首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physico-chemical properties of skim milk containing κ-carrageenan (in the concentration range 0–0.06% w/v), flaxseed gum (in the concentration range 0–0.40% w/v), or a mixture of both polysaccharides were studied using dynamic light scattering, under diluted conditions, as well as in situ, undiluted, using diffusing wave spectroscopy (DWS) and ultrasonic spectroscopy. Flaxseed gum causes phase separation in milk mixtures, because of thermodynamic incompatibility between the casein micelles and the polysaccharide chains. Confocal microscopy and ultrasonic spectroscopy showed that while the addition of 0.01% κ-carrageenan was not sufficient to hinder phase separation, when 0.03% was added, the helix–helix interactions between κ-carrageenan molecules were sufficient to form a network and stabilize the system. DWS clearly demonstrated that clusters of casein micelles still form even at very low concentrations of polysaccharides (below the visible phase separation threshold) and that κ-carrageenan hinders visible phase separation by decreasing the mobility of the casein micelles.  相似文献   

2.
The influence of cross-linked waxy maize starch on the aggregation behavior of casein micelles was investigated using a combination of physico-chemical techniques. Milk was homogenized at two different temperatures (55 and 65 °C) and then heated at 95 °C for 5 min in a pilot scale system. The possible interactions between modified starch and milk proteins during lactic acid fermentation were evaluated. While 1% starch did not show differences in the whey protein complexes formed during heating compared to milk with no starch (as measured by size exclusion chromatography), a higher (2.5%) concentration of starch clearly showed an increased amount of heat-induced whey protein aggregates. The gelation pH also increased significantly with 2.5% starch compared to that of the control samples. The storage modulus (G′) increased with increasing levels of starch, and confocal microscopy confirmed that the microstructure of the casein gels was altered by the presence of modified starch. Milk-starch mixtures preheated and homogenized at 55 or 65 °C exhibited similar physico-chemical behavior during acidification. The results suggested a lack of interaction between starch granules and casein micelles during acidification, and scanning electron microscopy images collected with a self-assembled monolayer technique also confirmed that starch granules were not attached to milk caseins but only embedded in the protein gel matrix.  相似文献   

3.
In order to clarify further the relationship between the heat stability of casein micelles and the formation of soluble casein upon heating concentrated milk, the effect of formaldehyde was examined. The addition of formaldehyde up to 20 mM markedly increased the heat stability of both concentrated skim milk and concentrated whey protein-free (WPF) milk. The stabilizing effect of formaldehyde was greater for concentrated skim milk than for concentrated WPF milk. The addition of formaldehyde depressed the formation of soluble casein upon heating concentrated milk. No soluble casein was formed on the addition of 20 mM formaldehyde. It was confirmed by Sephadex G-200 gel filtration in the presence of 6.6 M urea that cross-links among the casein components were formed in heated concentrated WPF milk containing formaldehyde. These facts suggest that formaldehyde may introduce cross-links among the casein components and prevent the formation of soluble casein accompanying the release of K-casein from micelles, thus stabilizing the casein micelles.  相似文献   

4.
The interactions that lead to structure transitions in oil-in-water emulsions were investigated using high-resolution ultrasonic spectroscopy. High methoxyl pectin (HMP) was added to the emulsions at various concentrations and the dynamics of aggregation induced by changes in pH were observed. Two independent ultrasonic parameters, velocity and attenuation, were measured as a function of time or pH. At pH 6.8, both velocity and attenuation of sound changed as a function of HMP concentration. During acidification, caused by the addition of glucono-δ-lactone, there were small changes in the overall ultrasonic velocity, but it was possible to relate these changes to the structural changes in the emulsion. The values of ultrasonic attenuation decreased at high pH with increasing amount of HMP, indicating changes in the flocculation state of the oil droplets caused by depletion forces. During acidification at pH 5.4, emulsions containing HMP showed a steep increase in the ultrasonic attenuation, and this pH corresponds to the pH of association of HMP with the casein-covered oil droplets. The adsorption of HMP onto the interface causes a rearrangement of the oil droplets, and the emulsions containing sufficient amounts of HMP no longer gel at acid pH. This is well described by the ultrasonic attenuation changes in the various emulsions. This research demonstrated for the first time that ultrasonic spectroscopy can be employed for in situ monitoring and analysis of acid-induced destabilization of food emulsions.  相似文献   

5.
Electrosorption of pectin onto casein micelles   总被引:2,自引:0,他引:2  
Pectin, a polysaccharide derived from plant cells of fruit, is commonly used as stabilizer in acidified milk drinks. To gain a better understanding of the way that pectin stabilizes these drinks, we studied the adsorption and layer thickness of pectin on casein micelles in skim milk dispersions. Dynamic light scattering was used to measure the layer thickness of adsorbed pectin onto casein micelles in situ during acidification. The results indicate that the adsorption of pectin onto casein micelles is multilayered and takes place at and below pH 5.0. Renneting, i.e., cleaving-off kappa-casein from the casein micelles, did not alter the adsorption pH. It did, however, show that pectin arrests the rennet-induced flocculation of casein micelles below pH 5.0. From the findings we concluded the attachment of pectin onto casein micelles is driven by electrosorption. Adsorption measurements confirmed the multilayered nature of the adsorption of pectin onto casein micelles. Both the adsorbed amount and the layer thickness increased with decreasing pH in the relevant range 3.5-5.0. The phase behavior of a casein micelles/pectin mixture was determined and could be explained in terms of thermodynamic incompatibility being relevant above pH 5.0 and adsorption, leading to either stabilization and bridging, being relevant below pH 5.0. The results confirm that electrosorption is the driving force for the adsorption of pectin onto casein micelles.  相似文献   

6.
Sodium caseinate is a commonly used emulsifier in foods, as it adsorbs on the surface of oil droplets and stabilizes them via electrostatic and steric stabilization, forming a polyelectrolyte layer at the interface. Since the protein interface is affected by varying environmental conditions such as pH, ionic strength, concentration of unadsorbed polymers, these emulsions are prone to a variety of destabilization mechanisms. The objective of the present work was to observe the destabilization of sodium caseinate stabilized oil in water emulsions using electroacoustic spectroscopy. This technique can be utilized for the characterization of concentrated colloidal systems in situ, without dilution. The electroacoustic and ultrasonic properties of soy oil in water emulsions were determined for sodium caseinate stabilized emulsions under conditions known to cause destabilization. Ultrasonic attenuation and electrophoretic mobility (ζ-potential) could clearly follow the changes occurring in the emulsion droplets, under minimal sample disruption. This is critical for these systems in a very fragile, metastable state. The emulsions were stable to the addition of high methoxyl pectin (HMP) up to 0.1% HMP. Addition of free sodium caseinate induced depletion flocculation, causing a decrease in the attenuation and electrophoretic mobility measured. The presence of HMP limited depletion interactions. Acidification of the emulsion droplets resulted in a clear sol–gel transition, as shown by a steep increase in the particle size and a decrease in attenuation. Again, destabilization was limited by HMP addition. It was concluded that ultrasonics and electroacoustics are suitable techniques to understand the details of the destabilization processes occurring to food emulsions, measured in situ.  相似文献   

7.
Casein micelles are a major component of milk proteins. It is well known that casein micelles show chaperone-like activity such as inhibition of protein aggregation and stabilization of proteins. In this study, it was revealed that casein micelles also possess a high refolding activity for denatured proteins. A buffer containing caseins exhibited higher refolding activity for denatured bovine carbonic anhydrase than buffers including other proteins. In particular, a buffer containing α-casein showed about a twofold higher refolding activity compared with absence of α-casein. Casein properties of surface hydrophobicity, a flexible structure and assembly formation are thought to contribute to this high refolding activity. Our results indicate that casein micelles stabilize milk proteins by both chaperone-like activity and refolding properties.  相似文献   

8.
The chymosin-induced flocculation of casein micelles of bovine milk can be explained and calculated in terms of three relationships, which are (i) the action of chymosin upon the κ-casein of the micelles; (ii) the probability that a micelle, with a given proportion of its κ-casein destroyed, will aggregate, and (iii) the aggregation of micelles by a Smoluchowski mechanism. Details of the calculations are given, and the theory is shown to be in good agreement with experimental observations of the dependence of the clotting time with variations in enzyme and substrate concentrations.  相似文献   

9.
Casein micelles have been separated from skim milk by chromatography on CPG-10 3000 glass beads. Fractionation of the micelles according to size has been demonstrated. Polyacrylamide gel electrophoresis of urea treated micelles reveals that different relative amounts of the major casein components occur in the various micelle fractions. No discernible dissociation of the micelles into monomeric caseins has been observed.  相似文献   

10.
Reversible and irreversible states of pressure-dissociated casein micelles were studied by in situ light scattering techniques and ex situ atomic force microscopy. AFM experiments performed at ambient pressure reveal heterogeneities across the micelle, suggesting a sub-structure on a 20 nm scale. At pressures between 50 and 250 MPa, the native micelles disintegrate into small fragments on the scale of the observed sub-structure. At pressures above 300 MPa the micelles fully decompose into their monomeric constituents. After pressure release two discrete populations of casein aggregates are observed, depending on the applied initial pressure: Between 160 and 240 MPa stable micelles with diameters near 100 nm without detectable sub-structures are formed. Casein micelles exposed to pressures above 280 MPa re-associate at ambient pressure yielding mini-micelles with diameters near 25 nm. The implications concerning structural models are discussed.  相似文献   

11.
The effect of the state of aggregation of casein (micellar or non-micellar, as milk protein concentrate [MPC] or sodium caseinate [Na-caseinate], respectively) on water sorption, plasticization, and crystallization of freeze-dried matrices containing sucrose, lactose or their blends were studied. The Guggenheim–Anderson–de Boer (GAB) equation satisfactorily fitted to the water sorption data. In most cases, sugar crystallization—studied by water sorption behavior, x-ray diffraction, and non-isothermal calorimetry—occurred significantly slower in systems containing Na-caseinate compared to MPC. The type of casein did not affect the temperature range where the glass transition (T g) was observed. Sugar/Na-caseinate mixtures showed higher instant crystallization temperatures (up to 20°C) than sugar/MPC mixtures. X-ray diffraction showed that: (a) crystallinity increased with increasing relative vapor pressure (RVP) > 44%; (b) lactose crystallized mainly as α-lactose monohydrate regardless of casein type; and (c) that sucrose crystals predominated the patterns of the sucrose/lactose mixtures. Results suggested that the way proteins organize in space (i.e., aggregation state) affected their interactions with neighboring sugar and water molecules, which led to differences in sugar crystallization behavior. Poster presented at the 4th International Workshop on Water in Food in Brussels March, 2006. Funded by CONACyT (Mexico) and Dippin’ Dots Inc., KY, USA.  相似文献   

12.
Anema SG  de Kruif CG 《Biomacromolecules》2011,12(11):3970-3976
On addition of lactoferrin (LF) to skim milk, the turbidity decreases. The basic protein binds to the caseins in the casein micelles, which is then followed by a (partial) disintegration of the casein micelles. The amount of LF initially binding to casein micelles follows a Langmuir adsorption isotherm. The kinetics of the binding of LF could be described by first-order kinetics and similarly the disintegration kinetics. The disintegration was, however, about 10 times slower than the initial adsorption, which allowed investigating both phenomena. Kinetic data were also obtained from turbidity measurements, and all data could be described with one equation. The disintegration of the casein micelles was further characterized by an activation energy of 52 kJ/mol. The initial increase in hydrodynamic size of the casein micelles could be accounted for by assuming that it would go as the cube root of the mass using the adsorption and disintegration kinetics as determined from gel electrophoresis. The results show that LF binds to casein micelles and that subsequently the casein micelles partly disintegrate. All micelles behave in a similar manner as average particle size decreases. Lysozyme also bound to the casein micelles, and this binding followed a Langmuir adsorption isotherm. However, lysozyme did not cause the disintegration of the casein micelles.  相似文献   

13.
Calcium in cow's milk is mainly in the form of calcium phosphate-phosphoprotein complexes known as casein micelles. These micelles, in contrast to other phosphoprotein complexes in bone and other tissues, can be readily isolated and studied, but conventional techniques have given ambiguous and conflicting evidence on the structure of milk calcium phosphate. Extended X-ray absorption fine structure and near-edge structure measurements at the newly commissioned Synchrotron Radiation Source at Daresbury indicate that it closely resembles brushite, CaHPO4·2H2O. This result, and chemical analysis, requires that phosphate groups from the matrix phosphoproteins be incorporated in the brushite lattice, probably in the surface, suggesting that these organic phosphate groups act as heterogeneous nucleation sites for phase separation of the calcium phosphate from solution.  相似文献   

14.
High pressure (HP)-induced changes in the proteins of bovine milk have become an area of considerable research interest in recent years; as a result, there is now a detailed understanding of the effects of HP on casein micelles and whey proteins. HP treatment at pressures >400 or >100 MPa denatures the two most abundant whey proteins, alpha-lactalbumin (alpha-la) and beta-lactoglobulin (beta-lg), respectively. The majority of denatured beta-lg in HP-treated milk associates with the casein micelles, although some denatured beta-lg remains in the serum phase or is attached to the milk fat globule membrane; HP-denatured alpha-la is also associated with the milk fat globules. Casein micelles are disrupted on treatment at pressures >200 MPa; the rate and extent of micellar disruption increases with pressure and is probably due to the increased solubility of calcium phosphate with increasing pressure. On prolonged treatment at 250-300 MPa, reassociation of micellar fragments occurs through hydrophobic bonding; this process does not occur at a pressure >300 MPa, leading to considerably smaller micelles in such milk. As a result of HP-induced changes, the size, number, hydration, composition and light-scattering properties of casein micelles in HP-treated milk differ considerably from those in untreated milk.  相似文献   

15.
The storage modulus of various concentrations of highly cross-linked waxy maize starch was measured in water, a salt solution, a salt solution with lactose, whey, and skim milk. The influence of the skim milk components was deduced from the differences in moduli between these systems. Salts appeared to have no direct influence on the modulus of the starch. Lactose increased the storage modulus, probably due to an increase in the particle rigidity of the swollen starch granules. The whey proteins had only a small effect on the modulus of the starch. However, the concentration of these proteins was very low. Casein micelles increased the modulus of the starch because the swollen starch granules are not accessible to the casein. A model based on the mutual exclusion of swollen starch granules and milk proteins was applied to predict the storage modulus of starch-milk systems as a weighed sum of the moduli of the starch and protein phases. Weight factors were derived from the hydration capacity of starch granules and casein micelles. Although the behaviour of aqueous starch-skim milk systems fell within the boundaries imposed by the model, the predictive power of this model was rather poor.  相似文献   

16.
Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins.  相似文献   

17.
A system was developed to continuously acidify and inoculate skim milk for the production of fresh cheese. Four strains of mesophilic lactic acid bacteria were entrapped separately in κ -carrageenan/locust bean gum gel beads and used in a stirred bioreactor operated at 26°C with a 25% (v/v) gel load. The pH in the reactor was controlled at 6.0 by adding fresh milk using proportional integrated derived regulation. The bioreactor was operated during 8-h daily cycles for up to 7 weeks with different milks (heat treatment, dry matter content) and differing starting procedures. The heat treatment of the milk was an important factor for process performance: a dilution rate increase of 57% and an inoculation level decrease of 63% were observed with sterilized UHT skim milk (142°C – 7.5 s) compared with pasteurized skim milk (72°C – 15 s). The dry matter content of the milk (8–13% w/w) had no detectable effect on these parameters. A convenient starting procedure of the system was tested; steady-state was reached in less than 40 min following an interruption period of 16–60 h. These results combined with our published data on process performance show the feasibility of using an integrated immobilized cell bioreactor for milk prefermentation in cheese manufacture. Received 10 June 1996/ Accepted in revised form 15 October 1996  相似文献   

18.
In our previous paper (Nagy et?al. in J Biol Chem 285:38811–38817, 2010) by using a multilayered model system, we showed that, from α-casein, aggregates (similar to natural casein micelles) can be built up step by step if Ca-phosphate nanocluster incorporation is ensured between the protein adsorption steps. It remained, however, an open question whether the growth of the aggregates can be terminated, similarly to in nature with casein micelles. Here, we show that, in the presence of Ca-phosphate nanoclusters, upon adsorbing onto earlier α-casein surfaces, the secondary structure of α-casein remains practically unaffected, but κ-casein exhibits considerable changes in its secondary structure as manifested by a shift toward having more β-structures. In the absence of Ca-phosphate, only κ-casein can still adsorb onto the underlying casein surface; this κ-casein also expresses considerable shift toward β-structures. In addition, this κ-casein cover terminates casein aggregation; no further adsorption of either α- or κ-casein can be achieved. These results, while obtained on a model system, may show that the Ca-insensitive κ-casein can, indeed, be the outer layer of the casein micelles, not only because of its “hairy” extrusion into the water phase, but because of its “softer” secondary structure, which can “occlude” the interacting motifs serving casein aggregation. We think that the revealed nature of the molecular interactions, and the growth mechanism found here, might be useful to understand the aggregation process of casein micelles also in?vivo.  相似文献   

19.
Amino acid limited growth of starter cultures in milk   总被引:2,自引:0,他引:2  
The specific growth rates of several Streptococcus cremoris strains were 10–40% lower in milk than in other growth in media. The growth rates in milk increased when an amino acid mixture or casein was added, whereas, when milk was diluted, the specific growth rate of the streptococci decreased. This decrease could be overcome by bringing the casein concentration in the diluted milk back to the normal value (3%). This indicates that casein-hydrolysis proceeded at a rate too low for the streptococci to reach their potential maximum specific growth rates in milk so that growth in milk is essentially amino acid-limited. This was subsequently demonstrated for S. cremoris by continuous cultivation in media with low casein concentrations. At a low dilution rate casein hydrolysis was fast enough to supply the cells with enough amino acids and lactose was growth-limiting, whereas at higher dilution rates amino acids became growth-limiting. In cultures exponentially growing in milk the concentration of free amino acids was measured to determine which amino acid(s) was(were) absent and could possibly limit growth. A number of essential amino acids (leucine, methionine, glutamate and in some cases phenylalanine) were not detected and addition of these, together, stimulated the growth of S. cremoris in milk. The amino acids leucine and phenylalanine appeared to play a particularly important role in this stimulation. These two are, supposedly, the first amino acids that become limiting during growth in milk. The effect of competition for casein and amino acids by different organisms was studied in continuous cultures. At different dilution rates different strains became dominant in these mixed cultures, suggesting that differences in apparent affinity constants (KS) for casein, leucine and glutamate existed between the strains.  相似文献   

20.
Summary The location of the glycosylated part of κ-casein in bovine casein micelles was investigated using gold particles (6 nm in diameter) labelled withRicinus communis lectin andLimulus polyphemus lectin. The pattern of marking of thin sections of micelles was similar with both lectins. Glycosylated κ-casein was distributed uniformly throughout most micelles of all sizes. Peripheral location of glycosylated κ-casein was observed only occasionally in some of the largest micelles. Quantitative data indicated that the concentration of the glycosylated protein was constant in micelles of increasing sizes. As larger micelles contain less total κ-casein than smaller ones, these data indicated that a greater proportion of their κ-casein is glycosylated. These results support models for casein micelle structure where κ-casein is distributed throughout the micelles. They do not agree with “coat-core” structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号