首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Why some plants are damaged by flooding and others are not, is not a question that can be answered by citing any one particular mechanism or sequence of events. Flood-tolerant plants like obligate aquatic species can survive inundation but differ in that they are also adapted to withstand the consequences of becoming unflooded. Flooding implies a transitory state so that when water tables drop, adapted species have to be able to survive being deprived of the physical support of flood-water as well as re-exposure to a normal air supply. A review of flooding tolerance mechanisms reveals that tolerant species combine a range of adaptations which, depending on the life strategy of the species, can play different roles in enabling intact plants to adjust to both rising and falling water levels. Flooding is also a seasonal stress with many temperate plant communities being subjected to high water tables in winter. The mechanisms that confer tolerance of winter flooding also differ from those that allow plants to grow when flooded during the growing season. This review argues therefore, that reductionist investigations, which examine isolated organs or individual processes, may not be the most suitable method to apply to understanding the complexity of reactions that are needed to survive flooding. Instead, a holistic approach is advocated which examines the reactions of whole plants to changing water levels at different seasons of the year.  相似文献   

2.
《Aquatic Botany》2005,82(4):250-268
Lepidium latifolium L. is an invasive exotic crucifer that has spread explosively in wetlands and riparian areas of the western United States. To understand the ecophysiological characteristics of L. latifolium that affect its ability to invade riparian areas and wetlands, we examined photosynthesis, chlorophyll concentration, carbohydrate partitioning and nutrient uptake in L. latifolium in response to soil flooding. Photosynthesis of flooded plants was about 60–70% of the rate of unflooded controls. Chlorophyll concentrations of flooded plants were about 60–70% of the unflooded plants during 15–50 days of flooding. Flooding resulted in an increase in leaf starch concentration, but root starch concentration was not significantly affected. However, concentrations of soluble sugar were significantly higher in both leaves and roots of flooded plants than unflooded controls. On day 50 after initial flooding, the concentrations of N, P, K and Zn in leaves of flooded plants were lower than in control plants. The concentrations of Mn and Fe in leaves of flooded plants were eight and two times those of control plants, respectively. In contrast, N, P, K and Zn concentrations of roots of flooded plants were slightly higher than in unflooded plants. The concentrations of Fe and Mn in roots of flooded plants were 15 and 150 times those of the control plants, respectively. The transport of P, K, and Zn to shoots decreased and that of Mn increased under flooding. The accumulation of N, K and Zn in roots decreased and that of Mn increased in response to flooding. The results suggested that the maintenance of relatively high photosynthesis and the accumulation of soluble sugar in roots of flooded plants are important adaptations for this species in flooded environments. Despite a reduction in photosynthesis and disruption in nutrient and photosynthate allocation in response to flooding, L. latifolium was able to survive 50 days of flooding stress. Overall, L. latifolium performed like a facultative hydrophyte species under flooding.  相似文献   

3.
Resistance to complete submergence was tested in three Rumex species that occur in the Dutch river forelands. The species differ in both habitat and life history characteristics. The annual or biennial R. maritimus and the biennial or short lived perennial R. palustris grow on frequently flooded mud flats of low elevation, while the perennial R. thyrsiflorus can be found on dykes and river dunes that are seldom flooded. The flooding characteristics of the habitats of the three species were determined. These data were used to design experiments to determine the survival and biomass development of the three species during submergence and the influence of plant size and light level on these parameters. It was shown in all three species that plants submerged during daytime were much more resistant to flooding than those submerged at night. This is most probably due to the generation of oxygen or carbohydrates by underwater photosynthesis. Mature plants of the three species showed higher survival after submergence than juvenile plants, which might be caused by higher carbohydrate levels in the taproots of mature plants. In addition, the three species clearly differed in survival and biomass development during submergence. Rumex thyrsiflorus , the species least subjected to flooding, is least tolerant to complete submergence. Rumex maritimus , which can avoid the floods by having a short life cycle, is less tolerant to submergence than R. palustris , which has to survive the floods as a vegetative plant. It was noted that some plants that survived the flooding period itself, still died in the following period of drained conditions, possibly due to post-anoxic injury.  相似文献   

4.

Background

In recognition of the 200th anniversary of Charles Darwin''s birth, this short article on flooding stress acknowledges not only Darwin''s great contribution to the concept of evolution but also to the study of plant physiology. In modern biology, Darwin-inspired reductionist physiology continues to shed light on mechanisms that confer competitive advantage in many varied and challenging environments, including those where flooding is prevalent.

Scope

Mild flooding is experienced by most land plants but as its severity increases, fewer species are able to grow and survive. At the extreme, a highly exclusive aquatic lifestyle appears to have evolved numerous times over the past 120 million years. Although only 1–2% of angiosperms are aquatics, some of their adaptive characteristics are also seen in those adopting an amphibious lifestyle where flooding is less frequent. Lowland rice, the staple cereal for much of tropical Asia falls into this category. But, even amongst dry-land dwellers, or certain of their sub-populations, modest tolerance to occasional flooding is to be found, for example in wheat. The collection of papers summarized in this article describes advances to the understanding of mechanisms that explain flooding tolerance in aquatic, amphibious and dry-land plants. Work to develop more tolerant crops or manage flood-prone environments more effectively is also included. The experimental approaches range from molecular analyses, through biochemistry and metabolomics to whole-plant physiology, plant breeding and ecology.Key words: Abiotic stress, adaptation, anoxia, Charles Darwin, environmental stress, evolution, flooding, hypoxia, rice, submergence, wetlands  相似文献   

5.

Background and Aims

Flooding and grazing are major disturbances that simultaneously affect plant performance in many humid grassland ecosystems. The effects of flooding on plant recovery from defoliation were studied in two species: the grass Paspalum dilatatum, regrowing primarily from current assimilation; and the legume, Lotus tenuis, which can use crown reserves during regrowth.

Methods

Plants of both species were subjected to intense defoliation in combination with 15 d of flooding at 6 cm water depth. Plant recovery was evaluated during a subsequent 30-d growth period under well-watered conditions. Plant responses in tissue porosity, height, tiller or shoot number and biomass of the different organs were assessed.

Key Results

Flooding increased porosity in both P. dilatatum and L. tenuis, as expected in flood-tolerant species. In P. dilatatum, defoliation of flooded plants induced a reduction in plant height, thus encouraging the prostrated-growth response typical of defoliated plants rather than the restoration of contact with atmospheric oxygen, and most tillers remained submerged until the end of the flooding period. In contrast, in L. tenuis, plant height was not reduced when defoliated and flooded, a high proportion of shoots being presented emerging above water (72 %). In consequence, flooding plus defoliation did not depress plant recovery from defoliation in the legume species, which showed high sprouting and use of crown biomass during regrowth, whereas in the grass species it negatively affected plant recovery, achieving 32 % lower biomass than plants subjected to flooding or defoliation as single treatments.

Conclusions

The interactive effect of flooding and defoliation determines a reduction in the regrowth of P. dilatatum that was not detected in L. tenuis. In the legume, the use of crown reserves seems to be a key factor in plant recovery from defoliation under flooding conditions.Key words: Allocation, defoliation, flooding, Lotus tenuis, Paspalum dilatatum, submergence  相似文献   

6.
Sesbania virgata (Leguminosae) is tolerant of long periods of soil inundation. However, its morphological adaptations to anoxia and its response to possible damage from oxidative stress are still unknown. Here, we provide new information that helps to explain the ability of S. virgata plants to grow in flooded environments. Plants containing six expanded leaves were placed in masonry tanks and were subjected to the following conditions: control (well watered), soil waterlogging (water to the setup level of 1 cm above the soil surface—roots and parts of the stems flooded), and complete submergence (whole plant flooded). Plants exposed to flooding (soil waterlogging and complete submergence) significantly increased their production of hydrogen peroxide (H2O2), indicating the extent of oxidative injury posed by stress conditions. We demonstrate that plants exposed to flooding develop an efficient scavenger of ROS (generated during stress) in the roots through the coordinated action of nonenzymatic ascorbic acid (Asc) and dehydroascorbate (DHA) as well as the enzymatic antioxidants superoxide dismutase (SOD), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) that are present in the tissues. Moreover, we observed the development of morpho-anatomical structures such as adventitious roots, lenticels, and cracks in the stem of plants under soil waterlogging. The secondary root of plants under soil waterlogging showed a thinner cortex and larger number of elements of small diameter vessels. Numerous aerenchymas were observed in the newly formed in the adventitious roots. We conclude that these antioxidative responses and morpho-anatomical adaptations in the roots are part of a suite of adaptations that allow S. virgata plants to survive long periods of flooding, notably under waterlogged conditions.  相似文献   

7.
Adaptations to Flooding Stress: From Plant Community to Molecule   总被引:12,自引:0,他引:12  
Abstract: This review highlights four major topics in plant flooding research: the processes underlying vegetation zonation in the floodplain, the challenges of using model species to reveal adaptive responses in shoots and roots, the role of micro-organisms in flooded soils in relation to plant growth, and the molecular regulation of the hormone ethylene which is heavily involved in the adaptation reaction of flood-resistant plants. Model species and vegetation strategies are used to unravel mechanisms of vegetation zonation in the river flood-plain. In the case of woodlands, hydrological conditions determine to a large extent their zonation patterns under natural conditions. For softwood species, such as Salicaceae, the interaction between water levels and timing of seed dispersal is the dominating process determining their establishment success on river banks. Their strategy is well adapted to irregular, high and prolonged floods. Hardwood species, Quercus, Fraxinus, UImus and Acer, are flood-sensitive and inhabit the higher sites. They mainly have heavy seeds and germinate under shaded conditions. The most shade-tolerant hardwood species are the least well adapted to flooding. Anthropogenically influenced parts of the floodplain are characterized by grasslands with elevation level and management practices determining the species composition. Low-lying grasslands have flood-tolerant species; elevated zones are seldom flooded and have flooding-sensitive species. Following Grime (1998[59]), plant species of major vegetation types within the floodplain zone can be divided into three categories–dominants, subordinates and transients–illustrating the diversity in plant species in relation to environmental properties. Model species that are indicative of the different conditions in the various zones are chosen to help in the understanding of morphological and physiological adaptations at the plant level. The formation of aerenchymatous roots and the capacity to elongate shoot parts upon submergence are among the main responses of surviving plants. The role of hormones in the adaptation reaction is emphasized. Owing to high porosities in roots of flood-tolerant plants, radial oxygen loss greatly influences nitrification and denitrification processes in the flooded soil. Nutrient cycles are restored by root-derived oxygen and the oxygenated rhizosphere is detoxified. A new development in flooding ecology is the unravelling of the molecular regulation of hormonally controlled processes. The expression of an ethylene receptor gene in Rumex palustris is highlighted. This paper ends with some suggestions for future flooding research.  相似文献   

8.
Rice growth adapting to deepwater   总被引:2,自引:0,他引:2  
Flooding is one of the most hazardous natural disasters, and there are several levels of flooding. Recently, research on flood-tolerant rice plants revealed that some rice varieties have evolved to overcome two different flood types, 'flash flood' and 'deepwater flood', using two different mechanisms, and their molecular mechanisms were determined. During flash flooding, the tolerant plants that are fully submerged for a few weeks stop elongating and thus avoid energy consumption that will be needed to restart growth when the water recedes. On the contrary, during deepwater flooding, with water depth up to several meters for several months, the deepwater-flood-tolerant rice plants promote elongation of internodes to keep the foliage above the water surface and thus allow respiration and photosynthesis.  相似文献   

9.
Summary Flooding ofPlatanus occidentalis L. seedlings for up to 40 days induced several changes including early stomatal closure, greatly accelerated ethylene production by stems, formation of hypertrophied lenticels and adventitious roots on submerged portions of stems, and marked growth inhibition. Poor adaptation ofPlatanus occidentalis seedlings to soil inundation was shown in stomatal closure during the entire flooding period, inhibition of root elongation and branching, and death of roots. Some adaptation to flooding was indicated by (1) production of hypertrophied lenticels which may assist in exchange of dissolved gases in flood water and in release of toxic compounds, and (2) production of adventitious roots on stems which may increase absorption of water. These adaptations appeared to be associated with greatly stimulated ethylene production in stems of flooded plants. The greater reduction of root growth over shoot growth in flooded seedlings will result in decreased drought tolerance after the flood waters recede. The generally low tolerance to flooding of seedlings of species that are widely rated as highly flood tolerant is emphasized.  相似文献   

10.
The rice water weevil, Lissorhoptrus oryzophilus Kuschel, is the most destructive insect pest of rice in the United States. As part of an effort to develop strategies to manage this pest, the ovipositional and feeding habits of L. oryzophilus on rice plants subjected to different flooding treatments were characterized in greenhouse studies. Presence and depth of flood had a direct influence on the ovipositional behavior of weevils in no-choice studies. More eggs were found in flooded plants than in unflooded plants. Moreover, plants flooded to a depth of 5.1 cm received more eggs than plants flooded to depths of 1.3 or 10.2 cm. Presence and depth of flood influenced both the proportion of females that oviposited in plants and the number of eggs laid by those females that did oviposit. In choice studies, female weevils showed a marked ovipositional preference for plants flooded to a depth of 10.2 cm over unflooded plants and plants flooded to a depth of 1.3 cm. In separate choice experiments, adult rice water weevils fed more on flooded plants than on unflooded plants. In a third set of experiments, flooded plants were taller and had higher concentrations of 10 of 13 plant nutrients than unflooded plants. Thus, flooding may influence rice water weevil behavior both directly, by acting as a stimulus for feeding or oviposition, and indirectly, by inducing changes in the suitability of rice plants for feeding or oviposition. These data suggest that it may be possible to manipulate populations of weevils in rice by changing water management practices.  相似文献   

11.
Questions: 1. How big is the difference in the herbaceous layer composition between flooded and unflooded stands? 2. Are there species or species groups which have an affinity to ancient vs. recent forests in stands with different water regimes? 3. Are patterns of life history traits different between flooded and unflooded stands as well as between ancient and recent forests in stands with a different water regime? Location: Floodplain forests in the Middle Elbe region and district of Leipzig, Central Germany. Location: The herbaceous layer was studied in randomly selected quadrats of 9 m2 in 2000 and 2001. Six ancient (nplot=59) and six adjacent recent forests (nplot=108) were investigated in flooded stands as well as three ancient (nplot=41) and three recent forests (nplot=70) in stands that have not been flooded for 50 years. The association of single species, species groups and life history traits were statistically tested for flooded vs. unflooded stands and for ancient vs. recent forests. Results: Interruption of flooding caused a complete species turnover in the herbaceous layer composition. Whereas in the still flooded stands typical alluvial species prevail, species composition in stands without flooding for 50 years showed a closed relation to the Stellario‐Carpinetum. Six herbaceous species in the flooded and five in the unflooded stands showed a preference for ancient forests. Only one species in the flooded and six herbaceous species in the unflooded stands are significantly associated with recent forests. Life history traits differ between flooded and unflooded stands but are similar in ancient and recently flooded stands, while unflooded ancient forests have more geophytes and myrmecochorous species than recent forests. Conclusions: The specificity of species composition in floodplain forests can only be maintained by regular flooding. Interruption of inundations lead to differences in the patterns of species composition and life history traits between ancient and recent forests.  相似文献   

12.
《Flora》2005,200(4):354-360
Paspalum modestum and P. wrightii are perennial grasses growing in permanent and seasonally flooded areas, respectively. The former produces short rhizomes and floating culms, the latter forms long rhizomes and erect culms. Variations in percentage aerenchymatous space (PAS) in different organs as a response to flooding was analysed using a clone of each species. Eighteen plantlets of each clone were cultivated during 7 months under flooded vs. unflooded conditions. After this period, roots, rhizomes, culms, and leaf sheaths were collected and prepared. PAS was measured using an image analysis device, and data were analysed using ANOVA.Production of aerenchyma took place in both species within the cortical parenchyma of roots, rhizomes and culms, and the mesophyll of leaf sheaths, both in flooded and unflooded plants. Under flooding conditions PAS increased in both species, although the individual response of organs differed: whereas in P. modestum PAS increased primarily in substratum-fixed roots, in P. wrightii all organs produced additional aerenchyma uniformly. Contrasting responses are understood as adaptations to permanent and seasonal flooding, respectively.  相似文献   

13.
ABSTRACT. The diving behaviour of Blethisa multipunctata (L.), a carabid species living on shores, is compared with that of two other hygrophilous carabid species. B. multipunctata enters the water spontaneously and is able to stay more than 1 h beneath the surface without renewing its respiratory air, In flooding experiments, c . 50% of submerged beetles do not leave the water after 2h. These animals emerge from time to time for a few seconds and then descend beneath the water again. Measurements of oxygen consumption and the volume of the respiratory air show that the underwater air-supply is sufficient for only a few minutes. B. multipunctata achieves maximum diving times of up to 97 min by using its air storage as a physical gill. In comparison with other Carabidae it shows neither morphological nor physiological adaptations, but only behavioural adaptations for its amphibious mode of life.  相似文献   

14.
Wetland seed banks comprise the propagules of plant species that have species-specific germination requirements for germination in either flooded or dry conditions. At the community level, wetland structure and succession during and after a seasonal flooding event depends upon the early life-history requirements of species, including germination under flooded and dry conditions. We examined the effects of simulated flood and post-flood scenarios on seedling emergence from a seed bank of seasonally flooded grassland in the Pantanal, Brazil. Field samplings were conducted in both wet and dry seasons, both of which were subject to flood and post-flood conditions. A total of 70 species emerged from the seed bank, dominated by Poaceae and Cyperaceae. Sixteen species were exclusive to the wet and one exclusive to the dry season. The richness of perennial species was higher under flood conditions, while the richness of annuals was greater post-flood. In general, the aquatic and amphibious species exhibited a significant germination response to flooding. Terrestrial species only germinated in post-flood conditions, with higher richness in the dry season. Four species had high seedling abundance in both treatments. The capacity of regeneration by seeds is high in these grasslands and can be increased by seasonal flooding and drawdown. In these seasonally flooded grasslands, we observed three main germination strategies: under flooded conditions, aquatic and amphibious species; post-flood conditions, an explosion of annual amphibious and terrestrial species; and in moist soil, perennial terrestrial species. The differential responses to flooding versus post-flood conditions help to maintain the structure and species richness in the community over time.  相似文献   

15.
Many intertidal fishes, particularly among the Blenniidae and Cottidae, possess amphibious adaptations, including the ability to breathe in air and to avoid desiccation in terrestrial conditions. These traits are absent in subtidal species of blennies and cottids. Hypsoblennius gilberti, the rockpool blenny, is found in shallow rockpools in the mid to high intertidal areas of Southern California, and deeper to 18 m in the subtidal zone. This broad vertical distribution could indicate that this blenny is adapted for tidal air emergence, although H. gilberti has not been observed out of water in its natural habitat. H. gilberti does not emerge voluntarily from hypoxic sea water in the laboratory, but it easily withstands 3 h out of water. The aerial respiratory exchange ratio (CO2 released compared to O2 consumed) is 0.70, similar to that of amphibious intertidal fishes in air, indicating sufficient release of metabolically produced CO2 while emerged. There is no increase in aquatic respiration following emergence. However, unlike other amphibious fishes that maintain aerial oxygen consumption at a level similar to aquatic oxygen consumption, H. gilberti has an aerial oxygen consumption rate one-third that in water. H. gilberti can recover rapidly from terrestrial water loss, and shows no change in evaporative water loss rates at 93% and 77% relative humidities. The amphibious capabilities in H. gilberti, even if rarely used, permit survival in air during tidal emergence. These findings suggest that H. gilberti may demonstrate an intermediate condition between the amphibious species of intertidal fishes that regularly emerge from water, and the subtidal fishes that do not survive air emergence and are completely restricted to an aquatic habitat.  相似文献   

16.
1. We analysed photosynthetic rates and inorganic carbon use of thirty-five vascular macrophyte species collected submerged in eight nutrient- and CO2-rich Danish lowland streams. The species were classified in four groups as mainly terrestrial, homophyllous and heterophyllous amphibious and truly submerged. These groups represent plant species differently adapted to life in water. 2. Photosynthetic rates measured in water increased in the gradual transition from mainly terrestrial, through amphibious to truly submerged species. Species normally in contact with air adapted to submergence by increasing the photosynthetic rate at limiting CO2. Photosynthetic rates of submerged parts of heterophyllous amphibious species were close to those of submerged species. Submerged species with thin or finely dissected leaves had the highest photosynthetic rates, probably because of low diffusional resistance to uptake of nutrients and gases. 3. In contrast to submerged species, terrestrial and amphibious species were unable to use HCO3?. Extensive oversaturation with CO2 in the streams allows, however, many amphibious species to photosynthesize well under water, based on CO2-use alone. Amphibious CO2-users, with very few structural adaptations to life under water, can therefore be as dominant in the submerged vegetation of lowland streams as HCO3?-using water plants. Moreover, the streams provide open space for colonization from the dense vegetation ashore. 4. Among the 1265 Danish herbaceous species no less than seventy-five terrestrial species occasionally grow submerged, forty-five species are amphibious, and fifty-one are true water plants. These numbers suggest that adaptation to permanent or temporary submergence is an ongoing process involving many species and that the land-water interface does not represent as difficult a barrier as often believed.  相似文献   

17.
Abstract. Soil flooding causes rapid reductions in transpiration, stomatal conductance and photosynthesis of many woody plants, which can decrease growth and ultimately result in plant death. This study was conducted to determine the role of the root system in the flooding response. Eastern larch ( Larix laricina ) seedlings were grown in Plexiglas tubes in which water uptake by flooded and unflooded roots was measured independently. Further flooding studies were conducted with eastern larch and white spruce ( Picea glauca ) in which stems were girdled. Root hydraulic properties were analysed using pressure-flow relationships. Transpiration rates of partially flooded plants declined more slowly than fully-flooded plants. Water uptake by unflooded roots of partially flooded seedlings increased momentarily with flooding. After lOd, flooding caused little change in root hydraulic conductance, a decrease in root system reflection coefficient, and an increase in osmotic permeability. Stem girdling had little effect on stomatal conductance and transpiration in comparison to flooding effects. The response of plant tops to flooding appears to be xylem-mediated and in proportion to the amount of root system flooded. Root hydraulic conductance appears to be unaffected by flooding except for a possible temporary increase on the first day following flooding treatments.  相似文献   

18.
Melaleuca cajuputi is a woody plant of the Myrtaceae which is a dominant species in tropical peat swamps in southern Thailand, where the groundwater level fluctuates greatly. Although the current year seedlings are likely submerged, their adaptive responses have never been studied. The objective of the present study was to examine their responses to submergence, and especially their morphological and anatomical changes. Not only did the seedlings of M. cajuputi survive submergence for 56 days, but they could also increase their dry weight, shoot length, and leaf number during submergence. These growth responses to submergence indicate that the seedlings of M. cajuputi could make photosynthetic production under water. The leaves that developed under water were heterophyllous “aquatic leaves” that appear to represent adaptations to improve the uptake of gases from the water. Intercellular spaces in the stems and leaves were more strongly developed in the submerged seedlings than in non-submerged seedlings with the shoot and leaves in the air. The intercellular spaces appear to be schizogenous aerenchyma that facilitates gas exchange. The growth responses and anatomical responses in stems and leaves to submergence, which were found in M. cajuputi, are commonly known in herbaceous plants with amphibious characteristics, but had not been reported in woody plants. And our results suggest that M. cajuputi adapts to submergence similarly to other amphibious plants, thereby ensuring continuing biomass production.  相似文献   

19.
Summary Fraxinus pennsylvanica Marsh. seedlings that were 150 days old adapted well to flooding of soil with stagnant water for 28 days. Early stomatal closure, followed by reopening as well as hypertrophy of lenticels and formation of adventitious roots on submerged portions of stems appeared to be important adaptations for flood tolerance. Leaf water potential (1) was consistently higher in flooded than in unflooded seedlings, indicating higher leaf turgidity in the former. This was the result of (1) early reduction in transpiration associated with stomatal closure, and (2) subsequently increased absorption of water by the newly-formed adventitious roots as stomata reopened and transpiration increased. Waterlogging of soil was followed by large increases in ethylene content of stems, both below and above the level of submersion. Formation of hypertrophied lenticels and adventitious roots on flooded plants was correlated with increased ethylene production. However, the involvement of various compounds other than ethylene in inducing morphological changes in flooded plants is also emphasized.Research supported by the College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, USA  相似文献   

20.
Managed flooding is increasingly being used to maintain and restore the ecological values of floodplain wetlands. However, evidence for its effectiveness is sometimes inconsistent and water available for environmental purposes often limited. We experimentally inundated a floodplain wetland (or “billabong”) in late spring by pumping water from its adjacent creek, aiming to promote the native wetland flora and suppress terrestrial exotics. Vegetation was surveyed before (spring) and after (late summer) the managed flood in the experimental billabong and in three control billabongs. Floodplain water levels were continuously monitored. Wet conditions caused two of the control billabongs to also flood, but to a lesser extent than the experimental billabong. We therefore assessed vegetation changes relative to flooding duration. With increasing flooding duration, the cover of wetland vegetation (amphibious and aquatic species) increased and the cover of terrestrial and exotic vegetation decreased, with these effects largest in the deliberately flooded billabong. Flooding durations greater than 20 days generally resulted in increased cover of wetland plants and restricted the growth of terrestrial plants. Reinstatement of more appropriate flooding regimes can thus promote native wetland plants, while suppressing terrestrial exotic species. Our study also provides evidence for the use of modest water allocations to augment the benefits of natural flooding in the maintenance and restoration of native wetland plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号