首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The six high-affinity insulin-like growth factor-binding proteins (IGFBPs) comprise a conserved family of secreted molecules that modulate IGF actions by regulating their half-life and access to signaling receptors, and also exert biological effects that are independent of IGF binding. IGFBPs are composed of cysteine-rich amino- (N-) and carboxyl- (C-) terminal domains, along with a cysteine-poor central linker segment. IGFBP-5 is the most conserved IGFBP, and contains 18 cysteines, but only 2 of 9 putative disulfide bonds have been mapped to date. Using a mass spectrometry (MS)-based strategy combining sequential electron transfer dissociation (ETD) and collision-induced dissociation (CID) steps, in which ETD fragmentation preferentially induces cleavage of disulfide bonds, and CID provides exact disulfide linkage assignments between liberated peptides, we now have definitively mapped 5 disulfide bonds in IGFBP-5. In addition, in conjunction with ab initio molecular modeling we are able to assign the other 4 disulfide linkages to within a GCGCCXXC motif that is conserved in five IGFBPs. Because of the nature of ETD fragmentation MS experiments were performed without chemical reduction of IGFBP-5. Our results not only establish a disulfide bond map of IGFBP-5 but also define a general approach that takes advantage of the specificity of ETD and the scalability of tandem MS, and the predictive power of ab initio molecular modeling to characterize unknown disulfide linkages in proteins.  相似文献   

2.
3.
An electrophoretic system using cellulose acetate has been developed for the resolution of beta-glucosidase isozymes (beta-D-glucoside glucohydrolase, EC 3.2.1.21 and D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) in human tissue homogenates. Electrophoresis of homogenates from normal and Type 1 Gaucher disease tissues revealed two fluorescent bands of beta-glucosidase activity which corresponded to the acid and neutral isozymes separated by concanavalin A-Sepharose chromatography. The acid isozyme has only beta-glucosidase activity, whereas the neutral isozyme also exhibited alpha-L-arabinosidase (alpha-L-arabinofuranoside arabinofuranohydrolase, EC 3.2.1.55), beta-D-galactosidase (beta-D-galactoside galactohydrolase, EC 3.2.1.23) and beta-D-xylosidase (1,4-beta-D-xylan xylohydrolase, EC 3.2.1.37) activities, using the appropriate 4-methylumbelliferyl glycoside. In homogenates of cultured skin fibroblasts, only the acid isozyme was observed which co-electrophoresed with the acidic activity in other tissue homogenates. The acidic activity in tissue and fibroblast homogenates from Type 1 Gaucher disease appeared to co-electrophorese with the acid isozyme in normal tissues, but had markedly reduced activity.  相似文献   

4.
A series of c- and z*-type product ions formed via gas-phase electron-transfer ion/ion reactions between protonated polypeptides with azobenzene radical anions are subjected to ion trap collision activation in a linear ion trap. Fragment ions including a-, b-, y-type and ammonia-loss ions are typically observed in collision induced dissociation (CID) of c ions, showing almost identical CID patterns as those of the C-terminal amidated peptides consisting of the same sequences. Collisional activation of z* species mainly gives rise to side-chain losses and peptide backbone cleavages resulting in a-, b-, c-, x-, y-, and z-type ions. Most of the fragmentation pathways of z* species upon ion trap CID can be accounted for by radical driven processes. The side-chain losses from z* species are different from the small losses observed from the charge-reduced peptide molecular species in electron-transfer dissociation (ETD), which indicates rearrangement of the radical species. Characteristic side-chain losses are observed for several amino acid residues, which are useful to predict their presence in peptide/protein ions. Furthermore, the unique side-chain losses from leucine and isoleucine residues allow facile distinction of these two isomeric residues.  相似文献   

5.
6.
Interprotein electron transfer (ET) occurs between the tryptophan tryptophylquinone (TTQ) prosthetic group of aromatic amine dehydrogenase (AADH) and copper of azurin. The ET reactions from two chemically distinct reduced forms of TTQ were studied: an O-quinol form that was generated by reduction by dithionite, and an N-quinol form that was generated by reduction by substrate. It was previously shown that on reduction by substrate, an amino group displaces a carbonyl oxygen on TTQ, and that this significantly alters the rate of its oxidation by azurin (Hyun, Y-L., and Davidson V. L. (1995) Biochemistry 34, 12249-12254). To determine the basis for this change in reactivity, comparative kinetic and thermodynamic analyses of the ET reactions from the O-quinol and N-quinol forms of TTQ in AADH to the copper of azurin were performed. The reaction of the O-quinol exhibited values of electronic coupling (H(AB)) of 0.13 cm(-1) and reorganizational energy (lambda) of 1.6 eV, and predicted an ET distance of approximately 15 A. These results are consistent with the ET event being the rate-determining step for the redox reaction. Analysis of the reaction of the N-quinol by Marcus theory yielded an H(AB) which exceeded the nonadiabatic limit and predicted a negative ET distance. These results are diagnostic of a gated ET reaction. Solvent deuterium kinetic isotope effects of 1.5 and 3.2 were obtained, respectively, for the ET reactions from O-quinol and N-quinol AADH indicating that transfer of an exchangeable proton was involved in the rate-limiting reaction step which gates ET from the N-quinol, but not the O-quinol. These results are compared with those for the ET reactions from another TTQ enzyme, methylamine dehydrogenase, to amicyanin. The mechanism by which the ET reaction of the N-quinol is gated is also related to mechanisms of other gated interprotein ET reactions.  相似文献   

7.
Plants produce a unique peroxisomal short chain-specific acyl-CoA oxidase (ACX4) for beta-oxidation of lipids. The short chain-specific oxidase has little resemblance to other peroxisomal acyl-CoA oxidases but has an approximately 30% sequence identity to mitochondrial acyl-CoA dehydrogenases. Two biochemical features have been linked to structural properties by comparing the structures of short chain-specific Arabidopsis thaliana ACX4 with and without a substrate analogue bound in the active site to known acyl-CoA oxidases and dehydrogenase structures: (i) a solvent-accessible acyl binding pocket is not required for oxygen reactivity, and (ii) the oligomeric state plays a role in substrate pocket architecture but is not linked to oxygen reactivity. The structures indicate that the acyl-CoA oxidases may encapsulate the electrons for transfer to molecular oxygen by blocking the dehydrogenase substrate interaction site with structural extensions. A small binding pocket observed adjoining the flavin adenine dinucleotide N5 and C4a atoms could increase the number of productive encounters between flavin adenine dinucleotide and O2.  相似文献   

8.
9.
Ion formation from the reaction of triplet (T) and ground state (P) octaethyl-porphyrin (OEP) and zinc octaethyl porphyrin (ZnOEP) and the corresponding cross-reactions have been measured in dry acetonitrile. A uniquely sensitive and fast conductance apparatus and a pulsed dye laser allowed the measurements to be made at the necessarily very low concentrations of T. The hemogeneous reaction of T (ZnOEP) and P (ZnOEP) occurs with rat constant k(1) = 2.0 x 10(8) M(-1)s(-1) and an ion yield of 67%. The similar homogeneous reaction of OEP has k(2) = 1.3 x 10(8)M(-1)s(-1) but an ion yield of only 3%. The cross-reaction of T (OEP) with P (ZnOEP) has k(3) = 1.5 x 10(8) M(-1)s(-1) and an ion yield of 27%, while the inverse cross-reaction of T (ZnOEP) with P (OEP) has k(4) = 3 x 10(8) M(-1)s(-1) and an ion yield of 20%. Thus, the rate constants are only slightly affected but the yields are sensitive to the porphyrin. The possible formation of the heterogeneous ions ZnOEP+ + OEP-, thermodynamically favored by 0.3 V over the homogeneous ions, has little influence on the observed yields. The data are explained by electron transfer and Coulomb field-electon spin-controlled escape of the initial ion-pair.  相似文献   

10.
The 20 S proteasomes play a critical role in intracellular homeostasis and stress response. Their function is tuned by covalent modifications, such as phosphorylation. In this study, we performed a comprehensive characterization of the phosphoproteome for the 20 S proteasome complexes in both the murine heart and liver. A platform combining parallel approaches in differential sample fractionation (SDS-PAGE, IEF, and two-dimensional electrophoresis), enzymatic digestion (trypsin and chymotrypsin), phosphopeptide enrichment (TiO(2)), and peptide fragmentation (CID and electron transfer dissociation (ETD)) has proven to be essential for identifying low abundance phosphopeptides. As a result, a total of 52 phosphorylation identifications were made in mammalian tissues; 44 of them were novel. These identifications include single (serine, threonine, and tyrosine) and dual phosphorylation peptides. 34 phosphopeptides were identified by CID; 10 phosphopeptides, including a key modification on the catalytically essential beta5 subunit, were identified only by ETD; eight phosphopeptides were shared identifications by both CID and ETD. Besides the commonly shared phosphorylation sites, unique sites were detected in the murine heart and liver, documenting variances in phosphorylation between tissues within the proteasome populations. Furthermore the biological significance of these 20 S phosphoproteomes was evaluated. The role of cAMP-dependent protein kinase A (PKA) to modulate these phosphoproteomes was examined. Using a proteomics approach, many of the cardiac and hepatic 20 S subunits were found to be substrate targets of PKA. Incubation of the intact 20 S proteasome complexes with active PKA enhanced phosphorylation in both existing PKA phosphorylation sites as well as novel sites in these 20 S subunits. Furthermore treatment with active PKA significantly elevated all three peptidase activities (beta1 caspase-like, beta2 trypsin-like, and beta5 chymotrypsin-like), demonstrating a functional role of PKA in governing these 20 S phosphoproteomes.  相似文献   

11.
Enzymatic oxidation of two phenolic compounds [syringic acid (3,5-dimethoxy-4-hydroxybenzoic acid) and 2,6-dimethylphenol] was studied. The products of laccase- and laccase-mediator-catalyzed oxidation reactions were monitored by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and further analyzed by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) MS with collision-induced dissociation (CID) experiments. For the oligomers of syringic acid, some variability was observed in MALDI-TOF analysis. However, the origin of this variability could not be resolved on the basis of MALDI-TOF spectra due to the poor resolution of the instrument in use. The strength of ESI-FTICR MS was the high-resolution data provided from oligomers of syringic acid. The CID experiments were extremely useful for structural studies of oligomers and verified that the variability of the products was due to the end groups; the phenolic hydroxyl group was modified during the oxidation.  相似文献   

12.
In chromatophores from the facultative photosynthetic bacterium, Rhodopseudomonas sphaeroides, Ga, the function of ubiquinone-10 (UQ-10) at two specialized binding sites (QB and QZ) has been determined by kinetic criteria. These were the rate of rereduction of flash-oxidized [BChl]2+ through the back reaction, or the binary pattern of cytochrome b561 (for the Qb site), and the rapid rate of rereduction of flash-oxidized cytochrome c, or the relative amplitude of the antimycin-sensitive Phase III (t12 ~ 1.5 ms) of the carotenoid spectral shift induced by a single turnover flash at Eh ~ 100 mV (for the QZ site). The phenomenon associated with the two binding sites behaved differently on extraction of UQ from lyophilized chromatophores using isooctane. By this selective extraction procedure it has been possible to show that UQ-10 molecules are required at different concentrations in the membrane for specific redox events in secondary electron transfer. The reduction of cytochrome b occurs in particles which no longer show the phenomena associated with QZ, but still possess a large proportion of Qb, while rapid rereduction of flash-oxidized cytochrome c requires an additional complement of UQ-10 (QZ). Extracted particles lacking QZ and a large amount of QB have been reconstituted with different UQ homologs (UQ-1, UQ-3, and UQ-10). Specific redox events have been studied in reconstituted particles. All UQ homologs act as secondary acceptors from the reaction center; UQ-3 and UQ-10, but not UQ-1, are also able to reconstitute the function of QZ as electron donor to cytochrome c. Only UQ-10, however, is able to restore normal rates of the overall cyclic electron transfer induced by a train of flashes, and maximal rates of the light-induced ATP synthesis. The results are interpreted in terms of Q-cycle mechanisms in which quinone and quinol at both the QZ and Qb sites are in rapid equilibrium with the quinone pool.  相似文献   

13.
The kinetics of calcium dissociation from bovine testis calmodulin and its tryptic fragments have been studied by fluorescence stopped-flow methods, using the calcium indicator Quin 2. Two distinct rate processes, each corresponding to the release of two calcium ions are resolved for calmodulin at both low and high ionic strength. The effect of 0.1 M KCl is to accelerate the slow process from 9.1 +/- 1.5 s-1 to 24 +/- 6.0 s-1 and to reduce the rate of the fast process from 650 s-1 to 240 +/- 50 s-1 at 25 degrees C. In the presence of 0.1 M KCl it was possible to determine activation parameters for the fast process: delta H# = 41 +/- 5 kJ mol-1 and delta S# = -63 +/- 17 J K-1 mol-1. These values are in good agreement with those obtained by 43Ca NMR. Studies of the tryptic fragments TR1C and TR2C, comprising the N-terminal or C-terminal half of calmodulin, clearly identified Ca2+-binding sites I and II as the low-affinity (rapidly dissociating) sites and sites III and IV as the high-affinity (slowly dissociating) sites. The kinetic properties of the two proteolytic fragments are closely similar to the fast and slowly dissociating sites of native calmodulin, supporting the idea that calmodulin is constructed from two largely independent domains. The presence of the calmodulin antagonist trifluoperazine markedly decreased the Ca2+ dissociation rates from calmodulin. One of the two high-affinity trifluoperazine-binding sites was found to be located on the N-terminal half and the other on the C-terminal half of calmodulin. The affinity of the C-terminal site is at least one order of magnitude greater.  相似文献   

14.
Metabolic control analysis (MCA) allows one to formalize important aspects of information processing in living cells. For example, information processing via multi-level enzyme cascades can be quantified in terms of the response coefficient of a cellular target to a signal. In many situations, control and response coefficients cannot be determined exactly for all enzymes involved, owing to difficulties in 'observing' all enzymes experimentally. Here, we review a number of qualitative approaches that were developed to cope with such situations. The usefulness of the concept of null-space of the stoichiometry matrix for analysing the structure of intracellular signaling networks is discussed. It is shown that signal transduction operates very efficiently when the network structure is such that the null-space matrix can be block-diagonalized (which may or may not imply that the network consists of several disconnected parts) and some enzymes have low elasticities to their substrates.  相似文献   

15.
Reaction centers from Rhodopseudomonas sphaeroides strain R-26 were prepared with varying Fe and ubiquinone (Q) contents. The photooxidation of P-870 to P-870+ was found to occur with the same quantum yield in Fe-depleted reaction centers as in control samples. The kinetics of electron transfer from the initial electron acceptor (I) to Q also were unchanged upon Fe removal. We conclude that Fe has no measurable role in the primary photochemical reaction. The extent of secondary reaction from the first quinone acceptor (QA) to the second quinone acceptor (QB) was monitored by the decay kinetics of P-870+ after excitation of reaction centers with single flashes in the absence of electron donors, and by the amount of P-870 photooxidation that occurred on the second flash in the presence of electron donors. In reaction centers with nearly one iron and between 1 and 2 ubiquinones per reaction center, the amount of secondary electron transfer is proportional to the ubiquinone content above one per reaction center. In reaction centers treated with LiClO4 and o-phenanthroline to remove Fe, the amount of secondary reaction is decreased and is proportional to Fe content. Fe seems to be required for the secondary reaction. In reaction centers depleted of Fe by treatment with SDS and EDTA, the correlation between Fe content and secondary activity is not as good as that found using LiClO4. This is probably due in part to a loss of primary photochemical activity in samples treated with SDS; but the correlation is still not perfect after correction for this effect. The nature of the back reaction between P-870+ and Q-B was investigated using stopped flow techniques. Reaction centers in the P-870+ Q-B state decay with a 1-s half-time in both the presence and absence of o-phenanthroline, an inhibitor of electron transfer between Q-B and QB. This indicates that the back reaction between P-870+ and Q-A is direct, rather than proceeding via thermal repopulation of Q-A. The P-870+ Q-B state is calculated to lie at least 100 mV in free energy below the P-870+ Q-A state.  相似文献   

16.
17.
Tittmann K  Wille G  Golbik R  Weidner A  Ghisla S  Hübner G 《Biochemistry》2005,44(40):13291-13303
The thiamin diphosphate (ThDP)- and flavin adenine dinucleotide (FAD)-dependent pyruvate oxidase from Lactobacillus plantarum catalyses the conversion of pyruvate, inorganic phosphate, and oxygen to acetyl-phosphate, carbon dioxide, and hydrogen peroxide. Central to the catalytic sequence, two reducing equivalents are transferred from the resonant carbanion/enamine forms of alpha-hydroxyethyl-ThDP to the adjacent flavin cofactor over a distance of approximately 7 A, followed by the phosphorolysis of the thereby formed acetyl-ThDP. Pre-steady-state and steady-state kinetics using time-resolved spectroscopy and a 1H NMR-based intermediate analysis indicate that both processes are kinetically coupled. In the presence of phosphate, intercofactor electron-transfer (ET) proceeds with an apparent first-order rate constant of 78 s(-1) and is kinetically gated by the preceding formation of the tetrahedral substrate-ThDP adduct 2-lactyl-ThDP and its decarboxylation. No transient flavin radicals are detectable in the reductive half-reaction. In contrast, when phosphate is absent, ET occurs in two discrete steps with apparent rate constants of 81 and 3 s(-1) and transient formation of a flavin semiquinone/hydroxyethyl-ThDP radical pair. Temperature dependence analysis according to the Marcus theory identifies the second step, the slow radical decay to be a true ET reaction. The redox potentials of the FAD(ox)/FAD(sq) (E1 = -37 mV) and FAD(sq)/FAD(red) (E2 = -87 mV) redox couples in the absence and presence of phosphate are identical. Both the Marcus analysis and fluorescence resonance energy-transfer studies using the fluorescent N3'-pyridyl-ThDP indicate the same cofactor distance in the presence or absence of phosphate. We deduce that the exclusive 10(2)-10(3)-fold rate enhancement of the second ET step is rather due to the nucleophilic attack of phosphate on the kinetically stabilized hydroxyethyl-ThDP radical resulting in a low-potential anion radical adduct than phosphate in a docking site being part of a through-bonded ET pathway in a stepwise mechanism of ET and phosphorolysis. Thus, LpPOX would constitute the first example of a radical-based phosphorolysis mechanism in biochemistry.  相似文献   

18.
Quinoprotein alcohol dehydrogenases are redox enzymes that participate in distinctive catabolic pathways that enable bacteria to grow on various alcohols as the sole source of carbon and energy. The x-ray structure of the quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni has been determined at 1.44 A resolution. It comprises two domains. The N-terminal domain has a beta-propeller fold and binds one pyrroloquinoline quinone cofactor and one calcium ion in the active site. A tetrahydrofuran-2-carboxylic acid molecule is present in the substrate-binding cleft. The position of this oxidation product provides valuable information on the amino acid residues involved in the reaction mechanism and their function. The C-terminal domain is an alpha-helical type I cytochrome c with His(608) and Met(647) as heme-iron ligands. This is the first reported structure of an electron transfer system between a quinoprotein alcohol dehydrogenase and cytochrome c. The shortest distance between pyrroloquinoline quinone and heme c is 12.9 A, one of the longest physiological edge-to-edge distances yet determined between two redox centers. A highly unusual disulfide bond between two adjacent cysteines bridges the redox centers. It appears essential for electron transfer. A water channel delineates a possible pathway for proton transfer from the active site to the solvent.  相似文献   

19.
A method, based on negative ion electrospray ionization (ESI) single-stage mass spectrometry coupled with HPLC, was developed for the determination of a squalene synthase inhibitor, BMS-187745, in human plasma. BMS-187745, a highly polar compound with both phosphonic acid and sulfonic acid groups, presented difficulties in developing plasma extraction and HPLC procedures. Precipitation of the plasma protein with methanol was finally chosen as the basis for sample preparation since extraction with water-immiscible solvents or with solid-phase extraction columns failed. It was essential to add ammonium acetate to the HPLC mobile phase, not only to enhance the retention of BMS-187745 but also to ensure a well-shaped chromatographic peak. While the use of ammonium acetate had the desired chromatographic effects, it had the undesirable consequence of suppressing the negative ion ESI signal. With the plasma extracts, the [M–H2O–H] ion (m/z 367) showed significantly lower chemical noise than the [M–H] ion (m/z 385), and was thus chosen as the analytical ion for the selected ion monitoring. The signal of the m/z 367 ion was significantly enhanced by the optimization of the in-source collision-induced dissociation (CID) of m/z 385 to m/z 367.  相似文献   

20.
Polyalkyl-hydro-s-indacenyl radicals were obtained from the corresponding polyalkyl-hydro-s-indacenylmonolithium derivatives using a monoelectronic transfer from an electron rich olefin: 1,1′,3,3′-tetramethyl-2,2′-bisimidazolidine (ERO). The reaction involves the transient formation of a polyalkyl-hydro-s-indacenylimidazolidinium salt. The same salt was obtained by another way, reacting imidazolidinium chloride with polyalkyl-hydro-s-indacenyl lithium, and also generates the corresponding polyalkyl-hydro-s-indacenyl radical. All polyalkyl-hydro-s-indacenyl radicals studied present an unsymmetrical spin distribution and, in ESR, hyperfine couplings smaller than those usually observed in similar aromatic radical anions. They were identified from their dimerization products and also by trapping on 2,4,6-tri-tert-butylnitrosobenzene. A rhodium complex radical analog was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号