首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The antler is the most rapidly growing tissue in the animal kingdom. According to previous reports, antler glycosaminoglycans (GAGs) consist of all kinds GAGs except for heparan sulfate (HS). Chondroitin sulfate is the major antler GAG component comprising 88% of the total uronic acid content. In the current study, we have isolated HS from antler for the first time and characterized it based on both NMR spectroscopy and disaccharide composition analysis. Antler GAGs were isolated by protease treatment and followed by cetylpyridinium chloride precipitation. The sensitivity of antler GAGs to heparin lyase III showed that this sample contained heparan sulfate. After incubation of antler GAGs with chondroitin lyase ABC, the HS-containing fraction was recovered by ethanol precipitation. The composition of HS disaccharides in this fraction was determined by its complete depolymerization with a mixture of heparin lyase I, II, and III and analysis of the resulting disaccharides by the reversed-phase (RP) ion pairing-HPLC, monitored by the fluorescence detection using 2-cyanoacetamide as a post-column labeling reagent. Eight unsaturated disaccharides (DeltaUA-GlcNAc, DeltaUA-GlcNS, DeltaUA-GlcNAc6S, DeltaUA2S-GlcNAc, DeltaUA-GlcNS6S, DeltaUA2S-GlcNS, DeltaUA2S-GlcNAc6S, DeltaUA2S-GlcNS6S) were produced from antler HS by digestion with the mixture of heparin lyases. The total content of 2-O-sulfo disaccharide units in antler HS was higher than that of heparan sulfate from most other animal sources.  相似文献   

2.
Electrophoretic approaches to the analysis of complex polysaccharides   总被引:2,自引:0,他引:2  
Complex polysaccharides, glycosaminoglycans (GAGs), are a class of ubiquitous macromolecules exhibiting a wide range of biological functions. They are widely distributed as sidechains of proteoglycans (PGs) in the extracellular matrix and at cellular level. The recent emergence of enhanced analytical tools for their study has triggered a virtual explosion in the field of glycomics. Analytical electrophoretic separation techniques, including agarose-gel, capillary electrophoresis (HPCE) and fluorophore-assisted carbohydrate electrophoresis (FACE), of GAGs and GAG-derived oligosaccharides have been employed for the structural analysis and quantification of hyaluronic acid (HA), chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS), heparan sulfate (HS), heparin (Hep) and acidic bacterial polysaccharides. Furthermore, recent developments in the electrophoretic separation and detection of unsaturated disaccharides and oligosaccharides derived from GAGs by enzymatic or chemical degradation have made it possible to examine alterations of GAGs with respect to their amounts and fine structural features in various pathological conditions, thus becoming applicable for diagnosis. In this paper, the electromigration procedures developed to analyze and characterize complex polysaccharides are reviewed. Moreover, a critical evaluation of the biological relevance of the results obtained by these electrophoresis approaches is presented.  相似文献   

3.
A series of disaccharides derived from chondroitin sulfate and heparin/heparan sulfate were derivatized at their reducing ends with a fluorophore 2-aminobenzamide to develop a sensitive microanalytical method for glycosaminoglycans. The resulting labeled compounds derived from chondroitin sulfate or heparin/heparan sulfate were well-separated and quantified by HPLC equipped with a fluorescence detector. The detection limit was a low picomole level. This method was applied to the analysis of the disaccharide composition of tetra- and hexasaccharides derived from chondroitin sulfate and heparin/heparan sulfate as well as these glycosaminoglycan polysaccharides. The method was also successfully applied to the exosequencing of chondrohexasaccharides, where the fluorophore-labeled oligosaccharides were degraded exolytically from the nonreducing ends using bacterial eliminases. The resultant labeled fragments were identified by HPLC.  相似文献   

4.
Chondroitin sulfates, dermatan sulfate, heparan sulfate, heparin, keratan sulfate, and oligosaccharides derived from these sulfated glycosaminoglycans have been used for the measurement of sulfatase activity of rat skin extracts. Chromatographic fractionation of the extracts followed by specificity studies demonstrated the existence of five different sulfatases, specific for 1) the nonreducing N-acetylglucosamine 6-sulfate end groups of heparin sulfate and keratan sulfate, 2) the nonreducing N-acetylgalactosamine (or galactose) 6-sulfate end groups of chondroitin sulfate (or keratan sulfate), 3) the nonreducing N-acetylgalactosamine 4-sulfate end groups of chondroitin sulfate and dermatan sulfate, 4) certain suitably located glucosamine N-sulfate groups of heparin and heparan sulfate, or 5) certain suitably located iduronate sulfate groups of heparan sulfate and dermatan sulfate. Two arylsulfatases, one of which was identical in its chromatographic behaviors with the third enzyme described above, were also demonstrated in the extracts. These results taken together with those previously obtained from studies on human fibroblast cultures suggest that normal skin fibroblasts contain at least five specific sulfatases and diminished activity of any one may result in a specific storage disease.  相似文献   

5.
The zebrafish (Danio rerio) is a popular model organism for the study of developmental biology, disease mechanisms, and drug discovery. Glycosaminoglycans (GAGs), located on animal cell membranes and in the extracellular matrix, are important molecules in cellular communication during development, in normal physiology and pathophysiology. Vertebrates commonly contain a variety of GAGs including chondroitin/dermatan sulfates, heparin/heparan sulfate, hyaluronan and keratan sulfate. Zebrafish might represent an excellent experimental organism to study the biological roles of GAGs. A recent study showing the absence of heparan sulfate in adult zebrafish, suggested a more detailed evaluation of the GAGs present in this important model organism needed to be undertaken. This report aimed at examining the structural alterations of different GAGs at the molecular level at different developmental stages. GAGs were isolated and purified from zebrafish in different stages in development ranging from 0.5 days to adult. The content and disaccharide composition of chondroitin sulfate and heparan sulfate were determined using chemical assays, liquid chromotography and mass spectrometry. The presence of HS in adult fish was also confirmed using 1H-NMR.  相似文献   

6.
We investigated the influence of various kinds of glycosaminoglycans (GAGs) in collagen gels on the maintenance of albumin synthesis in primary culture of rat hepatocytes. Among the GAGs examined (heparin, heparan sulfate, keratan sulfate, chondroitin sulfate A, dermatan sulfate, and hyaluronic acid), only heparin-containing collagen gel cultures could significantly sustain albumin synthesis. However, other GAGs, such as heparan sulfate and keratan sulfate, had almost no effect on the maintenance of albumin synthesis. Heparin in collagen gels exhibited a dose-dependent effect on albumin synthesis: heparin at 400 μg/ml-collagen solution maintained albumin synthesis for over 3 weeks. On the other hand, when an equivalent amount of heparin was added directly to the collagen gel culture medium, it prolonged albumin synthesis for only 10 days. The results demonstrate that specific regulation of albumin synthesis by heparin was significantly promoted by coincubating it with collagen, suggesting that some specific interaction between heparin and collagen might be of importance for the maintenance of hepatocyte functions.  相似文献   

7.
Conditioned medium from Sertoli cells, prepared from testes of 20-day-old rats, contains component(s) that inhibit the incorporation of [3H]-thymidine into DNA of peritubular myoid cells (PMC) and inhibit the proliferation of PMC. These components are trypsin-resistant, heat-stable compounds having a molecular weight less than 30,000. The active inhibitory components in Sertoli cell conditioned medium are inactivated by treatment with heparinase, but not by treatment with hyaluronidase or chondroitin sulfate lyases. Addition of heparin or heparan sulfate results in inhibition of DNA synthesis by PMC in a dose-dependent manner, whereas other glycosaminoglycans (GAGs) examined (hyaluronic acid, keratan sulfate, and chondroitin sulfate) have no detectable effects. Heparin and heparan sulfate are unique among GAGs tested in inhibiting the characteristic multilayer growth pattern of PMC following the attainment of confluence in serum-rich medium. On the basis of these and other data presented, it is concluded that heparin and other heparin-like GAGs synthesized by Sertoli cells are implicated in the modulation of growth of PMC in vitro during co-culture. It is postulated that heparin may play a similar role in maintaining the quiescent peritubular myoid cell phenotype in vivo.  相似文献   

8.
Sulfated glycans play critical roles during the development, differentiation and growth of various organisms. The most well-studied sulfated molecules are sulfated glycosaminoglycans (GAGs). Recent incidents of heparin drug contamination convey the importance of having a convenient and sensitive method for detecting different GAGs. Here, we describe a molecular method to detect GAGs in biological and biomedical samples. Because the sulfation of GAGs is generally not saturated in vivo, it is possible to introduce the radioisotope (35)S in vitro using recombinant sulfotransferases, thereby allowing detection of minute quantities of these molecules. This strategy was also successfully applied in the detection of other glycans. As examples, we detected contaminant GAGs in commercial heparin, heparan sulfate and chondroitin samples. The identities of the contaminant GAGs were further confirmed by lyase digestion. Oversulfated chondroitin sulfate was detectable only following a simple desulfation step. Additionally, in vitro sulfation by sulfotransferases allowed us to map glycan epitopes in biological samples. This was illustrated using mouse embryo and rat organ tissue sections labeled with the following carbohydrate sulfotransferases: CHST3, CHST15, HS3ST1, CHST4 and CHST10.  相似文献   

9.
Capillary zone electrophoresis (CZE) was used to separate eight commercial disaccharide standards of the structure delta UA2X(1----4)-D-GlcNY6X (where delta UA is 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid, GlcN is 2-deoxy-2-aminoglucopyranose, S is sulfate, Ac is acetate, X may be S, and Y is S or Ac). These eight disaccharides had been prepared from heparin, heparan sulfate, and derivatized heparins. A similar CZE method was recently reported for the analysis of eight chondroitin and dermatan sulfate disaccharides (A. Al-Hakim and R.J. Linhardt, Anal. Biochem. 195, 68-73, 1991). Two of the standard heparin/heparan sulfate disaccharides, having an identical charge of -2, delta UA2S(1----4)-D-GlcNAc and delta UA(1----4)-D-GlcNS, were not fully resolved using standard sodium borate/boric acid buffer. This buffer had proven effective in separating chondroitin/dermatan sulfate disaccharides of identical charge. Resolution of these two heparin/heparan sulfate disaccharides could be improved by extending the capillary length, preparing the buffer in 2H2O, or eliminating boric acid. Baseline resolution was achieved in sodium dodecyl sulfate in the absence of buffer. The structure and purity of each of the eight new commercial heparin/heparan sulfate disaccharide standards were confirmed using fast-atom-bombardment mass spectrometry and high-field 1H-NMR spectroscopy. Heparin and heparan sulfate were then depolymerized using heparinase (EC 4.2.2.7), heparin lyase II (EC 4.2.2.-), heparinitase (EC 4.2.2.8), and a combination of all three enzymes. CZE analysis of the products formed provided a disaccharide composition of each glycosaminoglycan. As little as 50 fmol of disaccharide could be detected by ultraviolet absorbance.  相似文献   

10.
A simple procedure for the isolation of heparan sulfates from pig lung using a poly-L-lysine-Sepharose column is described. Glycosaminoglycans are absorbed on poly-L-lysine-Sepharose at pH 7.5 and eluted with an NaCl linear gradient in the following order: hyaluronic acid (0.32 M NaCl), chondroitin (0.36 M NaCl), keratan sulfate (0.80 M NaCl), chondroitin 4-sulfate (0.86 M NaCl), chondroitin 6-sulfate (0.95 M NaCl), dermatan sulfate (0.91 M NaCl), heparan sulfate (1.2 M NaCl), and heparin (1.35 M NaCl). Based on these observations, isolation of heparan sulfate from pig lung crude heparan sulfate fractions which contain chondroitin sulfates and dermatan sulfate was attempted, using this chromatographic technique.  相似文献   

11.
Two novel chondroitinases, chondroitin ABC lyase (EC 4.2.2.4) and chondroitin AC lyase (EC 4.2.2.5), have been purified from Bacteroides stercoris HJ-15, which was isolated from human intestinal bacteria with glycosaminoglycan degrading enzymes. Chondroitin ABC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and Sephacryl S-300 column chromatography with a final specific activity of 45.7 micromol.min-1.mg-1. Chondroitin AC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and phosphocellulose column chromatography with a final specific activity of 57.03 micromol.min-1.mg-1. Chondroitin ABC lyase is a single subunit of 116 kDa by SDS/PAGE and gel filtration. Chondroitin AC lyase is composed of two identical subunits of 84 kDa by SDS/PAGE and gel filtration. Chondroitin ABC and AC lyases showed optimal activity at pH 7.0 and 40 degrees C, and 5.7-6.0 and 45-50 degrees C, respectively. Both chondroitin lyases were potently inhibited by Cu2+, Zn2+, and p-chloromercuriphenyl sulfonic acid. The purified Bacteroidal chondroitin ABC lyase acted to the greatest extent on chondroitin sulfate A (chondroitin 4-sulfate), to a lesser extent on chondroitin sulfate B (dermatan sulfate) and C (chondroitin 6-sulfate). The purified chondroitin AC lyase acted to the greatest extent on chondroitin sulfate A, and to a lesser extent on chondroitin C and hyaluronic acid. They did not act on heparin and heparan sulfate. These findings suggest that the biochemical properties of these purified chondroitin lyases are different from those of the previously purified chondroitin lyases.  相似文献   

12.
《The Journal of cell biology》1993,123(5):1279-1287
We have previously demonstrated that chemically modified thrombin preparations induce endothelial cell (EC) adhesion, spreading and cytoskeletal reorganization via an Arg-Gly-Asp (RGD) sequence and the alpha v beta 3 integrin. Native thrombin, however, did not exhibit adhesive properties, consistent with crystal structure analysis, showing that Gly-Asp residues of the RGD epitope are buried within the molecule. We have now identified a possible physiological mean of converting thrombin to an adhesive protein. Plasmin, the major end product of the fibrinolytic system, converted thrombin to an adhesive protein for EC in a time and dose-dependent manner. EC adhesion and spreading was also induced by a low molecular weight (approximately 3,000 D) cleavage fragment generated upon incubation of thrombin with plasmin. Cell adhesion mediated by this fragment was completely inhibited by the synthetic peptide GRGDSP. Conversion of thrombin to an adhesive molecule was significantly enhanced in the presence of heparin or heparan sulfate, while other glycosaminoglycans (GAGs) (e.g., dermatan sulfate, keratan sulfate, chondroitin sulfate) had no effect. The role of cell surface heparan sulfate in thrombin conversion to EC adhesive protein was investigated using CHO cell mutants defective in various aspects of GAG synthesis. Incubation of both thrombin and a suboptimal amount of plasmin on the surface of formaldehyde fixed wild- type CHO-KI cells resulted in an efficient conversion of thrombin to an adhesive molecule, as indicated by subsequent induction of EC attachment. In contrast, there was no effect to incubation of thrombin and plasmin with fixed CHO mutant cells lacking both heparan sulfate and chondroitin sulfate, or with cells expressing no heparan sulfate and a three-fold increase in chondroitin sulfate. A similar gain of adhesive properties was obtained upon incubation of thrombin and plasmin in contact with native, but not heparinase-treated extracellular matrix (ECM) produced by cultured ECs. It appears that cell surface and ECM-associated heparan sulfate modulate thrombin adhesive properties through its heparin binding site in a manner that enables suboptimal amounts of plasmin to expose the RGD domain. Our results demonstrate, for the first time, a significant modulation of thrombin molecule by heparin, resulting in its conversion to a potent adhesive protein for ECs. This conversion is most effective in contact with cell surfaces, basement membranes and ECM.  相似文献   

13.
It has been reported that disaccharides of the glycosaminoglycans (GAGs), heparin, or heparan sulfate suppress the production of cytokines. Therefore, we examined the effects of GAGs (keratan sulfate, hyaluronan, chondroitin, chondroitin sulfate, and heparin sulfate) disaccharides on production of interleukin (IL)-12, a pivotal cytokine in the Th-1 type immune system. Among the GAG disaccharides, only a keratan sulfate disaccharide, Gal(6-SO(3))-GlcNAc(6-SO(3)) (L4), suppressed IL-12 production in macrophages stimulated with lipopolysaccharides and interferon-gamma. Neither keratan sulfate chains nor keratan sulfate tetrasaccharides elicited any change in the IL-12 production. N-Acetyl-lactosamine, Gal-GlcNAc (LacNAc), also did not change IL-12 production. These results indicated that a certain size, i.e. disaccharide and sulfate, are essential to suppress IL-12 production. L4 was then applied to MRL-lpr/lpr mice, a Th-1 type autoimmune disease model. The treatment of MRL-lpr/lpr mice with L4 1) decreased in serum IL-12, 2) induced apoptosis in T cells in lymph nodes thereby suppressing lymphoaccumulation, and 3) suppressed hypergammaglobulinemia and glomerulonephritis. We showed previously that IL-12 suppresses cell death of T cells, thereby enhancing the lymphoaccumulation in MRL-lpr/lpr mice. Moreover, it has been reported that IL-12 deficiency in MRL-lpr/lpr mice diminishes lymphoaccumulation and delays glomerulonephritis. The treatment with L4 suppressed phosphoprotein kinase C and phosphoinositide 3-kinase expression in macrophages, suggesting that L4 suppresses IL-12 production by inhibiting phosphoprotein kinase C and phosphoinositide 3-kinase pathways.  相似文献   

14.
Cell surface glycosaminoglycans (GAGs) play an important role in the attachment and invasion process of a variety of intracellular pathogens. We have previously demonstrated that heparan sulfate proteoglycans (HSPG) mediate the invasion of trypomastigote forms of Trypanosoma cruzi in cardiomyocytes. Herein, we analysed whether GAGs are also implicated in amastigote invasion. Competition assays with soluble GAGs revealed that treatment of T. cruzi amastigotes with heparin and heparan sulfate leads to a reduction in the infection ratio, achieving 82% and 65% inhibition of invasion, respectively. Other sulfated GAGs, such as chondroitin sulfate, dermatan sulfate and keratan sulfate, had no effect on the invasion process. In addition, a significant decrease in infection occurred after interaction of amastigotes with GAG-deficient Chinese Hamster Ovary (CHO) cells, decreasing from 20% and 28% in wild-type CHO cells to 5% and 9% in the mutant cells after 2 h and 4 h of infection, respectively. These findings suggest that amastigote invasion also involves host cell surface heparan sulfate proteoglycans. The knowledge of the mechanism triggered by heparan sulfate-binding T. cruzi proteins may provide new potential candidates for Chagas disease therapy.  相似文献   

15.
Action pattern of polysaccharide lyases on glycosaminoglycans   总被引:2,自引:1,他引:1  
The action pattern of polysaccharide lyases on glycosaminoglycansubstrates was examined using viscosimetric measurements andgradient polyacrylamide gel electrophoresis (PAGE). Heparinlyase I (heparinase, EC 4.2.2.7 [EC] ) and heparin lyase II (no ECnumber) both acted on heparin in a random endolytic fashion.Heparin lyase II showed an ideal endolytic action pattern onheparan sulphate, while heparin lyase I decreased the molecularweight of heparan sulphate more slowly. Heparin lyase III (heparitinase,EC 4.2.2.8 [EC] ) acted endolytically only on heparan sulphate anddid not cleave heparin. Chondroitin ABC lyase (chondroitinaseABC, EC 4.2.2.4 [EC] ) from Proteus vulgaris acted endolytically onchondroitin-6-sulphate (chondroitin sulphate C) and dermatansulphate at nearly identical initial rates, but acted on chondroitin-4-sulphate(chondroitin sulphate A) at a reduced rate, decreasing its molecularweight much more slowly. Two chondroitin AC lyases (chondroitinaseAC, both EC 4.2.2.5 [EC] ) were examined towards chondroitin-4- and-6-sulphates. The exolytic action of chondroitin AC lyase Afrom Arthrobacter aurescens on both chondroitin-4- and -6-sulphateswas demonstrated viscosimetrically and confirmed using bothgradient PAGE and gel permeation chromatography. ChondroitinAC lyase F from Flavobacterium heparinum (Cytophagia heparinia)acted endolytically on the same substrates. Chondroitin B lyase(chondroitinase B, no EC number) from F.heparinum acted endolyticallyon dermatan sulphate giving a nearly identical action patternas observed for chondroitin ABC lyase acting on dermatan sulphate. action pattern chondroitin lyase glycosaminoglycan heparin lyase.  相似文献   

16.
Examination of the substrate specificity of heparin and heparan sulfate lyases   总被引:15,自引:0,他引:15  
We have examined the activities of different preparations of heparin and heparan sulfate lyases from Flavobacterium heparinum. The enzymes were incubated with oligosaccharides of known size and sequence and with complex polysaccharide substrates, and the resulting degradation products were analyzed by strong-anion-exchange high-performance liquid chromatography and by oligosaccharide mapping using gradient polyacrylamide gel electrophoresis. Heparinase (EC 4.2.2.7) purified in our laboratory and a so-called Heparinase I (Hep I) from a commercial source yielded similar oligosaccharide maps with heparin substrates and displayed specificity for di- or trisulfated disaccharides of the structure----4)-alpha-D-GlcNp2S(6R)(1----4)-alpha-L-IdoAp2S( 1----(where R = O-sulfo or OH). Oligosaccharide mapping with two different commercial preparations of heparan sulfate lyase [heparitinase (EC 4.2.2.8)] indicated close similarities in their depolymerization of heparan sulfate. Furthermore, these enzymes only degraded defined oligosaccharides at hexosaminidic linkages with glucuronic acid:----4)-alpha-D-GlcNpR(1----4)-beta-D-GlcAp(1----(where R = N-acetamido or N-sulfo). The enzymes showed activity against solitary glucuronate-containing disaccharides in otherwise highly sulfated domains including the saccharide sequence that contains the antithrombin binding region in heparin. A different commercial enzyme, Heparinase II (Hep II), displayed a broad spectrum of activity against polysaccharide and oligosaccharide substrates, but mapping data indicated that it was a separate enzyme rather than a mixture of heparinase and heparitinase/Hep III. When used in conjunction with the described separation procedures, these enzymes are powerful reagents for the structural/sequence analysis of heparin and heparan sulfate.  相似文献   

17.
Glycosaminoglycans (GAGs) are heterogeneous, negatively charged, macromolecules that are found in animal tissues. Based on the form of component sugar, GAGs have been categorized into four different families: heparin/heparan sulfate, chondroitin/dermatan sulfate, keratan sulfate, and hyaluronan. GAGs engage in biological pathway regulation through their interaction with protein ligands. Detailed structural information on GAG chains is required to further understanding of GAG–ligand interactions. However, polysaccharide sequencing has lagged behind protein and DNA sequencing due to the non-template-driven biosynthesis of glycans. In this review, we summarize recent progress in the analysis of GAG chains, specifically focusing on techniques related to mass spectroscopy (MS), including separation techniques coupled to MS, tandem MS, and bioinformatics software for MS spectrum interpretation. Progress in the use of other structural analysis tools, such as nuclear magnetic resonance (NMR) and hyphenated techniques, is included to provide a comprehensive perspective.  相似文献   

18.
Glycosaminoglycans (GAGs) are a family of acidic heteropolysaccharides, including such molecules as chondroitin sulfate, dermatan sulfate, heparin and keratan sulfate. Cleavage of the O-glycosidic bond within GAGs can be accomplished by hydrolases as well as lyases, yielding disaccharide and oligosaccharide products. We have determined the crystal structure of chondroitinase B, a glycosaminoglycan lyase from Flavobacterium heparinum, as well as its complex with a dermatan sulfate disaccharide product, both at 1.7 A resolution. Chondroitinase B adopts the right-handed parallel beta-helix fold, found originally in pectate lyase and subsequently in several polysaccharide lyases and hydrolases. Sequence homology between chondroitinase B and a mannuronate lyase from Pseudomonas sp. suggests this protein also adopts the beta-helix fold. Binding of the disaccharide product occurs within a positively charged cleft formed by loops extending from the surface of the beta-helix. Amino acid residues responsible for recognition of the disaccharide, as well as potential catalytic residues, have been identified. Two arginine residues, Arg318 and Arg364, are found to interact with the sulfate group attached to O-4 of N-acetylgalactosamine. Cleavage of dermatan sulfate likely occurs at the reducing end of the disaccharide, with Glu333 possibly acting as the general base.  相似文献   

19.
Porcine intestinal mucosal heparan sulfate was exhaustivelydepolymerized on a large scale using beparin lyase II (heparinaseII) or heparin lyase III (heparitinase, EC 4.2.2.8 [EC] ). The oligosaccharidemixtures formed with each enzyme were fractionated by low pressuregel permeation chromatography. Size-uniform mixtures of disaccharides,tetrasaccharides, and hexasaccharides were obtained. Each size-fractionatedmixture was then purified on the basis of charge by repetitivesemipreparative strong-anion-exchange high-performance liquidchromatography. This approach has led to the isolation of 13homogenous oligosaccharides. The purity of each oligosaccharidewas demonstrated by the presence of a single peak on analyticalstrong-anion-exchange high-performance liquid chromatographyand reversed polarity capillary electrophoresis. The structuresof these oligosaccharides were established using 500 MHz one-and two-dimensional nuclear magnetic resonance spectroscopy.Three of the thirteen structures that were solved were novelwhile the remaining 10 have been previously described. All ofthe structures obtained using heparin lyase III contained a  相似文献   

20.
Heparin lyase I has been purified from Flavobacterium heparinum and has been partially characterized (Yang, V. C., Linhardt, R. J., Berstein, H., Cooney, C. L., and Langer, R. (1985) J. Biol. Chem. 260, 1849-1857). There has been no report of the purification of the other polysaccharide lyases from this organism. Although all three of these heparin/heparan sulfate lyases are widely used, with the exception of heparin lyase I, there is no information on their purity or their physical and kinetic characteristics. The absence of pure heparin lyases and a lack of understanding of the optimal catalytic conditions and substrate specificity has stood in the way of the use of these enzymes as reagents for the specific depolymerization of heparin and heparan sulfate into oligosaccharides for structure and activity studies. This paper describes a single, reproducible scheme to simultaneously purify all three of the heparin lyases from F. heparinum to apparent homogeneity. Heparin lyase I (heparinase, EC 4.2.2.7), heparin lyase II (no EC number), and heparin lyase III (heparitinase, EC 4.2.2.8) have molecular weights (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and isoelectric points (by isoelectric focusing) of M(r) 42,800, pI 9.1-9.2, M(r) 84,100, pI 8.9-9.1, M(r) 70,800, pI 9.9-10.1, respectively. Their amino acid analyses and peptide maps demonstrate that while these proteins are different gene products they are closely related. The kinetic properties of the heparin lyases have been determined as well as the conditions to optimize their activity and stability. These data should improve the application of these important enzymes in the study of heparin and heparan sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号