granivorans A30T, with a similarity of 97.1%. Based on the phylogenetic and phenotypic characteristics of strain blls-2T, the isolate is thought to represent a novel taxon in the genus Paenibacillus. The name Paenibacillus camelliae sp. nov. is proposed for the fermented tea isolate; the type strain is blls-2T (= KCTC 13220T= CECT 7361T).  相似文献   

15.
A gram-negative, non-flagellated and ovoid- to rod-shaped bacterial strain, designated GSW-M15T, was isolated from seawater on the southern coast of South Korea. Strain GSW-M15T grew optimally at 30 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences revealed that strain GSW-M15T belonged to the genus Roseovarius. Strain GSW-M15T exhibited highest 16S rRNA gene sequence similarity values (98.3 and 97.5 %) to Roseovarius halotolerans HJ50T and Roseovarius pacificus 81-2T and 92.8-96.2 % sequence similarity values to the type strains of the other Roseovarius species. Strain GSW-M15T contained Q-10 as the predominant ubiquinone and C18:1 ω7c and 11-methyl-C18:1 ω7c as the major fatty acids. The major polar lipids detected in strain GSW-M15T were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and two unidentified lipids. The DNA G+C content of strain GSW-M15T was 62.9 mol% and its mean DNA–DNA relatedness values with R. halotolerans KCTC 22224T and R. pacificus LMG 24575T were 33 and 18 %, respectively. Differential phenotypic properties of strain GSW-M15T, together with the phylogenetic and genetic distinctiveness, demonstrated that this strain is distinguishable from other Roseovarius species. On the basis of the data presented here, strain GSW-M15T (=KCTC 23897T = CCUG 62218T) represents a novel species of the genus Roseovarius, for which the name Roseovarius litoreus sp. nov. is proposed.  相似文献   

16.
A moderately halophilic and alkalitolerant bacterial strain NKC1-1T was isolated from commercial kimchi in Korea. Strain NKC1-1T was Gram-stain-positive, aerobic, rod-shaped, non-motile, and contained diaminopimelic acid-type murein. Cell growth was observed in a medium containing 0–25% (w/v) NaCl (optimal at 10% [w/v]), at 20–40°C (optimal at 37°C) and pH 6.5–10.0 (optimal at pH 9.0). The major isoprenoid quinone of the isolate was menaquinone-7, and the major polar lipids were phosphatidylglycerol and unidentified phospholipids. Cell membrane of the strain contained iso-C17:0 and anteiso-C15:0 as the major fatty acids. Its DNA G + C content was 45.2 mol%. Phylogenetic analysis indicated the strain to be most closely related to Geomicrobium halophilum with 92.7–92.9% 16S rRNA gene sequence similarity. Based on polyphasic taxonomic evaluation with phenotypic, phylogenetic, and chemotaxonomic analyses, the strain represents a novel species in a new genus, for which the name Salicibibacter kimchii gen. nov., sp. nov. is proposed (= CECT 9537T; KCCM 43276T).  相似文献   

17.
A Gram-positive, moderately halophilic, endospore-forming, catalase- and oxidase-positive, motile, rod-shaped, aerobic bacterium, designated strain JSM 089168T, was isolated from saline soil collected from Naozhou Island, Leizhou Bay, South China Sea. The organism was able to grow with 2–25% (w/v) total salts (optimum, 5–10%), at pH 6.0–10.0 (optimum, pH 8.0) and 10–45°C (optimum, 30°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The strain contained MK-7 as the predominant menaquinone, and diphosphatidylglycerol and phosphatidylglycerol as the major polar lipids. The major cellular fatty acids were anteiso-C15:0, iso-C15:0 and anteiso-C17:0, and the DNA G + C content was 40.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 089168T should be assigned to the genus Virgibacillus, being related most closely to the type strains of Virgibacillus carmonensis (sequence similarity 97.6%), Virgibacillus necropolis (97.3%) and Virgibacillus halodenitrificans (97.1%). Levels of DNA–DNA relatedness between strain JSM 089168T and the type strains of V. carmonensis, V. necropolis and V. halodenitrificans were 20.4, 14.3 and 12.0%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 089168T represents a novel species of the genus Virgibacillus, for which the name Virgibacillus litoralis sp. nov. is proposed. The type strain is JSM 089168T (=DSM 21085T =KCTC 13228T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 089168T is FJ425909.  相似文献   

18.
A strictly anaerobic bacterium, strain B5T, was isolated from sediment of an abandoned coal mine in Taebaek, Republic of Korea. Cells of strain B5T were non-spore-forming, straight, Gram-positive rods. The optimum pH and temperature for growth were pH 7.0 and 30°C, respectively, while the strain was able to grow within pH and temperature ranges of 5.5–7.5 and 25–45°C, respectively. Growth of strain B5T was observed at NaCl concentrations of 0 to 6.0% (w/v) with an optimum at 3.0–4.0% (w/v). The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, an unknown phospholipid and three unknown polar lipids. Strain B5T grew anaerobically by reducing nitrate, nitrite, ferric-citrate, ferric-nitrilotriacetate, elemental sulfur, thiosulfate, and anthraquinone-2-sulfonate in the presence of proteinaceous compounds, organic acids, and carbohydrates as electron donors. The isolate was not able to grow by fermentation. Strain B5T did not grow under aerobic or microaerobic conditions. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B5T is most closely related to the genus Tepidibacillus (T. fermentans STGHT; 96.3%) and Vulcanibacillus (V. modesticaldus BRT; 94.6%). The genomic DNA G+C content (36.9 mol%) of strain B5T was higher than those of T. fermentans STGHT (34.8 mol%) and V. modesticaldus BRT (34.5 mol%). Based on its phenotypic, chemotaxonomic, and phylogenetic properties, we describe a new species of a novel genus Calculibacillus, represented by strain B5T (=KCTC 15397T =JCM 19989T), for which we propose the name Calculibacillus koreensis gen. nov., sp. nov.  相似文献   

19.
A novel actinobacterium, designated strain MSW-19T, was isolated from a seawater sample in Republic of Korea. Cells were aerobic, Gram-positive, non-endospore-forming, and non-motile cocci. Colonies were circular, convex, opaque, and vivid yellow in colour. A phylogenetic tree based on 16S rRNA gene sequences exhibited that the organism formed a distinct clade within the radius encompassing representatives of the family Propionibacteriaceae. The phylogenetic neighbors were the type strains of the genera Friedmanniella, Microlunatus, Micropruina, Propionicicella, and Propionicimonas. Levels of 16S rRNA gene sequence similarity between the isolate and members of the family were less than 95.3%. The cell wall peptidoglycan of the organism contained LL-diaminopimelic acid as the diagnostic diamino acid. The isolate contained MK-9(H4) as the predominant menaquinone, ai-C15:0 as the major fatty acid and polar lipids including phosphatidylglycerol, phosphatidylethanolamine, and an unknown phospholipid. The G+C content of the DNA was 69.6 mol%. On the basis of the phenotypic and phylogenetic data presented here, the isolate is considered to represent a novel genus and species in the family Propionibacteriaceae, for which the name Ponticoccus gilvus gen. nov., sp. nov. is proposed. The type strain is strain MSW-19T (= KCTC 19476T= DSM 21351T).  相似文献   

20.
A novel haloalkaliphilic, facultative anaerobic and Gram-negative Salinivibrio-like microorganism (designated strain BAGT) was recovered from a saline lake in Ras Mohammed Park (Egypt). Cells were motile, curved rods, not spore-forming and occurred singly. Strain BAGT grew optimally at 35°C (temperature growth range 25–40°C) with 10.0% (w/v) NaCl [NaCl growth range 6.0–16.0% (w/v)] and at pH 9.0 (pH growth range 6.0–10.0). Strain BAGT had phosphatidylethanolamine (PEA) and phosphatidylglycerol (PG) as the main polar lipids, C16:0 (54.0%) and C16:1 (26.0%) as the predominant cellular fatty acids and Q-8 as the major respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BAGT was a member of Salinivibrio genus, with the highest sequence similarities of 99.1, 98.4 and 98.1% to Salinivibrio siamensis JCM 14472T, Salinivibrio proteolyticus DSM 19052T and Salinivibrio costicola subsp. alcaliphilus DSM 16359T, respectively. DNA–DNA hybridization values of strain BAGT with members of Salinivibrio genus were lower than 55.0%. DNA G + C content was 51.0 mol%. On the basis of the polyphasic taxonomic results revealed in this study, strain BAGT should be classified as a novel species of Salinivibrio genus, for which the name Salinivibrio sharmensis sp. nov. is proposed, with the type strain BAGT (=ATCC BAA-1319T = DSM 18182T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号