首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Adipose mass and cellularity were studied in congenic female SHR/N-cp rats fed iosenergetic diets containing 54% carbohydrate as sucrose (SU) or cooked cornstarch (CS), 20% protein, 16% mixed dietary fat plus vitamins, minerals, and non-nutritive fiber ad libitum from 5 weeks until 8.5 months of age. Measures of adipocyte lipid content, cell number per depot, and mass of principal white (WAT) and interscapular brown (IBAT) adipoe tissue depots were determined at the end of the study. 2. Final body weights (BW) of corpulent rats were more than twice those for their lean littermates, and were greater when fed the SU than the CS diet in both phenotypes. Phenotype effects (corpulent greater than lean) were present for fat pad weight, adipocyte number, and adipocyte lipid content in the dorsal (DOR) and retroperitoneal (RP) WAT depots. Diet effects were present for depot weight, adipocyte number, and adipocyte lipid content in both WAT depots, and were of qualitatively similar magnitude in both phenotypes. 3. IBAT weights, IBAT:BW ratios, and IBAT cell number of corpulent greater than lean, and were greater than with SU than CS diet in both phenotypes. 4. These results indicate that obesity in the corpulent phenotype of the SHR/N-cp rat occurs as the result of hypertrophy and hyperplasia of white adipose tissue, and that isoenergetic substitution of simple for complex carbohydrate resulted in greater fat accretion in both phenotypes. The greater diet and phenotype-associated adiposity occurred despite greater mass and cellularity of BAT. The results also indicate that sexual dimorphism occurs regarding effects of diet and phenotype on expression of adipose tissue development in this strain.  相似文献   

2.
The role of sexual dimorphic adipose tissue fat accumulation in the development of insulin resistance is well known. However, whether vitamin A status and/or its metabolic pathway display any sex- or depot (visceral/subcutaneous)-specific pattern and have a role in sexual dimorphic adipose tissue development and insulin resistance are not completely understood. Therefore, to assess this, 5 weeks old Wistar male and female rats of eight from each sex were provided either control or diabetogenic (high fat, high sucrose) diet for 26 weeks. At the end, consumption of diabetogenic diet increased the visceral fat depots (p < 0.001) in the males and subcutaneous depot (p < 0.05) in the female rats, compared to their sex-matched controls. On the other hand, it caused adipocyte hypertrophy (p < 0.05) of visceral depot (retroperitoneal) in the females and subcutaneous depot of the male rats. Although vitamin A levels displayed sex- and depot-specific increase due to the consumption of diabetogenic diet, the expression of most of its metabolic pathway genes in adipose depots remained unaltered. However, the mRNA levels of some of lipid droplet proteins (perilipins) and adipose tissue secretory proteins (interleukins, lipocalin-2) did display sexual dimorphism. Nonetheless, the long-term feeding of diabetogenic diet impaired the insulin sensitivity, thus affected glucose clearance rate and muscle glucose-uptake in both the sexes of rats. In conclusion, the chronic consumption of diabetogenic diet caused insulin resistance in the male and female rats, but did not corroborate with sexual dimorphic adipose tissue fat accumulation or its vitamin A status.  相似文献   

3.
Objective: Salt restriction has been reported to increase white adipose tissue (WAT) mass in rodents. The objective of this study was to investigate the effect of different sodium content diets on the lipogenic and lipolytic activities of WAT. Research Methods and Procedures: Male Wistar rats were fed on normal‐sodium (NS; 0.5% Na+), high‐sodium (HS; 3.12% Na+), or low‐sodium (LS; 0.06% Na+) diets for 3, 6, and 9 weeks after weaning. Blood pressure (BP) was measured using a computerized tail‐cuff system. At the end of each period, rats were killed and blood samples were collected for leptin determinations. The WAT from abdominal and inguinal subcutaneous (SC), periepididymal (PE) and retroperitoneal (RP) depots was weighed and processed for adipocyte isolation, rate measurement of lipolysis and d ‐[U‐14C]‐glucose incorporation into lipids, glucose‐6‐phosphate dehydrogenase (G6PDH) and malic enzyme activity evaluation, and determination of G6PDH and leptin mRNA expression. Results: After 6 weeks, HS diet significantly increased BP; SC, PE, and RP WAT masses; PE adipocyte size; plasma leptin concentration; G6PDH activity in SC WAT; and PE depots and malic activity only in SC WAT. The leptin levels correlated positively with WAT masses and adipocyte size. An increase in the basal and isoproterenol‐stimulated lipolysis and in the ability to incorporate glucose into lipids was observed in isolated adipocytes from HS rats. Discussion: HS diet induced higher adiposity characterized by high plasma leptin concentration and adipocyte hypertrophy, probably due to an increased lipogenic capacity of WAT.  相似文献   

4.
1. Groups of lean and obese male SHR/N-cp rats were fed isoenergetic diets containing 54% carbohydrate as cornstarch (CS) or sucrose (SU) plus other nutrients from 5 weeks of age, and measures of adiposity, thyroxine 5' deiodinase (T4-5'DI) activity, and tissue and plasma triiodothyronine (T3) content determined at 9.5 months of age. 2. Body weights (BW) of obese greater than lean, and were greater when fed the SU than CS diet in both phenotypes. Phenotype effects (obese greater than lean) were present for fat pad weights and adipose cellularity in most primary adipose tissue depots, and diet effects (SU greater than CS) were present for epididymal and retroperitoneal depots in both phenotypes. 3. Interscapular brown adipose tissue (IBAT) and IBAT:BW ratios of obese greater than lean, and diet effects (SU greater than CS) were present for lean but not obese rats. Liver T4-5'DI activity and plasma and tissue T3 of lean greater than obese, while IBAT 5'DI activity of obese greater than lean in the CS diet. 4. These results indicate that obesity occurs in the SHR/N-cp rat as the result of hypertrophy and hyperplasia of adipose tissue, and that isoenergetic substitution of simple for complex carbohydrate exaggerates fat accretion in lean but not obese rats. Moreover, the obesity occurs in spite of greater mass, cellularity, and T4-5'DI activity of IBAT, consistent with a thermogenic defect in the obese phenotype of this strain.  相似文献   

5.
Objective: This study investigated the effect of different sodium content diets on rat adipose tissue carbohydrate metabolism and insulin sensitivity. Methods and Procedures: Male Wistar rats were fed on normal‐ (0.5% Na+; NS), high‐ (3.12% Na+; HS), or low‐sodium (0.06% Na+; LS) diets for 3, 6, and 9 weeks after weaning. Blood pressure (BP) was measured using a computerized tail‐cuff system. An intravenous insulin tolerance test (ivITT) was performed in fasted animals. At the end of each period, rats were killed and blood samples were collected for glucose and insulin determinations. The white adipose tissue (WAT) from abdominal and inguinal subcutaneous (SC) and periepididymal (PE) depots were weighed and processed for adipocyte isolation and measurement of in vitro rates of insulin‐stimulated 2‐deoxy‐d ‐[3H]‐glucose uptake (2DGU) and conversion of ‐[U‐14C]‐glucose into 14CO2. Results: After 6 weeks, HS diet significantly increased the BP, SC and PE WAT masses, PE adipocyte size, and plasma insulin concentration. The sodium dietary content did not influence the whole‐body insulin sensitivity. A higher half‐maximal effective insulin concentration (EC50) from the dose‐response curve of 2DGU and an increase in the insulin‐stimulated glucose oxidation rate were observed in the isolated PE adipocytes from HS rats. Discussion: The chronic salt overload enhanced the adipocyte insulin sensitivity for glucose uptake and the insulin‐induced glucose metabolization, contributing to promote adipocyte hypertrophy and increase the mass of several adipose depots, particularly the PE fat pad.  相似文献   

6.
7.
Cellularity of adipose depots in six strains of genetically obese mice   总被引:12,自引:0,他引:12  
Adipocyte cell size and number of three adipose depots, gonadal, subcutaneous, and retroperitoneal, were determined in several strains (aA(y), aA(iy), dbdb, obob, and NZO) of adult genetically obese mice, male and female, and in male gold thioglucose-treated mice. Epididymal pad cellularity was determined during development in yellow and viable yellow obese mice and their lean littermates, as well as in the NCS/R mouse. Cell number in the mouse epididymal pad in both lean and genetically obese animals is determined early in development, i.e., before weaning. Cell enlargement is the consistent and usually dominant morphological explanation for adipose depot enlargement in genetic and in gold thioglucose-induced mouse obesity. In some instances, hyperplasia accompanied the hypertrophy, occurring most often in the subcutaneous depot. Cell number in the subcutaneous pad of the obese-hyperglycemic female is four times that of the lean control and represents the most extreme case of hyperplasia observed. In fact, hyperplasia was consistently seen in the obob mouse. A classification for genetic obesity based primarily upon the cellularity characteristics of the adipose depots is proposed.  相似文献   

8.
Objective: Anatomically distinct adipose tissue regions differ in their predominant modality of growth (i.e., cellular hypertrophy vs. hyperplasia). We examined site‐specific patterns of expression of two genes whose products, leptin and insulin‐like growth factor‐I (IGF‐I), could be involved in mediating differential growth and metabolism of white adipose tissue. We also related these patterns of expression to measures of adipose depot cellularity. Research Methods and Procedures: Male Wistar rats were fed ad libitum and studied from ages 7 weeks to ~12 months. Terminal measures of body weights; weights, composition, and cellularity of four white adipose depots; circulating leptin and IGF‐I; and adipose depot‐specific expression levels of leptin and IGF‐I were measured in subsets of rats at 7, 12, 22, 42, and 46 weeks of age. Results: Both leptin and IGF‐I mRNAs are quantitatively expressed in a depot‐specific manner, in the following order: retroperitoneal ? epididymal > mesenteric > subcutaneous inguinal. Furthermore, there is a marked correlation between the expressions of these hormones in the various regions of adipose tissue of rats during the first year of life. The mechanisms that underlie the parallel expressions of leptin and IGF‐I appear to be related to fat‐cell volume. Discussion: Because both leptin and IGF‐I have been implicated in the regulation of energy homeostasis and are both expressed in adipose tissue, the depot‐specific linkage between the two genes suggests interaction at the autocrine level. This interaction may have an important role in determining functional properties particular to individual adipose depots.  相似文献   

9.
Cellularity of adipose depots in the genetically obese Zucker rat   总被引:4,自引:0,他引:4  
Cell size and number of three adipose depots, epididymal, retroperitoneal, and subcutaneous, were determined during growth of the obese Zucker rat ("fatty") and nonobese Zucker control. Cellularity of these depots in the adult "fatty" was compared with that in nonobese controls and in nonobese Zucker rats made obese by ventromedial hypothalamic lesions. Epididymal and retroperitoneal depots in the nonobese rat grew by cell enlargement and increase in cell number until the 14th wk, when number became fixed; further increase in depot size occurred by cell enlargement. The subcutaneous depot added cells until the 26th wk. In the Zucker "fatty," cell number increased until the 26th wk in all depots, accompanied by extreme cell enlargement. The enlarged adipose depots of the adult Zucker "fatty," when compared with the nonobese control, are the result of both hypertrophy and hyperplasia. Depot enlargement in the lesioned animal is the result of hypertrophy. "Fatties" have more cells in adipose depots than do lesioned rats. Genetic obesity in the Zucker rat is clearly different from the obesity produced by hypothalamic lesioning.  相似文献   

10.
Previous studies have illustrated the importance of leptin receptor (OB-Rb) mediated action on adipocytes in the regulation of body weight. The aim of the present study was to investigate in male and female rats the effects of high-fat (HF) diet feeding on the expression levels of OB-Rb in different depots of white adipose tissue (WAT), and its relation to fatty acid oxidation capacity. Male and female Wistar rats were fed until the age of 6 months with a normal-fat (NF) or non-isocaloric HF-diet (10 and 45% calories from fat, respectively). At this age, the weight of three different fat depots (retroperitoneal, mesenteric and inguinal) and the expression levels of OB-Rb, PPARα and CPT1 in these depots were measured. HF-diet feeding resulted in an increase in the weight of the different fat depots, the retroperitoneal depot being the one with the greatest increase in both sexes. In this depot, HF-diet feeding resulted in a significant decrease in OB-Rb mRNA levels, more marked in male than in female rats. In the mesenteric depot, the effects of HF-diet feeding on OB-Rb mRNA levels were sex-dependent: they decreased in males rats (associated with a decrease in PPARα and CPT1 mRNA levels), but increased in female rats. In the inguinal depot, OB-Rb expression was not affected by HF-diet feeding. These results show that a chronic intake of an HF-diet altered the expression of OB-Rb in WAT in a depot and sex-dependent manner. The decreased expression of OB-Rb in the internal depots of male rats under HF-diet feeding, with the resulting decrease in leptin sensitivity, can help to explain the higher tendency of males to suffer from obesity-linked disorders under HF-diet conditions.  相似文献   

11.
12.
In the meat industry, the manipulation of fat deposition in cattle is of pivotal importance to improve production efficiency, carcass composition and ultimately meat quality. There is an increasing interest in the identification of key factors and molecular mechanisms responsible for the development of specific fat depots. This study aimed at elucidating the influence of breed and diet on adipose tissue membrane permeability and fluidity and their interplay on fat deposition in bovines. Two Portuguese autochthonous breeds, Alentejana and Barrosã, recognized as late- and early-maturing breeds, respectively, were chosen to examine the effects of breed and diet on fat deposition and on adipose membrane composition and permeability. Twenty-four male bovines from these breeds were fed on silage-based or concentrate-based diets for 11 months. Animals were slaughtered to determine their live slaughter and hot carcass weights, as well as weights of subcutaneous and visceral adipose depots. Mesenteric fat depots were excised and used to isolate adipocyte membrane vesicles where cholesterol content, fatty acid profile as well as permeability and fluidity were determined. Total accumulation of neither subcutaneous nor visceral fat was influenced by breed. In contrast, mesenteric and omental fat depots weights were higher in concentrate-fed bulls relative to silage-fed animals. Membrane fluidity and permeability to water and glycerol in mesenteric adipose tissue were found to be independent of breed and diet. Moreover, the deposition of cholesterol and unsaturated fatty acids, which may influence membrane properties, were unchanged among experimental groups. Adipose membrane lipids from the mesenteric fat depot of ruminants were rich in saturated fatty acids, and unaffected by polyunsaturated fatty acids dietary levels. Our results provide evidence against the involvement of cellular membrane permeability to glycerol on fat accumulation in mesenteric fat tissue of concentrate-fed bovines, which is consistent with the unchanged membrane lipid profile found among experimental groups.  相似文献   

13.
Leptin increases sympathetic nervous system (SNS) activity in brown adipose tissue and renal nerves. Experiments described here tested whether SNS innervation is required for peripheral, physiological concentrations of leptin to reduce body fat. In experiment 1, one epididymal (EPI) fat pad was sympathectomized by local injection of 6-hydroxydopamine (6OHDA) in C57BL/6 mice that were then infused for 13 days with PBS or 10 microg leptin/day from an intraperitoneal miniosmotic pump. Surprisingly, EPI denervation increased total body fat of PBS-infused mice but leptin decreased the size of both injected and noninjected EPI pads in 6OHDA mice. Experiment 2 was identical except for the use of male Sprague-Dawley rats that were infused with 50 microg leptin/day. Leptin had little effect on EPI weight or norepinephrine (NE) content, but denervation of one EPI pad decreased the effect of leptin on intact EPI, inguinal and retroperitoneal (RP) fat and increased the size of the mesenteric fat pad. Experiment 3 included groups in which either one EPI or one RP pad was denervated. RP denervation reduced RP NE content but did not prevent a leptin-induced reduction in fat pad mass. Therefore, the SNS is not required for low doses of leptin to reduce body fat. EPI denervation significantly increased adipocyte number in contralateral EPI and RP fat pads and this was prevented by leptin. These changes in intact pads of rats with one denervated fat pad imply communication between fat depots and suggest that both leptin and the SNS regulate the size of individual depots.  相似文献   

14.
The purpose of the present work was to study age- and weight-controlled rats to determine which is the primary factor in reducing the lipolytic response of free fat cells and which has the greater effect on the ratio of fat cells to nonfat cells in adipose tissue. The method for estimating fat cell and nonfat cell numbers is based on the analysis of adipose tissue and fat cell DNA and lipid. In adequately fed rats, epididymal adipocyte hyperplasia is complete between 9 and 14 wk of age. Chronic underfeeding delays, but does not eliminate, normal fat cell hyperplasia and is accompanied by a net loss in the nonfat cell population. During 9-14 wk of age, rat epididymal adipose tissue enlarges mainly through adipocyte hypertrophy. Total fat cells from the epididymal adipose tissue of control rats represent only 20-23% of the total cell population. Chronic underfeeding increases the percentage of fat cells in the fat pad from 23 to 28%. Noradrenaline-stimulated lipolysis is proportional to fat cell numbers but is inhibited when fat cell lipid increases to over 80% of fat pad wet weight. Rat age is apparently not primarily responsible for the decreased noradrenaline-stimulated lipolysis in fat cells of 350-g rats in vitro.  相似文献   

15.
It is well-established that the sympathetic nervous system (SNS) regulates adipocyte metabolism and recently it has been reported that sensory afferents from white fat overlap anatomically with sympathetic efferents to white fat. The studies described here characterize the response of intact fat pads to selective sympathectomy (local 6-hydroxydopamine (6OHDA) injections) of inguinal (ING) or epididymal (EPI) fat in male NIH Swiss mice and provide in vivo evidence for communication between individual white and brown fat depots. The contralateral ING pad, both EPI pads, perirenal (PR), and mesenteric (MES) pads were significantly enlarged 4 weeks after denervating one ING pad, but only intrascapular brown adipose tissue (IBAT) increased when both ING pads were denervated. Denervation of one or both EPI pad had no effect on fat depot weights. In an additional experiment, norepinephrine turnover (NETO) was inhibited in ING, retroperitoneal (RP), MES, and IBAT 2 days after denervation of both EPI or of both ING pads. NE content was reduced to 10-30% of control values in all fat depots. There was no relation between early changes in NETO and fat pad weight 4 weeks after denervation, even though the reduction in NE content of intact fat pads was maintained. These data demonstrate that there is communication among individual fat pads, presumably through central integration of activity of sensory afferent and sympathetic efferent fibers, that changes sympathetic drive to white adipose tissue in a unified manner. In specific situations, removal of sympathetic efferents to one pad induces a compensatory enlargement of other intact depots.  相似文献   

16.
The current study investigated the combined effects of feeding a high-fat/high-sucrose (HF/HS) diet to rodents rendered sedentary via hindlimb unloading (HU). For 3 wk before HU, male Wistar rats were fed chow or a diet in which 32% of calories were derived from corn oil fat and 48% of calories from sucrose. Feeding continued during an additional 3-wk period of HU. Subsequently, blood samples were collected for determination of circulating leukocyte counts, insulin levels, and portal vein endotoxin. Inflammation, necrosis, and steatosis were assessed in formalin-fixed liver sections. No biochemical or histological evidence of injury was observed in control rats fed chow or HF/HS. HU increased circulating neutrophils and resulted in hyperinsulinemia. Mild hepatic fat accumulation and minimal focal necroinflammation were observed in this group. Feeding HF/HS during HU exacerbated hyperinsulinemia, hepatic steatosis, Kupffer cell content, and cytokine expression. Significant portal endotoxemia was noted in HU rats but was not influenced by HF/HS diet. On the other hand, feeding HF/HS significantly enhanced lipid peroxidation end products in liver of HU rats by approximately threefold compared with chow-fed rats. In summary, these findings demonstrate that feeding a high-calorie diet potentiates steatosis and injury in sedentary HU rats. Mechanisms underlying enhanced injury most likely involved lipid peroxidation. Importantly, these findings suggest that dietary manipulation combined with physical inactivity can be used to model steatohepatitis.  相似文献   

17.
1. Characteristics of resting and of norepinephrine (NE)-stimulated thermogenesis, and the glycemic response to NE were determined in adult male Wistar Fatty rats. Rats were maintained on Purina chow No. 5001 until 22 weeks of age, and fed semisynthetic diets containing 54% carbohydrate, 20% protein, 16% mixed fats, plus essential vitamins, minerals, and non-nutritive fiber from 22 until 30 weeks of age. 2. Obese rats were 50% heavier than lean throughout the study. Phenotype effects (obese greater than lean) were present for retroperitoneal (RP) and dorsal (DOR) white fat depot weight, adipocyte number per depot, and adipocyte lipid content. Epididymal mass and cellularity were similar in both phenotypes. 3. Interscapular brown adipose tissue (IBAT) mass, adipocyte size, and adipocyte number were greater in obese than in lean. Resting metabolic rates (RMR) of obese rats were lower than in lean, and increased 79% in lean but only 33% in obese animals following NE (200 micrograms/kg BW, s.c.) stimulation. 4. The glycemic response to NE occurred normally in both phenotypes, and resulted in a 3-fold increment in plasma glucose in lean rats and a 5-6-fold increase in plasma glucose in obese rats. 5. The results of this study are consistent with hyperplasia and hypertrophy of IBAT, RP and DOR depots, and indicate that the capacity for non-shivering thermogenesis is impaired in the obese phenotype of this strain in spite of peripheral sensitivity to NE and greater mass and cellularity of brown adipose tissue.  相似文献   

18.
A new strain of obese mouse, the PBB/Ld, has been studied in terms of fat pad cellularity, serum insulin and blood glucose levels, and response to gold thioglucose injections. Age-matched C57B1/6J mice were used as controls. Adipocyte size and number in the major fat depots were determined at various ages from weanling to maturity in the PBB/Ld and C57B1/6J strains. Results indicated that obesity in the PBB/Ld was due to hypertrophy of adipocytes in retroperitoneal and subcutaneous fat depots and to hypertrophy and hyperplasia in the epididymal fat pad. PBB/Ld mice also developed hyperinsulinemia and hyperglycemia and these findings have been discussed in terms of the developmental changes in fat pad cellularity. The injection of gold thioglucose led to increased food intake in both PBB/Ld and C57B1/6J mice. Hyperphagia was also present in the PBB/LD control group, but increased efficiency of converting calories to body weight was not observed in this group when compared to control C57B1/6J mice. The characteristics of obesity seen in the PBB/Ld mouse are discussed and comparisons are made to similar studies in other rodent models of obesity.  相似文献   

19.
Previously, inducing inactivity for 53 h after 21 days of voluntary running resulted in a 25 and 48% increase in epididymal and omental fat pad weights, respectively, while rats continued to eat more than a group that never had access to a running wheel (J Physiol 565: 911-925, 2005). We wanted to test the hypothesis that inactivity, independent of excessive caloric intake, could induce an increase in fat pad mass. Twenty-one-day-old rats were given access to voluntary running wheels for 42-43 days so that they were running approximately 9 km/day in the last week of running, after which wheels were locked for 5, 53, or 173 h (WL5, WL53, WL173) before the rats were killed. During the 53 and 173 h of inactivity, one group of animals was pair fed (PF) to match sedentary controls, whereas the other continued to eat ad libitum (AL). Epididymal and retroperitoneal fat masses were significantly increased in the WL173-PF vs. the WL5 group, whereas epididymal, perirenal, and retroperitoneal fat masses were all significantly increased in the WL173-AL group compared with the WL5 group. Additionally, hyperplasia, and not hypertrophy, of the epididymal fat mass was responsible for the increase at WL173-AL as demonstrated by a significant increase in cell number vs. WL5, with no change in cell diameter or volume. Thus two important findings have been elucidated: 1) increases in measured abdominal fat masses occur in both AL and PF groups at WL173, and 2) adipocyte expansion via hyperplasia occurred with an ad libitum diet following cessation of voluntary running.  相似文献   

20.
We measured the 5 alpha-reductase activity in isolated cell preparations of rat adipose tissue using the formation of [3H]dihydrotestosterone from [3H]testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5 alpha-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10(-8) M), when added to the medium, caused a 90% decrease in 5 alpha-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5 alpha-reductase activity in each tissue studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号