首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is generally believed that only L-amino acids are acceptable in protein synthesis, though some D-amino acids, including D-tyrosine, D-aspartate, and D-tryptophan are known to be bound enzymatically to tRNAs. In this report, we newly show that D-histidine and D-lysine are also able to be the substrates of respective Escherichia coli aminoacyl-tRNA synthetases.  相似文献   

2.
The reaction scheme of methionyl-tRNA synthetase from Escherichia coli with the initiator tRNAsMet from E. coli and rabbit liver, respectively, has been resolved. The statistical rate constants for the formation, kR, and for the dissociation, kD, of the 1:1 complex of these tRNAs with the dimeric enzyme have been calculated. Identical kR values of 250 μm?1 s?1 reflect similar behaviour for antico-operative binding of both tRNAsMet to native methionyl-tRNA synthetase. Advantage was taken of the difference in extent of tryptophan fluorescence-quenching induced by the bacterial and mammalian initiator tRNAsMet to measure the mode of exchange of these tRNAs antico-operatively bound to the enzyme. Analysis of the results reveals that antico-operativity does not arise from structural asymmetric assembly of the enzyme subunits. Indeed, both subunits can potentially bind a tRNA molecule. Exchange between tRNA molecules can occur via a transient complex in which both sites are occupied. Either strong and weak sites reciprocate between subunits on the transient complex or occupation of the weak site induces symmetry of this complex. While in the present case, these two alternatives are kinetically indistinguishable, they do account for the observation that, upon increasing the concentration of the competing mammalian tRNA, the rate of exchange of the E. coli initiator tRNAMet is enhanced, due to its faster rate of dissociation from the transient complex. Finally, it has been verified that in the case of the trypsin-modified methionyl-tRNA synthetase which cannot provide more than one binding site for tRNA, exchange of enzymebound bacterial tRNA by mammalian tRNA does proceed to a limiting rate independent of the mammalian tRNA concentration present in the solution.  相似文献   

3.
Respiratory deficient mutants of Saccharomyces cerevisiae previously assigned to complementation group G59 are pleiotropically deficient in respiratory chain components and in mitochondrial ATPase. This phenotype has been shown to be a consequence of mutations in a nuclear gene coding for mitochondrial leucyl-tRNA synthetase. The structural gene (MSL1) coding for the mitochondrial enzyme has been cloned by transformation of two different G59 mutants with genomic libraries of wild type yeast nuclear DNA. The cloned gene has been sequenced and shown to code for a protein of 894 residues with a molecular weight of 101,936. The amino-terminal sequence (30-40 residues) has a large percentage of basic and hydroxylated residues suggestive of a mitochondrial import signal. The cloned MSL1 gene was used to construct a strain in which 1 kb of the coding sequence was deleted and substituted with the yeast LEU2 gene. Mitochondrial extracts obtained from the mutant carrying the disrupted MSL1::LEU2 allele did not catalyze acylation of mitochondrial leucyl-tRNA even though other tRNAs were normally charged. These results confirmed the correct identification of MSL1 as the structural gene for mitochondrial leucyl-tRNA synthetase. Mutations in MSL1 affect the ability of yeast to grow on nonfermentable substrates but are not lethal indicating that the cytoplasmic leucyl-tRNA synthetase is encoded by a different gene. The primary sequence of yeast mitochondrial leucyl-tRNA synthetase has been compared to other bacterial and eukaryotic synthetases. Significant homology has been found between the yeast enzyme and the methionyl- and isoleucyl-tRNA synthetases of Escherichia coli. The most striking primary sequence homology occurs in the amino-terminal regions of the three proteins encompassing some 150 residues. Several smaller domains in the more internal regions of the polypeptide chains, however, also exhibit homology. These observations have been interpreted to indicate that the three synthetases may represent a related subset of enzymes originating from a common ancestral gene.  相似文献   

4.
Interactions of Escherichia coli isoleucyl- and glutamyl-tRNA synthetases and their cognate tRNAs were analyzed by phosphate-alkylation mapping with N-nitroso-N-ethylurea and/or by 1H-NMR analysis. When E. coli tRNA(Ile) was bound with isoleucyl-tRNA synthetase, many of the phosphate groups in the anticodon loop and stem and in the D-stem were protected from alkylation. This result is consistent with that of analysis of imino proton resonances due to the secondary and tertiary base pairs. These analyses also suggested that the L-shaped tertiary structure of tRNA(Ile) is distorted upon complex formation with IleRS because of disruption of some tertiary base pairs. In the case of E. coli tRNA(Glu), several phosphate groups in the D-stem and the variable loop were significantly protected by the cognate synthetase. These results indicate that the two tRNAs, unlike other tRNAs studied so far, have some of the "identity determinants" in the D-stem and/or in the anticodon stem.  相似文献   

5.
Activation of methionine by Escherichia coli methionyl-tRNA synthetase   总被引:3,自引:0,他引:3  
G Ghosh  H Pelka  L H Schulman  S Brunie 《Biochemistry》1991,30(40):9569-9575
In the present work, we have examined the function of three amino acid residues in the active site of Escherichia coli methionyl-tRNA synthetase (MetRS) in substrate binding and catalysis using site-directed mutagenesis. Conversion of Asp52 to Ala resulted in a 10,000-fold decrease in the rate of ATP-PPi exchange catalyzed by MetRS with little or no effect on the Km's for methionine or ATP or on the Km for the cognate tRNA in the aminoacylation reaction. Substitution of the side chain of Arg233 with that of Gln resulted in a 25-fold increase in the Km for methionine and a 2000-fold decrease in kcat for ATP-PPi exchange, with no change in the Km for ATP or tRNA. These results indicate that Asp52 and Arg233 play important roles in stabilization of the transition state for methionyl adenylate formation, possibly directly interacting with complementary charged groups (ammonium and carboxyl) on the bound amino acid. Primary sequence comparisons of class I aminoacyl-tRNA synthetases show that all but one member of this group of enzymes has an aspartic acid residue at the site corresponding to Asp52 in MetRS. The synthetases most closely related to MetRS (including those specific for Ile, Leu, and Val) also have a conserved arginine residue at the position corresponding to Arg233, suggesting that these conserved amino acids may play analogous roles in the activation reaction catalyzed by each of these enzymes. Trp305 is located in a pocket deep within the active site of MetRS that has been postulated to form the binding cleft for the methionine side chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Growth of Escherichia coli AB 2271 under threonine or isoleucine deficiency leads to a depression of the threonyl-tRNA synthetase and isoleucyl-tRNA synthetase respectively. During this amino-acid-limited growth the concentrations of isoaccepting fractions of the cognate tRNA species were changed, as demonstrated by their altered reversed-phase-5 chromatograms. But, in addition, the profiles of the isoacceptors of all other tRNA species investigated, i.e. of tRNAsLeu, tRNAsSer and tRNAsArg were also altered. This means that, if there is a correlation between regulation of the level of an aminoacyl-tRNA synthetase and its cognate isoaccepting tRNAs, it is superimposed by the effect of amino acid limitation upon the concentration of all isoaccepting tRNAs. So far drastic changes in profiles of isoaccepting tRNAs have only been observed under unbalanced growth in relaxed cells or during treatment with antibiotics. Here we demonstrate that similar heavy alterations in patterns of isoaccepting tRNAs occur in a proven stringent E. coli strain growing exponentially under amino acid limitation. Thus the observed changes in the profiles of isoaccepting tRNAs during amino acid limitation signal a meaningful biological function of those newly or increasingly occurring isoaccepting tRNAs. During the growth under amino acid limitation the total acceptor activity of eight investigated tRNA species, however, stayed unchanged, except that under threonine-limited growth the total amount of tRNAIle was reduced to about half and that of tRNAGlu increased; both tRNA species of these isoacceptors are known [30,31] as spacers between ribosomal RNAs.  相似文献   

7.
G Ghosh  H Y Kim  J P Demaret  S Brunie  L H Schulman 《Biochemistry》1991,30(51):11767-11774
We have previously shown that the anticodon of methionine tRNAs contains the major recognition site required for aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase (MetRS) and have located part of the anticodon binding domain on the enzyme at a site close to Trp461 [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768; Ghosh, G., Pelka, H., & Schulman, L.H. (1990) Biochemistry 29, 2220-2225]. In order to gain information about other possible sites of contact between MetRS and its tRNA substrates, we have examined the effects of mutations at a series of positively charged residues on the surface of the C-terminal domain of the enzyme. Conversion of Arg356, Arg366, Arg380, or Arg453 to Gln had little or no effect on enzyme activity. Similarly, conversion of Lys402 or Lys439 to Asn failed to significantly alter aminoacylation activity. Conversion of Arg380 to Ala or Arg442 to Gln produced a 5-fold reduction in kcat/Km for aminoacylation of tRNAfMet, with no effect on methionine activation, indicating a possible minor role for these residues in interaction of the enzyme with the tRNA substrate. In contrast, mutation of a phylogenetically conserved residue, Arg395, to Gln increased the Km for aminoacylation of tRNAfMet about 30-fold and reduced kcat/Km by 25,000-fold. The mutant enzyme was also shown to be highly defective by its inability to complement a strain of E. coli having an altered chromosomal MetRS gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
An aminoacyl-tRNA synthetase complex in Escherichia coli.   总被引:3,自引:1,他引:2       下载免费PDF全文
Aminoacyl-tRNA synthetases from several strains of Escherichia coli are shown to elute as a high-molecular-weight complex on 6% agarose columns (Bio-Gel A-5M). In contrast, very little synthetase activity was observed in such complexes on Sephadex G-200 columns, suggesting that these enzymes may interact with or are dissociated during chromatography on dextran. The size of the complex observed on Bio-Gel A-5M was influenced by the method of cell breakage and the salt concentrations present in buffers. The largest complexes (greater than 1,000,000 daltons) were seen with cells broken with a freeze press, whereas with sonicated preparations the average size of the complex was about 400,000 daltons. Extraction of synthetases at 0.15 M NaCl, to mimic physiological salt concentrations, also resulted in high-molecular-weight complexes, as demonstrated by both agarose gel filtration and ultracentrifugation analysis. Evidence is presented that dissociation of some synthetases does occur in the presence of higher salt levels (0.4 M NaCl). Partial purification of the synthetase complex on DEAE-Sephacel was accomplished with only minor dissociation of individual synthetases. These data suggest that a complex(es) of aminoacyl-tRNA synthetase does exist in bacterial cells, just as in eucaryotes, and that the complex may have escaped earlier detection due to its fragility during isolation.  相似文献   

9.
10.
Repeated sequences in methionyl-tRNA synthetase from E. coli   总被引:5,自引:0,他引:5  
  相似文献   

11.
12.
J S Williams  P R Rosevear 《Biochemistry》1991,30(26):6412-6416
The Escherichia coli truncated methionyl-tRNA synthetase (delta MTS) was shown to catalyze alpha-carbon hydrogen-deuterium exchange of L-selenomethionine, L-methionine, L-ethionine, and L-norleucine in the presence of deuterium oxide. The rate of alpha-proton exchange for L-methionine was shown to be linear with respect to delta MTS concentration. The exchange reaction showed saturation kinetics with apparent Km values of 21 and 4 mM in the absence and presence of saturating adenosine concentrations, respectively. As expected, delta MTS did not catalyze alpha-proton exchange of D-methionine since the enzyme has been shown to be specific for L-amino acids. In the absence of enzyme or in the presence of an equivalent concentration of Zn2+, no hydrogen-deuterium exchange was detected. The exchange reaction was not observed with L-methioninol, an analogue of L-methionine lacking the carboxylate group. These results suggest that the alpha-carboxylate group is a requirement for the delta MTS-catalyzed exchange reaction. The E. coli methionyl-tRNA synthetase (MTS) has previously been shown to be a zinc metalloprotein [Posorske, L. H., Cohn, M., Yanagisawa, N., & Auld, D. S. (1979) Biochim. Biophys. Acta 576, 128]. On the basis of the structural and mechanistic information available on MTS, we propose that the enzyme-bound zinc coordinates the carboxylate of the amino acid, while a base on the enzyme is responsible for exchange of the alpha-proton. The role of the enzyme-bound metal is to render the alpha-proton more acidic through coordination of the carboxylate group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Methionyl-tRNA synthetase occurs free and as high-molecular-weight multi-enzyme complexes in rat liver. The free form is purified to near homogeneity by conventional column chromatography and affinity chromatography on tRNA-Sepharose. The native molecular weight of free methionyl-tRNA synthetase is 64 500, based on its sedimentation coefficient of 4.5 S and Stokes radius of 33 A. The free methionyl-tRNA synthetase apparently belongs to alpha-type subunit structure, since the subunit molecular weight is 68 000, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Methionyl-tRNA synthetase is dissociated from the high-molecular-weight synthetase complex by controlled trypsinization, according to Kellermann, O., Viel, C. and Waller, J.P. (Eur. J. Biochem. 88 (1978) 197-204). The dissociated, free methionyl-tRNA synthetase is subsequently purified to near homogeneity. The subunit structure of dissociated methionyl-tRNA synthetase is identical to that of endogenous free methionyl-tRNA synthetase. Anti-serum raised against Mr 104 000 protein in the synthetase complex, specifically inhibited methionyl-tRNA synthetase in both the free and the high-molecular-weight forms to the same extent. These results suggest that the occurrence of multiple forms of methionyl-tRNA synthetases in mammalian cells may, in part, be due to proteolytic cleavage.  相似文献   

14.
15.
tRNA recognition site of Escherichia coli methionyl-tRNA synthetase   总被引:5,自引:0,他引:5  
O Leon  L H Schulman 《Biochemistry》1987,26(17):5416-5422
We have previously shown that anticodon bases are essential for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase (MetRS) [Schulman, L. H., & Pelka, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6755-6759] and that the enzyme tightly binds to C34 at the wobble position of E. coli initiator methionine tRNA (tRNAfMet) [Pelka, H., & Schulman, L. H. (1986) Biochemistry 25, 4450-4456]. We have also previously demonstrated that an affinity labeling derivative of tRNAfMet can be quantitatively cross-linked to the tRNA binding site of MetRS [Valenzuela, D., & Schulman, L. H. (1986) Biochemistry 25, 4555-4561]. Here, we have determined the site in MetRS which is cross-linked to the anticodon of tRNAfMet, as well as the location of four additional cross-links. Only a single peptide, containing Lys465, is covalently coupled to C34, indicating that the recognition site for the anticodon is close to this sequence in the three-dimensional structure of MetRS. The D loop at one corner of the tRNA molecule is cross-linked to three peptides, containing Lys402, Lys439, and Lys596. The 5' terminus of the tRNA is cross-linked to Lys640, near the carboxy terminus of the enzyme. Since the 3' end of tRNAfMet is positioned close to the active site in the N-terminal domain [Hountondji, C., Blanquet, S., & Lederer, F. (1985) Biochemistry 24, 1175-1180], this result indicates that the carboxy ends of the two polypeptide chains of native dimeric MetRS are folded back toward the N-terminal domain of each subunit.  相似文献   

16.
17.
The gltX gene encoding the glutamyl-tRNA synthetase of Escherichia coli and adjacent regulatory regions was isolated and sequenced. The structural gene encodes a protein of 471 amino acids whose molecular weight is 53,810. The codon usage is that of genes highly expressed in E. coli. The amino acid sequence deduced from the nucleotide sequence of the gltX gene was confirmed by mass spectrometry of large peptides derived from the glutamyl-tRNA synthetase. The observed peptides confirm 73% of the predicted sequence, including the NH2-terminal and the COOH-terminal segments. Sequence homology between the glutamyl-tRNA synthetase and other aminoacyl-tRNA synthetases of E. coli was found in four segments. Three of them are aligned in the same order in all the synthetases where they are present, but the intersegment spacings are not constant; these ordered segments may come from a progenitor to which other domains were added. Starting from the NH2-end, the first two segments are part of a longer region of homology with the glutaminyl-tRNA synthetase, without need for gaps; its size, about 100 amino acids, is typical of a single folding domain. In the first segment, containing sequences homologous to the HIGH consensus, the homology is consistent with the following evolutionary linkage: gltX----glnS----metS----ileS and tyrS.  相似文献   

18.
The gene coding for E. coli cysteinyl-tRNA synthetase (cysS) was isolated by complementation of a strain deficient in cysteinyl-tRNA synthetase activity at high temperature (43 degrees C). Sequencing of a 2.1 kbp DNA fragment revealed an open reading frame of 1383 bp coding for a protein of 461 amino acid residues with a Mr of 52,280, a value in close agreement with that observed for the purified protein, which behaves as a monomer. The sequence of CysRS bears the canonical His-Ile- Gly -His (HIGH) and Lys-Met-Ser-Lys-Ser (KMSKS) motifs characteristic of the group of enzymes containing a Rossmann fold; furthermore, it shows striking homologies with MetRS (an homodimer of 677 residues) and to a lesser extent with Ile-, Leu-, and ValRS (monomers of 939, 860, and 951 residues respectively). With its monomeric state and smaller size, CysRS is probably more closely related to the primordial aminoacyl-tRNA synthetase from which all have diverged.  相似文献   

19.
The presence of high-molecular-weight complexes of aminoacyl-tRNA synthetases in Escherichia coli has been reported (C. L. Harris, J. Bacteriol. 169:2718-2723, 1987). In the current study, Bio-Gel A-5M gel chromatography of 105,000 x g supernatant preparations from E. coli Q13 indicated high molecular weights for both tRNA methylase (300,000) and tRNA sulfurtransferase (450,000). These tRNA modification enzymes did not appear to exist in the same multienzymic complex. On the other hand, 4-thiouridine sulfurtransferase eluted with aminoacyl-tRNA synthetase activity on Bio-Gel A-5M, and both of these activities were cosedimented after further centrifugation of cell supernatants at 160,000 x g for 18 h. Despite this evidence for association of the sulfurtransferase with the synthetase complex, isoleucyl-tRNA synthetase and tRNA sulfurtransferase were totally resolved from each other by DEAE-Sephacel chromatography. Subsequent gel chromatography showed little change in their elution positions on agarose. Hence, either nonspecific aggregation occurred here, or the modification enzymes studied are not members of the aminoacyl-tRNA synthetase complex in E. coli. These findings do suggest that some bacterial tRNA modification enzymes are present in multiprotein complexes of high molecular weight.  相似文献   

20.
The subunit structure of methionyl-tRNA synthetase from Escherichia coli   总被引:7,自引:0,他引:7  
G L Koch  C J Bruton 《FEBS letters》1974,40(1):180-182
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号