首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane transporters set the framework organising the complexity of plant metabolism in cells, tissues and organisms. Their substrate specificity and controlled activity in different cells is a crucial part for plant metabolism to run pathways in concert. Transport proteins catalyse the uptake and exchange of ions, substrates, intermediates, products and cofactors across membranes. Given the large number of metabolites, a wide spectrum of transporters is required. The vast majority of in silico annotated membrane transporters in plant genomes, however, has not yet been functionally characterised. Hence, to understand the metabolic network as a whole, it is important to understand how transporters connect and control the metabolic pathways of plant cells. Heterologous expression and in vitro activity studies of recombinant transport proteins have highly improved their functional analysis in the last two decades. This review provides a comprehensive overview of the recent advances in membrane protein expression and functional characterisation using various host systems and transport assays.  相似文献   

2.
3.
PURPOSE OF REVIEW: The aim of this review is to highlight the importance of fatty acid metabolism as a major determinant in fatty acid uptake. In particular, we emphasize how the activation, intracellular transport and downstream metabolism of fatty acids influence their uptake into cells. RECENT FINDINGS: Studies examining fatty acid entry into cells have focused primarily on the roles of plasma membrane proteins or the question of passive diffusion. Recent studies, however, strongly suggest that a driving force governing fatty acid uptake is the metabolic demand for fatty acids. Both gain and loss-of-function experiments indicate that fatty acid uptake can be modulated by activation at both the plasma membrane and internal sites, by intracellular fatty acid binding proteins, and by enzymes in synthetic or degradative metabolic pathways. Although the mechanism is not known, it appears that converting fatty acids to acyl-CoAs and downstream metabolic intermediates increases cellular fatty acid uptake, probably by limiting efflux. SUMMARY: Altered fatty acid metabolism and the accumulation of triacylglycerol and lipid metabolites has been strongly associated with insulin resistance and diabetes, but we do not fully understand how the entry of fatty acids into cells is regulated. Future studies of cellular fatty acid uptake should consider the influence of fatty acid metabolism and the possible interactions between fatty acid metabolism or metabolites and fatty acid transport proteins.  相似文献   

4.
Lipids were long considered to be passive passengers of carrier vesicles with the single role of sealing the transport container. We now know that specific phospholipids are required for efficient fusion, while others facilitate budding and fission. Moreover, the various polyphosphoinositides assist in the recruitment from the cytosol of proteins of the transport machinery. Finally, the segregation of membrane lipids into different fluid phases appears to serve as a 'lipid raft' mechanism for protein sorting at various stages of the secretory and endocytic pathways. The current challenge is to understand how proteins control the metabolism and subcellular localization, and thereby the activity, of the various lipids.  相似文献   

5.
Insulin resistance is a major pathophysiologic abnormality that characterizes metabolic syndrome and type 2 diabetes. A well characterized ethanolic extract of Artemisia dracunculus L., termed PMI 5011, has been shown to improve insulin action in vitro and in vivo, but the cellular mechanisms remain elusive. Using differential proteomics, we have studied mechanisms by which PMI 5011 enhances insulin action in primary human skeletal muscle culture obtained by biopsy from obese, insulin-resistant individuals. Using iTRAQ™ labeling and LC–MS/MS, we have identified over 200 differentially regulated proteins due to treatment with PMI 5011 and insulin stimulation. Bioinformatics analyses determined that several metabolic pathways related to glycolysis, glucose transport and cell signaling were highly represented and differentially regulated in the presence of PMI 5011 indicating that this extract affects several pathways modulating carbohydrate metabolism, including translocation of GLUT4 to the plasma membrane. These findings provide a molecular mechanism by which a botanical extract improves insulin stimulated glucose uptake, transport and metabolism at the cellular level resulting in enhanced whole body insulin sensitivity.  相似文献   

6.
Functional genomics of phosphate antiport systems of plastids   总被引:4,自引:0,他引:4  
Plant cells require a co-ordination of metabolism between their major compartments, the plastids and the cytosol, in particular as certain metabolic pathways are confined to either compartments. The inner envelope membrane of the plastids forms the major barrier for metabolite exchange and is the site for numerous transport proteins, which selectively catalyse metabolite exchanges characteristic for green and/or non-green tissues. This report is focused on the molecular biology, evolution and physiological function of the family of phosphate translocators (PT) from plastids. Until now, four distinct subfamilies have been identified and characterized, which all share inorganic phosphate as common substrate, but have different spectra of counter exchange substrates to fulfil the metabolic needs of individual cells and tissues. The PTs are named after their main transported substrate, triose phosphate (TPT), phosphoenolpyruvate (PPT), glucose 6-phosphate (GPT) and xylulose 5-P (XPT). All PTs belong to the TPT/nucleotide sugar transporter (NST) superfamily, which includes yet uncharacterized PT homologues from plants and other eukaryotes. Transgenic plants or mutants with altered transport activity of some of the PTs have been generated or isolated. The analysis of these plant lines revealed new insights in the co-ordination and flexibility of plant metabolism.  相似文献   

7.
The yeast plasma membrane is a selective barrier between an erratic environment and the cell's metabolism. Nutrient transporters are the gatekeepers that control the import of molecules feeding into the metabolic pathways. Nutrient import adjusts rapidly to changes in metabolism and the environment, which is accomplished by regulating the surface expression of transporters. Recent studies indicate that the lipid environment in which transporters function regulates ubiquitination efficiency and endocytosis of these proteins. Changes in the lipid environment are caused by lateral movements of the transporters between different membrane domains and by the influence of the extracellular environment on the fluidity of the plasma membrane.  相似文献   

8.
[背景]目前,由皮肤浅部真菌引起的皮肤病逐年增加,已经成为影响人类健康的重大问题之一。[目的]探究白鲜碱(dictamnine,DIC)单体对须癣毛癣菌的抑菌作用及作用机制。[方法]通过高通量测序技术对须癣毛癣菌及白鲜碱作用后的须癣毛癣菌进行转录组测序,对测序序列进行处理和生物信息学分析,以及测序质量评价和序列注释。通过与对照组比较,鉴别出差异表达基因,然后进行GO功能显著性分析和KEGG代谢途径分析等。[结果]白鲜碱对须癣毛癣菌的MIC值为50μg/mL。DIC高剂量组与对照组比较,共360个差异基因;其中上调表达265个,下调表达95个。MFS1、KU70、KU80、L2、cpaT、MFS2、VdtG、patC等基因表达有显著差异。GO功能富集表明,差异基因主要集中于核糖体、线粒体膜、抗氧化活性、毒素代谢过程、单一生物代谢过程、次生代谢过程、初级活性跨膜转运蛋白活性和活跃的跨膜转运蛋白活性等。KEGG代谢途径的改变主要集中在ABC转运、膜运输障碍、谷胱甘肽代谢、DNA的复制与修复变化、减数分裂、氧化磷酸化和丙酮酸代谢障碍等富集通路上,并且相关基因均有显著性改变(P<0.05)...  相似文献   

9.
Peroxisomes play a crucial role in regulating cellular metabolism, providing compartments where metabolic pathways can be contained and controlled. Their importance is underlined by the developmental brain disorders caused by peroxisome malfunction, while disturbances in peroxisome function also contribute to ageing. As peroxisomes do not contain DNA, they rely on an active transport system to obtain the full quota of proteins required for function. Organelle protein transport however, is rarely a one-way process and exciting recent data have demonstrated that peroxisomes can selectively export membrane and matrix proteins to fulfil specific functions. This review will summarise the current knowledge on peroxisomal membrane and matrix protein export, discussing the mechanisms underlying export as well as the role of peroxisomal protein export in peroxisomal and cellular function.  相似文献   

10.
Mitochondria are the central coordinators of energy metabolism and alterations in their function and number have long been associated with metabolic disorders such as obesity, diabetes and hyperlipidemias. Since oxidative phosphorylation requires an electrochemical gradient across the inner mitochondrial membrane, ion channels in this membrane certainly must play an important role in the regulation of energy metabolism. However, in many experimental settings, the relationship between the activity of mitochondrial ion transport and metabolic disorders is still poorly understood. This review briefly summarizes some aspects of mitochondrial H+ transport (promoted by uncoupling proteins, UCPs), Ca2+ and K+ uniporters which may be determinant in metabolic disorders.  相似文献   

11.
12.
We utilized Percoll density gradient centrifugation to isolate and fractionate chloroplasts of Korean winter wheat cultivar cv. Kumgang (Triticum aestivum L.). The resulting protein fractions were separated by one dimensional polyacrylamide gel electrophoresis (1D-PAGE) coupled with LTQ-FTICR mass spectrometry. This enabled us to detect and identify 767 unique proteins. Our findings represent the most comprehensive exploration of a proteome to date. Based on annotation information from the UniProtKB/Swiss-Prot database and our analyses via WoLF PSORT and PSORT, these proteins are localized in the chloroplast (607 proteins), chloroplast stroma (145), thylakoid membrane (342), lumens (163), and integral membranes (166). In all, 67% were confirmed as chloroplast thylakoid proteins. Although nearly complete protein coverage (89% proteins) has been accomplished for the key chloroplast pathways in wheat, such as for photosynthesis, many other proteins are involved in regulating carbon metabolism. The identified proteins were assigned to 103 functional categories according to a classification system developed by the iProClass database and provided through Protein Information Resources. Those functions include electron transport, energy, cellular organization and biogenesis, transport, stress responses, and other metabolic processes. Whereas most of these proteins are associated with known complexes and metabolic pathways, about 13% of the proteins have unknown functions. The chloroplast proteome contains many proteins that are localized to the thylakoids but as yet have no known function. We propose that some of these familiar proteins participate in the photosynthetic pathway. Thus, our new and comprehensive protein profile may provide clues for better understanding that photosynthetic process in wheat.  相似文献   

13.
The emergence of multidrug resistant varieties of Streptococcus pneumoniae (S. pneumoniae) has led to a search for novel drug targets. An in silico comparative analysis of metabolic pathways of the host Homo sapiens (H. sapiens) and the pathogen S. pneumoniae have been performed. Enzymes from the biochemical pathways of S. pneumoniae from the KEGG metabolic pathway database were compared with proteins from the host H. sapiens, by performing a BLASTp search against the non-redundant database restricted to the H. sapiens subset. The e-value threshold cutoff was set to 0.005. Enzymes, which do not show similarity to any of the host proteins, below this threshold, were filtered out as potential drug targets. Five pathways unique to the pathogen S. pneumoniae when compared to the host H. sapiens have been identified. Potential drug targets from these pathways could be useful for the discovery of broad-spectrum drugs. Potential drug targets were also identified from pathways related to lipid metabolism, carbohydrate metabolism, amino acid metabolism, energy metabolism, vitamin and cofactor biosynthetic pathways and nucleotide metabolism. Of the 161 distinct targets identified from these pathways, many are in various stages of progress at the Microbial Genome Database. However, 44 of the targets are new and can be considered for rational drug design. The study was successful in listing out potential drug targets from the S. pneumoniae proteome involved in vital aspects of the pathogen's metabolism, persistence, virulence and cell wall biosynthesis. This systematic evaluation of metabolic pathways of host and pathogen through reliable and conventional bioinformatics approach can be extended to other pathogens of clinical interest.  相似文献   

14.
Glycation of proteins leading to formation of advanced glycation end products (AGEs) has been considered as one of the important causes of diabetic nephropathy. Therefore, in this study, glycated proteins were detected by anti-AGE antibodies from kidney of streptozotocin-induced diabetic rat showing nephropathic symptoms, by using two dimensional electrophoresis and western blot analysis. These glycated proteins were identified and characterized by using combination of peptide mass finger printing and tandem mass spectrometric approaches. Glycated proteins identified included proteins from metabolic pathways, oxidative stress, cell signaling, and transport. Several of the proteins modified by glycation were involved in glucose metabolism. The extent of glycation was higher in diabetes compared to control, in the glycated proteins that were common to both control and diabetic kidney. Two dimensional electrophoresis proteins profiling of glycated proteins suggest that four of the glycated proteins were significantly up regulated in diabetes.  相似文献   

15.
Mammalian phagocytes control bacterial infections effectively through phagocytosis, the process by which particles engulfed at the cell surface are transported to lysosomes for destruction. However, intracellular pathogens have evolved mechanisms to avoid this fate. Many bacterial pathogens use specialized secretion systems to deliver proteins into host cells that subvert signaling pathways controlling membrane transport. These bacterial effectors modulate the function of proteins that regulate membrane transport and alter the phospholipid content of membranes. Elucidating the biochemical function of these effectors has provided a greater understanding of how bacteria control membrane transport to create a replicative niche within the host and provided insight into the regulation of membrane transport in eukaryotic cells.  相似文献   

16.
脂类既是植物生命活动重要的能量来源,也是细胞膜系统不可或缺的结构成分,在植物生长发育和逆境反应等生命活动过程中都起到至关重要的作用。随着脂类代谢研究的不断深入,植物脂类合成通路已渐渐明晰,其中连通不同细胞器间脂类合成中间物质运送的膜蛋白也正被不断发现,但对质体脂类转运蛋白还鲜有报道。跨膜蛋白14家族(Transmembrane 14 family, Tmemb14 family)是一个新发现的跨膜蛋白家族,目前只有拟南芥FAX1 (Fatty Acid Export 1)和斑马鱼TMEM14已被克隆鉴定,该家族其他成员的生物学功能还未见报道。AtFAX1参与植物质体长链脂肪酸的跨膜外运,其功能丧失显著降低植物生物量并影响花粉发育和育性。本研究通过生物信息手段对拟南芥和水稻中的跨膜蛋白14家族成员的进化关系、蛋白理化性质、结构域功能和编码基因的表达模式进行了分析,揭示了Tmemb14家族成员在单、双子叶植物进化中的功能分化,为进一步研究跨膜蛋白14家族成员的生理功能提供了理论依据。  相似文献   

17.
The movement of lipids from their sites of synthesis to ultimate intracellular destinations must be coordinated with lipid metabolic pathways to ensure overall lipid homeostasis is maintained. Thus, lipids would be predicted to play regulatory roles in the movement of vesicles within cells. Recent work has highlighted how specific lipid metabolic events can affect distinct vesicle trafficking steps and has resulted in our first glimpses of how alterations in lipid metabolism participate in the regulation of intracellular vesicles. Specifically, (i) alterations in sphingolipid metabolism affect the ability of SNAREs to fuse membranes, (ii) sterols are required for efficient endocytosis, (iii) glycerophospholipids and phosphorylated phosphatidylinositols regulate Golgi-mediated vesicle transport, (iv) lipid acylation is required for efficient vesicle transport mediated membrane fission, and (v) the addition of glycosylphosphatidylinositol lipid anchors to proteins orders them into distinct domains that result in their preferential sorting from other vesicle destined protein components in the endoplasmic reticulum. This review describes the experimental evidence that demonstrates a role for lipid metabolism in the regulation of specific vesicle transport events.  相似文献   

18.
Compartmentation in plant metabolism   总被引:6,自引:0,他引:6  
Cell fractionation and immunohistochemical studies in the last 40 years have revealed the extensive compartmentation of plant metabolism. In recent years, new protein mass spectrometry and fluorescent-protein tagging technologies have accelerated the flow of information, especially for Arabidopsis thaliana, but the intracellular locations of the majority of proteins in the plant proteome are still not known. Prediction programs that search for targeting information within protein sequences can be applied to whole proteomes, but predictions from different programs often do not agree with each other or, indeed, with experimentally determined results. The compartmentation of most pathways of primary metabolism is generally covered in plant physiology textbooks, so the focus here is mainly on newly discovered metabolic pathways in plants or pathways that have recently been revised. Ultimately, all of the pathways of plant metabolism are interconnected, and a major challenge facing plant biochemists is to understand the regulation and control of metabolic networks. One of the best-characterized networks links sucrose synthesis in the cytosol with photosynthetic CO(2) fixation and starch synthesis in the chloroplasts. One of the key features of this network is how the transport of pathway intermediates and signal metabolites across the chloroplast envelope conveys information between the two compartments, influencing the regulation of several enzymes to co-ordinate fluxes through the different pathways. It is widely accepted that chloroplasts and mitochondria originated from prokaryotic endosymbionts, and that new transporters and regulatory networks evolved to integrate metabolism in these organelles with the rest of the cell. Curiously, the present-day locations of many metabolic pathways within the cell often do not reflect their evolutionary origin, and there is evidence of extensive shuffling of enzymes and whole pathways between compartments during the evolution of plants.  相似文献   

19.
Unravelling the significance of cellular fatty acid-binding proteins   总被引:6,自引:0,他引:6  
Cellular long-chain fatty acid (FA) transport and metabolism are believed to be regulated by membrane-associated and soluble proteins that bind and transport FAs. Several different classes of membrane proteins have been proposed as FA acceptors or transmembrane FA transporters. New evidence from in-vitro and whole-animal studies supports the existence of protein-mediated transmembrane transport of FAs, which is likely to coexist with passive diffusional uptake. The trafficking of FAs by intracellular fatty acid-binding proteins may involve their interaction with specific membrane or protein targets. Evidence is also emerging for concerted actions between the membrane and cytoplasmic fatty acid-binding proteins that allow for efficient regulation of FA transport and metabolism.  相似文献   

20.
活性巯基在浸矿微生物硫代谢的过程中起着重要的作用,半胱氨酸残基作为蛋白质中活性巯基的提供者,为筛选硫代谢相关蛋白质基因提供了依据。本研究以极端嗜酸热古菌万座嗜酸两面菌Acidianus manzaensis为研究对象,基于其全基因组注释信息,筛选出编码富半胱氨酸残基的潜在硫代谢相关膜蛋白基因,并通过RT-qPCR实验对筛选出来的基因进行表达水平验证,同时利用生物信息学方法对其进一步分析。研究表明,与在亚铁中生长的细胞相比,单质硫培养下的细菌中与能量代谢相关的β-葡糖苷酶,与电子传递相关的ATP合成酶、NADH-辅酶Q氧化还原酶基因均表达上调,说明硫代谢途径可能与能量代谢和电子传递有着重要的联系。此外,还有三个假定蛋白基因表达上调,这三个假定膜蛋白中,ARM75161.1、ARM75436.1中的半胱氨酸都位于保守区域,且均有一个半胱氨酸残基暴露于膜外,而ARM75580.1中的半光氨酸不位于保守区域。其中ARM75436.1具有CXXXC结构域,且该结构域中半胱氨酸残基处于同一个β-折叠中。这些假定蛋白可能参与A. manzaensis中硫代谢途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号