首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The fine structure of the main excretory duct epithelium (MEDE) of female mouse submandibular gland was investigated by scanning and transmission electron microscopy and the results compared with the previously established structure of male mouse MEDE. A comparative analysis of the subepithelial capillaries of both sexes was also performed. In this pseudostratified epithelium, principal cell-types were observed: types-I,-II,-III and basal cells. This differed significantly from male MEDE, where type-II and-III are absent and type-I cells are the most numerous. The latter cell-type had abundant mitochondria, a few lipid-containing granules, lysosomes in the infra-nuclear cytoplasm and well-developed basal infoldings. These cells were also characterized by abundant glycogen granules throughout the cytoplasm, many profiles of strands of smooth endoplasmic reticulum in the apical region, and lysosomes in the infra-nuclear region. Type-II cells were the second most numerous. Their most characteristic features were the presence of tubular vesicles which appeared to be invaginated from the plasma membrane, RER, SER, free ribosomes, a few peroxisomes with nucleoids, and primary lysosomes in extremely light cytoplasm. They had many mitochondria throughout the cytoplasm, except in the apical region, a few lipid-containing granules and no basal infoldings. Type-III cells were very few and were characterized by well developed basal infoldings, abundant free ribosomes, RER, SER, vesicles containing moderately dense material, and many lipid-containing granules. They also had many mitochondria throughout the cytoplasm, except apically. Basal cells had a large nucleus and the cytoplasm had few organelles. In the male continuous capillaries predominated in the subepithelial network, and capillary density per 200 m of epithelium (3.76±1.54) was lower than in the female, as was the number of fenestrae per 10 m of available endothelium (4.46±1.71). In the female, fenestrated capillaries predominated, and the capillary density per 200 m of epithelium was 6.76 (±1.54), and the number of fenestrae per 10 m of available endothelium was 4.91 (±1.77).  相似文献   

2.
Morphology of the bovine epididymis   总被引:1,自引:0,他引:1  
The epididymis of the bull was divided into six regions, and morphological differences between regions were studied. The epithelium of all regions contained four cell types: principal and basal epithelial cells, and intraepithelial lymphocytes and macrophages. The epithelium of regions II-V also contained a few apical cells. Principal cells of all regions possessed an endocytotic apparatus including stereocilia underlain by canaliculi, coated vesicles, and subapical vacuoles (up to 1 micron in diameter); however, large vacuoles with a flocculent content and multivesicular bodies (up to 5 microns in diameter) were most numerous in regions II, III, and IV. The unique features of principal cells of region I were the presence of well-developed Golgi bodies, few lipid droplets, and whorls of smooth endoplasmic reticulum in the supranuclear cytoplasm. Numerous mitochondria, distended cisternae of rough endoplasmic reticulum, and dense granules characterized the infranuclear cytoplasm of the principal cells of regions II-VI; however, these features were more developed in region V. Apical cells were characterized by the apical location of the nucleus, many mitochondria in the apical cytoplasm, and few microvilli at the luminal border. Basal cells with few cytoplasmic lipid droplets were present throughout the length of the epididymis but appeared more numerous in region V. Intraepithelial lymphocytes were present at all levels of the epithelium but were never seen in the lumen. Intraepithelial macrophages containing heterogeneous granules, eccentric nuclei, and pseudopods were invariably seen near the basal area of the epithelium in all regions. These observations are discussed in an effort to define the role of each cell type in the epididymal epithelium.  相似文献   

3.
Summary Kidneys of adult male and female lizards were studied by electron microscopy, in order to understand the ultrastructure of the collecting duct and a differentiated part thereof, the sexual segment, which is an important accessory sexual organ. First portion of sexual segment in males: The cells are filled with large secretory granules of a wide range of opacities. The granular endoplasmic reticulum is abundant; basal formations of superimposed flat cisternae are frequent. Distended vesicles and microvesicles prevail in the supranuclear, well developed Golgi apparatus. Evidences indicate that secretion of these cells is holocrine. Second portion of sexual segment in males: All of the secretory granules are apical in location and relatively electron-opaque; they show a denser core. This core is formed by a substance which, after lying in contact with ribosomes, enters the secretory vesicles of the highly developed Golgi apparatus. A lighter substance is then condensed around it. The secretion of the granules is merocrine. The granular endoplasmic reticulum is very abundant in these cells, but basal ergastoplasmic formations are lacking. Sexual segment in females: The cells show features similar to those of the male first portion, but they are smaller. Undifferentiated collecting duct: Most of the cells are mucigenic. They have small ovoid, apical secretory granules. The density of the granules varies from cell to cell; when they are electron-lucent, they exhibit laminar or dotted opaque figures. Moderately developed Golgi apparatus and granular endoplasmic reticulum, as well as elongated mitochondria, occur in mucigenic cells. Intercalated among the latter are non-secretory cells. They have very abundant mitochondria, numerous microvilli, many pinocytic and smooth-membrane vesicles, whereas the organelles participating in synthetic processes are poorly developed; their function is most likely related to active solute transport.  相似文献   

4.
Donald L. Mykles   《Tissue & cell》1977,9(4):681-691
The effects of salinity adaptation and of composition and tonicity of fixatives upon the ultrastructure of the posterior midgut caecum (PMC) of Pachygrapsus crassipes have been studied. The PMC epithelium consists of a single layer of columnar cells with a microvillous border. The apical cytoplasm contains numerous mitochondria, lysosomes, and much smooth endoplasmic reticulum. Rough endoplasmic reticulum and Golgi apparatus are situated in the perinuclear cytoplasm. This epithelium resembles other transporting epithelia in that the basal cytoplasm has an extensive system of branched tubules formed from invaginations of the lateral and basal plasma membrane. Numerous mitochondria are associated with the basal tubular system. To determine the possible contribution of the PMC to the osmoregulatory ability of Pachygrapsus, the ultrastructure of the PMC from animals adapted to 40, 50, 100 and 150% sea water was investigated. Enlargement of basal tubules and intercellular spaces at low salinity, suggestive of fluid-transport activity, was found to be an artifact of fixation. The most consistent response when animals were acclimated to dilute salinities was that some basal mitochondria assume a more complex shape, usually appearing as rings in cross sections of the caecum. A hypothesis concerning the functional significance of these mitochondria is proposed.  相似文献   

5.
The midgut of the females of Syringophilopsis fringilla (Fritsch) composed of anterior midgut and excretory organ (=posterior midgut) was investigated by means of light and transmission electron microscopy. The anterior midgut includes the ventriculus and two pairs of midgut caeca. These organs are lined by a similar epithelium except for the region adjacent to the coxal glands. Four cell subtypes were distinguished in the epithelium of the anterior midgut. All of them evidently represent physiological states of a single cell type. The digestive cells are most abundant. These cells are rich in rough endoplasmic reticulum and participate both in secretion and intracellular digestion. They form macropinocytotic vesicles in the apical region and a lot of secondary lysosomes in the central cytoplasm. After accumulating various residual bodies and spherites, the digestive cells transform into the excretory cells. The latter can be either extruded into the gut lumen or bud off their apical region and enter a new digestive cycle. The secretory cells were not found in all specimens examined. They are characterized by the presence of dense membrane-bounded granules, 2–4 μm in diameter, as well as by an extensive rough endoplasmic reticulum and Golgi bodies. The ventricular wall adjacent to the coxal glands demonstrates features of transporting epithelia. The cells are characterized by irregularly branched apical processes and a high concentration of mitochondria. The main function of the excretory organ (posterior midgut) is the elimination of nitrogenous waste. Formation of guanine-containing granules in the cytoplasm of the epithelial cells was shown to be associated with Golgi activity. The excretory granules are released into the gut lumen by means of eccrine or apocrine secretion. Evacuation of the fecal masses occurs periodically. Mitotic figures have been observed occasionally in the epithelial cells of the anterior midgut.  相似文献   

6.
The fine structure of the epithelium lining the extratesticular rete testis, ductuli efferentes and ductus epididymidis of the rabbit has been investigated. In the ductuli efferentes the epithelium is composed of two cell types, principal cells and ciliated cells. The latter type is distinguished from principal cells by the presence of cilia projecting into the lumen and the position of the nucleus in the apical half of the cell. Principal cells in this segment are characterized by micropinocytotic vesicles on the surface plasma membrane and a variety of small dense bodies scattered throughout the cytoplasm. In the ductus epididymidis basal cells replace ciliated cells as the second cell type, but differences between various segments of the epididymis are related to the fine structure of the principal cells. In the proximal caput epididymidis (Nicander's region 1) the principal cells are tall with long microvilli. They typically contain a small Golgi apparatus and a cluster of dense bodies adjacent to the nucleus. In the distal caput epididymidis (Nicander's regions 2-5) the apical cytoplasm of principal cells is filled with numerous micropinocytotic vesicles and large multivesicular bodies; these features are interpreted as signs of absorptive activity. The multivesicular bodies are absent from the cytoplasm of principal cells in the corpus epididymidis (Nicander's region 6) and, instead, numerous elements of smooth endoplasmic reticulum, a large Golgi apparatus, lipid droplets and dense bodies characterize principal cells in this segment. Towards the proximal cauda epididymidis (Nicander's region 7), the number of dense bodies (lysosomes) in the cytoplasm increases considerably. In the globose cauda (Nicander's region 8), the principal cells are reduced in height, and in addition to the features described in region 7, are characterized by a concentric array of rough endoplasmic reticulum in the basal cytoplasm. These observations are discussed in relation to the role of the epididymis in promoting the maturation and survival of spermatozoa.  相似文献   

7.
Summary The structure of the salivary gland of the dipteran insect Rhynchosciara angelae in a defined stage of the larval development, characterized by the synthesis and storage of secretion product, is described. Observations were made with both Nomarski optics and electron microscopy. Filiform projections extending into the lumen of the gland were observed in the apical portion of the cells. At the basal region junctions, characterized as hemidesmosomes, were observed between the membrane of the cell and the basal lamina. The plasma membrane presents numerous infoldings into the cell increasing considerably the surface area at this region. Throughout the cytoplasm of the gland cells numerous mitochondria, Golgi complexes, microtubules, profiles of endoplasmic reticulum, secretion granules and glycogen granules were observed. Carbohydrates were detected on ultrathin sections by using the periodic acid-silver methenamine and the periodic acid-thiosemicarbazide-silver proteinate techniques.  相似文献   

8.
The effect of insulin (I), cortisol (F) and prolactin (P) on the ultrastructural morphology of epithelial cells of cultured mammary explants from virgin ovariectomized (OV-X) goats were studied. The epithelial cells showed little structural organization and were devoid of fat droplets and secretory protein granules at zero time of culture. The cytoplasm contained few profiles of smooth and rough endoplasmic reticulum and the Golgi apparatus was rudimentary. After being cultured in Waymouth's medium without added hormones the epithelial cells were indistinguishable from epithelial cells of uncultured explants. The addition of I induced changes mainly in the appearance of nucleoli. The nucleoli were enlarged and fibrillogranular areas with light spaces were observed. The most obvious cytological changes of epithelial cells of explants cultured in the presence of I and F are translocation of the nucleus into the basal cytoplasm, increase of rough endoplasmic reticulum, an increase in the size of the Golgi apparatus, presence of one or two lipid droplets and in some cells vacuoles with protein granules were present. Mitochondria were more abundant. The epithelial cells of explants cultured in the presence of I, F and P were characterized by the polarization of organelles within the cytoplasm and by the formation and release of protein granules and small and large fat droplets. The cell nucleus was in the basal cytoplasm, the Golgi apparatus was supranuclear. The rough endoplasmic reticulum was extensively developed and formed large sacs. Golgi vacuoles contained protein granules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Human deep posterior lingual glands (von Ebner's glands) are located beneath the circumvallate papillae. They are formed by tubuloalveolar adenomeres, intercalated ducts and excretory ducts coming together in the main excretory duct. The tubuloalveolar cells, pyramid-shaped, show large and dense secretory granules (clear cored) throughout the cytoplasm, rare basal folds and packed cisternae of rough endoplasmic reticulum (RER) at the basal pole. The columnar cells of the intercalated ducts are arranged in a monolayer. They are characterized by dense, clear-core secretory granules (mostly in the apical cytoplasm), a basal nucleus, well-developed RER and Golgi apparatus, and thin filaments distributed in supra- and perinuclear cytoplasm. Striated ducts are absent. Excretory ducts, coming together in the main duct, are lined by a bistratified epithelium. The inner layer consists of columnar cells showing bundles of tonofilaments with scarce secretory activity. The outer layer is composed of basal cells lying on the basal lamina. The main excretory duct, which opens at the bottom of the vallum, shows a stratified epithelium. The outer side is composed of 2-3 layers of malpighian cells lying on the basal lamina. The inner side consists of a single layer of cuboidal-columnar cells with dense apical granules and well-developed organelles synthesizing and condensing secretions. These cells interpolate with goblet cells, rare mitochondria-rich cells, ciliated cells and numerous small globous cells showing a clear matrix and lacking secretory granules. The cilia show a 9 + 2 microtubular structure with basal bodies provided with striated rootlets. Myoepithelial cells surround with their processes the basal portions of the secretory cells and the intercalated ducts. The conclusions concern some comparative aspects and some hypothesis on the functional role of goblet cells, ciliated cells and epithelial cells lining the different ducts, also in relation to the final secretory product.  相似文献   

10.
To improve the current knowledge about the digestive system in opisthobranchs, light and electron microscopy methods were used to characterize the epithelial cells in the mid‐intestine of Aplysia depilans. This epithelium is mainly formed by columnar cells intermingled with two types of secretory cells, named mucous cells and granular cells. Columnar cells bear microvilli on their apical surface and most of them are ciliated. Mitochondria, multivesicular bodies, lysosomes and lipid droplets are the main components of the cytoplasm in the region above the nucleus of these cells. Peroxisomes are mainly found in middle and basal regions, usually close to mitochondria. Mucous cells are filled with large secretory vesicles containing thin electron‐dense filaments surrounded by electron‐lucent material in which acidic mucopolysaccharides were detected. The basal region includes the nucleus, several Golgi stacks and many dilated rough endoplasmic reticulum cisternae containing tubular structures. The granular cells are characterized by very high amounts of flat rough endoplasmic reticulum cisternae and electron‐dense spherical secretory granules containing glycoproteins. Enteroendocrine cells containing small electron‐dense granules are occasionally present in the basal region of the epithelium. Intraepithelial nerve fibres are abundant and seem to establish contacts with secretory and enteroendocrine cells.  相似文献   

11.
We report the results of a morphological, histochemical, and cytochemical characterization of the Aplysia depilans stomach, an organ little studied in opisthobranchs. Very thin ciliated cells with microvilli on their apical surfaces are predominant in the epithelium lining the lumen of the stomach. Many lysosomes with a strong arylsulphatase activity were present in the apical regions of these cells that could also contain some lipid droplets and glycogen. Small peroxisomes were observed, usually around lipid droplets or mitochondria. Bottle-shaped secretory cells are very common in this epithelium and produce a secretion rich in proteins and acidic mucopolysaccharides. Most of the cytoplasm of these mucus-producing cells was filled with a very high number of granules and the nucleus is dislocated to the basal region. Cisternae of rough endoplasmic reticulum were abundant around the nucleus and several Golgi stacks were also present in this area. In spite of the variation in the electron density of the granules, only one type of secretory cell seems to be present in the stomach epithelium, since granules with very different electron densities were frequently found in the same cell. A few neurons were also found in the stomach epithelium of this species. Fibrocytes, muscle cells, nerves, and amebocytes were observed in the connective tissue of the stomach wall.  相似文献   

12.
Fine structure of the ion transporting epithelium of the neck organ in the brine shrimp (Artemia salina) nauplius is described. The neck organ is a dome-like gland situated atop the cephalothorax of the larva and is composed of 50 to 60 cuboidal epithelial cells. These cells possess many of the characteristics of salt-secretory cells from other tissues. They contain many mitochondria and exhibit a high degree of plasma membrane elaboration. This membrane amplification takes two forms; the apical plasmalemma is infolded into irregular loops, while the basal and lateral membranes penetrate the cytoplasm in the form of branching sinusoids. The labyrinth of tubular reticulum thus formed fills most of the cell volume. Mitochondria in the labyrinth are often in intimate contact with these tubular membranes and regular arrays of parallel mitochondria with constricted intervening sinusoids are often observed. Other organelles including Golgi complexes, multivesicular bodies, and rough endoplasmic reticulum are also numerous, particularly in the narrow rim of cytoplasm which lies between the apical infolds and the labyrinth. Yolk platelets and glycogen fields are conspicuous in the basal perinuclear regions of the cells.  相似文献   

13.
The ultrastructure of the epithelium in Notentera ivanovi (Turbellaria, Fecampiida) has been studied. Notentera ivanovi lacks the digestive system but has a pad of the epidermal cells on the dorsal side of the body, which seems to be similar to the digestive epidermis on LM. Both the ventral and dorsal epithelium are cellular, ciliated and not insunk (fig. 1, a). The ultrastructure of the ventral and dorsal epithelium is similar in essential features. The cells bear abundant microvilli, cilia and are very rich in mitochondria, but the cytoplasm does not contain lysosomes and shows no other indications of phago- or pinocytosis. The basal membrane of epithelial cells forms deep invaginations (fig. 1, [symbol: see text]), partly with dilations (fig. 1, a; 2, a) containing the lamellated material (3, [symbol: see text]). In the basal part of the cells the numerous Golgi apparatus and rare cysternae of the smooth endoplasmic reticulum were observed (fig. 2, a, [symbol: see text]). The epithelium consists of several types of cells, which differ in the structure of secretory granules. The most abundant type of cells contains the granules with the rough-fibrillated content (fig. 1, a; 2, [symbol: see text]; 3, a). The cells of this type cover most part of the body. In some cells the content of such granules becomes condensed and electron-dense granules appear (fig. 3, a, [symbol: see text]). Another type of cells contains the giant granules with the rough-fibrillated content (fig. 3, [symbol: see text]). Third type of the secret is the granules with the finely fibrillated content which is ejected by exocytosis. The cells of the second and third types form a separate areas of the epithelium of the dorsal side of the body but occasionally were observed in the ventral epithelium too. The epithelium of N. ivanovi differs from that in Kronborgia by the abundance and diversity of secretory contents. The role of the epithelium in the digestion remains conjectural. It seems to be mainly the suckering tissue transporting the low molecular nutrients.  相似文献   

14.
This paper describes the ultrastructure of the seminal vesicle and the isoelectric focusing patterns of its secretion during sexual maturation and after allatectomy in Melanoplus sanguinipes (Fabr.) (Orthoptera : Acrididae). In epithelia from seminal vesicles of newly fledged males, the rough endoplasmic reticulum is well developed, and Golgi complexes are elaborate, which indicates the gland is metabolically active. The cells also contain large glycogen deposits and the lumen microvilli are well differentiated. These ultrastructural features are more dominant in 24-hr-old adults where the cytoplasm is clearly differentiated into basal and apical regions. Basally, the cytoplasm is dominated by rough endoplasmic reticulum, large Golgi complexes, glycogen deposits and numerous mitochondria, while the apical cytoplasm is filled with large secretory and/or lysosomal vesicles. Between days 3 and 7, the ultrastructural features change little other than the rough endoplasmic reticulum cisternae, which become vesicular. Analysis by isoelectric focusing shows that the amount of secretory protein increases with age until day 3, at which time the gland contains its full complement of secretion. In seminal vesicles from allatectomized insects, ultrastructural features of cells and isoelectric focusing patterns of the secretion arc identical to those from normal males.  相似文献   

15.
U B Singh 《Acta anatomica》1975,93(3):447-457
The structural changes in the granulosa lutein cells in the pregnant cows between 60 and 245 days, were observed. The polyhedral or pump cells has an acidophilic cytoplasm around the spherical nucleus. The glycogen granules increased in number up to 230 days of pregnancy. The lipid globules increased in size and amount during advanced pregnancy. The mitochondria showed a wide range of variations in shape and size. The matrix of many mitochondria contained dense inclusions which replaced the entire matrix in late pregnancy. The endoplasmic reticulum was chiefly of smooth type but a few stacks of the rough variety could be seen in the early days of pregnancy. Sometimes, whorls of smooth-surfaced endoplasmic reticulum enclosing mitochondria were seen. The Golgi complex was fully developed in the granulosa cells of all cases studied. The dense granules and lipid globules increased in size and number in the older corpora lutea. The cell surface showed numerous infolding of the plasma membrane.  相似文献   

16.
The retinal pigment epithelium (RPE), the choriocapillaris and Bruch's membrane (complexus basalis) have been studied by light and electron microscopy in the bobtail goanna (Tiliqua rugosa) an Australian diurnal lizard. The RPE consists of a single layer of cuboidal cells which display very deep and tortuous basal (choroidal) infoldings as well as numerous apical (vitreal) processes which interdigitate with the photoreceptor cells. The lateral cell borders are relatively smooth and joined by basally located tight junctions. Internally smooth endoplasmic reticulum is abundant while rough endoplasmic reticulum is not. The RPE cell nucleus is large and vesicular and basally located in the light-adapted state. Polysomes, mitochondria and myeloid bodies are present and widely distributed. Melanosomes are plentiful in the apical region of the epithelial cells in light-adaptation. Bruch's membrane is pentalaminate with the basal lamina of the choriocapillaris being exceptionally thick. The choriocapillaris is a single layer of large-caliber capillaries with thin but only moderately fenestrated endothelium. Numerous dense granules are always present within these endothelial cells.  相似文献   

17.
The ultrastructure of the Sertoli cell of the vervet monkey was studied using both scanning and transmission electron microscopic techniques. SEM micrographs revealed perforated sleeve-like processes which encased mature elongated spermatids which are ready for spermiation. TEM micrographs showed a large Sertoli cell nucleus characterized by many lobes (4–5) and consisting of a homogenous nucleoplasm and a distinctive nucleolus. The nucleus occupies a significant portion of the basal region of the cell. The distribution of chromatin clearly shows high activity of these cells. Lipid droplets and free ribosomes are also found scattered throughout the cytoplasm. Well-developed Golgi apparatus is found in the basal region of the cell. There is phagocytic activity in the Sertoli cells as revealed by the presence of numerous phagosomes. Numerous mitochondria with well-developed tubular cristae are found on the basal side of the nucleus, whereas few mitochondria are located on the apical side of the nucleus. Distinct desmosomes are located between cells. A well-developed smooth endoplasmic reticulum and granular endoplasmic reticulum are frequently found in the cytoplasm of the Sertoli cells. The results of this investigation showed that Sertoli cells of the vervet monkey are almost similar to those of humans and show many similarities with other mammalian species.  相似文献   

18.
The granular glands of nine species of dendrobatid frogs were examined using light and electron microscopy. The glands are surrounded by a discontinuous layer of smooth muscle cells. Within the glands proper the secretory cells form a true syncytium. Multiple flattened nuclei lie at the periphery of the gland. The peripheral cytoplasm also contains mitochondria, rough surfaced endoplasmic reticulum, the Golgi apparatus, and an abundance of smooth endoplasmic reticulum. Centrally, most of the gland is filled with membrane-bound granules surrounded by amorphous cytoplasm. Few other organelles are found in this region. Early in the secretory cycle, the central part of the gland is filled with flocculent material which appears to be progressively partitioned off by membranes to form the droplet anlage. As granules form, the structure of the contents becomes progressively more vesicular. Dense vesicles, which bud off from the Golgi apparatus, fuse with the granular membrane during the development of granules, and might contain enzymes involved in toxin synthesis. The granules at this point resemble multivesicular bodies. Their structure is similar in all species of dendrobatid frogs even though the different frogs secrete substances of different chemical structure and toxicity.  相似文献   

19.
The peritrophic membrane of Drosophila melanogaster consists of four layers, each associated with a specific region of the folded epithelial lining of the cardia. The epithelium is adapted to produce this multilaminar peritrophic membrane by bringing together several regions of foregut and midgut, each characterized by a distinctively differentiated cell type. The very thin, electron-dense inner layer of the peritrophic membrane originates adjacent to the cuticular surface of the stomadeal valve and so appears to require some contribution by the underlying foregut cells. These foregut cells are characterized by dense concentrations of glycogen, extensive arrays of smooth endoplasmic reticulum, and pleated apical plasma membranes. The second and thickest layer of the peritrophic membrane coalesces from amorphous, periodic acid-Schiff-positive material between the microvilli of midgut cells in the neck of the valve. The third layer of the peritrophic membrane is composed of fine electron-dense granules associated with the tall midgut cells of the outer cardia wall. These columnar cells are characterized by cytoplasm filled with extensive rough endoplasmic reticulum and numerous Golgi bodies and by an apical projection filled with secretory vesicles and covered by microvilli. The fourth, outer layer of the peritrophic membrane originates over the brush border of the cuboidal midgut cells, which connect the cardia with the ventriculus.  相似文献   

20.
Taste buds in foliate papillae of the rhesus monkey were examined by electron microscopy. Three distinct cell types were identified. Type I cells were narrow elongated cells containing an oval nucleus, bundles of intermediate filaments, several Golgi bodies, and characteristic apical membrane-bounded dense granules. These cells exhibited morphological variations: some had a moderately dense cytoplasm, perinuclear free ribosomes, and flattened sacs of rough endoplasmic reticulum; others had a more lucent cytoplasm, dilated irregular rough endoplasmic reticulum, lysosome-like dense bodies, and lipid droplets. Type II cells typically contained a spherical, pale nucleus, a prominent nucleolus, supranuclear and infranuclear Golgi bodies, mitochondria with tubular cristae, and one or two centrioles. This cell type, too, showed some variation in the relative amounts of ribosomes and smooth endoplasmic reticulum, which varied inversely with each other. Type III cells were characterized by a clear apical cytoplasm essentially devoid of ribosomes and containing microtubules. In a few type III cells, the peri- and infranuclear regions contained many ribosomes and some rough endoplasmic reticulum. In most Type III cells, there were large numbers of dense and clear vesicles in the peri- and infranuclear regions; some of the vesicles were grouped in synapse-like arrangements with adjacent nerves. The morphological variations exhibited by all three cell types could be accounted for by age differences in each of the cells. This would be consistent with the notion that cell renewal occurs in each of the three cell populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号