首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There has been considerable interest in the use of creatine (Cr) supplementation to treat neurological disorders. However, in contrast to muscle physiology, there are relatively few studies of creatine supplementation in the brain. In this report, we use high-field MR (31)P and (1)H spectroscopic imaging of human brain with a 7-day protocol of oral Cr supplementation to examine its effects on cerebral energetics (phosphocreatine, PCr; ATP) and mitochondrial metabolism (N-acetyl aspartate, NAA; and Cr). We find an increased ratio of PCr/ATP (day 0, 0.80 +/- 0.10; day 7, 0.85 +/- 09), with this change largely due to decreased ATP, from 2.7 +/- 0.3 mM to 2.5 +/- 0.3 mM. The ratio of NAA/Cr also decreased (day 0, 1.32 +/- 0.17; day 7 1.18 +/- 0.13), primarily from increased Cr (9.6 +/- 1.9 to 10.1 +/- 2.0 mM). The Cr-induced changes significantly correlated with the basal state, with the fractional increase in PCr/ATP negatively correlating with the basal PCr/ATP value (R = -0.74, P < 0.001). As NAA is a measure of mitochondrial function, there was also a significant negative correlation between basal NAA concentrations with the fractional change in PCr and ATP. Thus healthy human brain energetics is malleable and shifts with 7 days of Cr supplementation, with the regions of initially low PCr showing the largest increments in PCr. Overall, Cr supplementation appears to improve high-energy phosphate turnover in healthy brain and can result in either a decrease or an increase in high-energy phosphate concentrations.  相似文献   

2.
In vivo magnetic resonance spectroscopy (MRS) studies of glial brain tumours reported that higher grade of astrocytoma is associated with increased level of choline-containing compounds (Cho) and decreased levels of N-acetylaspartate (NAA) and creatine and phosphocreatine (Cr). In this work, we studied the metabolism of glioma tumours by in vitro proton magnetic resonance spectroscopy (1H-MRS). 1H-MR spectra were recorded in vitro from perchloric acid extracts of astrocytoma (WHO II) and glioblastoma multiforme (WHO IV) samples. We observed differences between astrocytoma and glioblastoma multiforme in the levels of Cho, alanine, lactate, NAA, and glutamate/glutamine. In astrocytoma samples, we found higher MR signal of NAA and lower signal of Cho and alanine. MR spectra of glioblastoma samples reported significantly higher levels of lactate and glutamate/glutamine. In contrast, levels of Cr were the same in both tumour types. We also determined NAA/Cr and Cho/Cr ratios in the tumour samples. The NAA/Cr ratio was higher in astrocytomas than in glioblastomas multiforme. Conversely, the Cho/Cr ratio was higher in glioblastoma multiforme. The results indicate that MRS is a promising method for distinguishing pathologies in human brain and for pre-surgical grading of brain tumours.  相似文献   

3.
To date, more than seven families have been reported who carry a mutation in the X-linked creatine-transporter (CrT) gene. The resulting lack of creatine in the brain is associated with mental retardation, severe expressive language disorder, mild epilepsy, and a complete absence of Cr in the brain (measured using MRS). Conversely, these patients had no observable cardiac or musculo-skeletal deficits. In this case study, a 22-year-old patient underwent surgical repair for scoliosis. Proton MRS of this patient's brain demonstrated the near-absence of creatine and phosphocreatine within the cerebral white and deep gray matter structures. Cerebral atrophy was noted with serial MRI examinations. Subsequent genetic and metabolic analysis showed some biochemical anomalies consistent with a CrT deficiency. The mutation in this patient was identified as a deletion at phenylalanine 107 (delF107). Control muscle biopsies were obtained from archived samples, which had been taken with informed consent during routine muscle biopsies for diagnostic purposes. We determined that the total Cr concentration in the skeletal muscle biopsy was 39.3 +/- 2.94 mmol/kg wet wt., which is not significantly different from non-CrT controls, n = 3 (43.3 +/- 3.57 mmol/kg wet wt.). We conclude that the brain appears to lack the ability to transport creatine when there is a mutation in the CrT gene. However, the muscle utilizes another mechanism for maintaining normal creatine levels. Identifying this alternative creatine-transport mechanism may be useful in treating the neurologic and cognitive impairments of patients with creatine-transporter deficiency.  相似文献   

4.
Creatine is a nutritional supplement with major application as ergogenic and neuroprotective substrate. Varying supplementation protocols differing in dosage and duration have been applied but systematic studies of total creatine (creatine and phosphocreatine) content in the various organs of interest are lacking. We investigated changes of total creatine concentrations in brain, muscle, heart, kidney, liver, lung and venous/portal plasma of guinea pigs, mice and rats in response to 2-8 weeks oral creatine-monohydrate supplementation (1.3-2 g/kg/d; 1.4-2.8% of dietary intake). Analysis of creatine and phosphocreatine content was performed by high performance liquid chromatography. Total creatine was determined as the sum of creatine and phosphocreatine. Presupplementation total creatine concentrations were high in brain, skeletal and heart muscle (10-22 micromol/g wet weight), and low in liver, kidney and lung (5-8 micromol/g wet weight). During creatine supplementation, the relative increase of total creatine was low (15-55% of presupplementation values) in organs with high presupplementation concentrations, and high (260-500% of presupplementation values) in organs with low presupplementation concentrations. The increase of total creatine concentrations was most pronounced after 4 weeks of supplementation. In muscle, brain, kidney and lungs, an additional increase (p<0.01) was observed between 2-4 and 2-8 weeks of supplementation. Absolute concentrations of phosphocreatine increased, but there was no increase of the relative (percentual) proportion of phosphocreatine (14-45%) during supplementation. Statistical comparison of total creatine concentrations across the species revealed no systematically differences in organ distribution and in time points of supplementation. Results suggest that in organs with low presupplementation creatine levels (liver, kidney), a major determinant of creatine uptake is an extra-intracellular concentration gradient. In organs with high presupplementation total creatine levels like brain, skeletal and heart muscle, the maximum capacity of creatine accumulation is low compared to other organs. A supplementation period of 2 to 4 weeks is necessary for significant augmentation of the creatine pool in these organs.  相似文献   

5.
Chronic constant hypoxia (CCH) and chronic intermittent hypoxia (CIH) are known to have deleterious effects on the central nervous system. Because of the difference in the pattern of hypoxic exposure, it is possible that the pathological outcome would vary. The N-acetyl aspartate/creatine (NAA/Cr) ratio is a reliable marker of neuronal integrity, and this can be noninvasively measured by proton nuclear magnetic resonance spectroscopy. P2 CD1 mouse pups with their dams were exposed to either CCH, where the Fi(O(2)) was maintained at 11% continuously or to CIH, where the Fi(O(2)) was varied between 21 and 11% every 4 min. P30 mice exposed to intermittent hypoxia for 4 wk demonstrated a significant decrease in the NAA/Cr ratio in the hippocampus and thalamus, which was reversed by a subsequent exposure to 4 wk of normoxia. Meanwhile, mice exposed to 4 wk of constant hypoxia did not demonstrate any differences in their NAA/Cr ratios from controls in these brain regions. These results indicate that an intermittent pattern of hypoxic exposure may have a more adverse effect on neuronal function and integrity than a continuous one. The reversal of NAA/Cr levels to baseline during the return to normoxia indicates that therapeutic strategies targeted at alleviating the intermittent hypoxic stress in diseases, such as obstructive sleep apnea, have the potential for inducing significant neurocognitive recovery in these patients.  相似文献   

6.
The total creatine pool size [Cr(total); creatine (Cr) + phosphocreatine (PCr)] is crucial for optimal energy utilization in skeletal muscle, especially at the onset of exercise and during intense contractions. The Cr(total) likely is controlled by long-term modulation of Cr uptake via the sodium-dependent Cr transporter (CrT). To test this hypothesis, adult male Sprague-Dawley rats were fed 1% Cr, their muscle Cr(total) was reduced by approximately 85% [1% beta-guanidinoproprionic acid (beta-GPA)], or their muscle Cr(total) was repleted (1% Cr after beta-GPA depletion). Cr uptake was assessed by skeletal muscle (14)C-Cr accumulation to Cr and PCr by using hindlimb perfusion, and CrT protein content was assessed by Western blot. Cr uptake rate decreased with dietary Cr supplementation in the white gastrocnemius (WG; 45%) only. Depletion of muscle Cr(total) to approximately 15% of normal increased Cr uptake in the soleus (21%) and red gastrocnemius (22%), corresponding to 70-150% increases in muscle CrT content. In contrast, the inherently lower Cr uptake rate in the WG was unchanged with depletion of muscle Cr(total) even though CrT band density was increased by 230%. Thus there was no direct relationship between apparent muscle CrT abundance and Cr uptake rates. However, Cr uptake rates scaled inversely with decreases in muscle Cr(total) in the high-oxidative muscle types but not in the WG. This implies that factors controlling Cr uptake are different among fiber types. These observations may help explain the influence of initial muscle Cr(total), time dependency, and variations in muscle Cr(total) accumulation during Cr supplementation.  相似文献   

7.
磁共振波谱分析在颅脑胶质瘤分级中的应用研究   总被引:1,自引:0,他引:1  
目的 分析脑胶质瘤的氢质子磁共振波谱(proton magnetic resonance spectroscopy,1H-MRS)表现及其临床意义;探讨脑胶质瘤的1H-MRS特点与其病理级别相关性.方法 搜集经临床手术、病理证实的脑胶质瘤病例49例,按照WHO诊断标准分成两组:低级别脑胶质瘤组、高级别脑胶质瘤组.所有患者在术前行1H-MRs检查,均在MR非增强成像的基础上获得.使用Philips Achieva 1.5T超导磁共振扫描仪,单体素或多体素扫描,点分辨法,检测不同区域代谢物变化.结果 脑胶质瘤的1H-MRS表现:肌酸(Cr)轻度下降,N-乙酰天门冬氨酸(NAA)显著下降,胆碱(Cho)显著增高.低、高级别脑胶质瘤的肿瘤组织与对侧止常脑组织的NAA、Cho、NAA/Cr、NAA/Cho值存在显著性差异(P〈0.05);低级别和高级别脑胶质瘤的肿瘤组织的NAA/Cr、NAA/Cho值存在显著性差异(P〈0.05).脑胶质瘤的NAA/Cho、Cho/Cr、NAA/Cr值与病理级别相关,其中NAA/Cho和NAA/Cr值反映肿瘤级别较稳定;NAA/Cr、NAA/Cho值呈负相关关系,Cho/Cr值呈正相关关系.结论 :1H-MRS结合MKI能提高脑胶质瘤术前诊断的准确性.1H-MRS能对胶质瘤进行分级,反映胶质瘤代谢特性以及肿瘤生长潜能.  相似文献   

8.
目的:探讨磁共振波谱分析(MRS)与帕金森病(PD)HoehnYahr分级之间的相关性。方法:选择2016年9月-2017年8月我院收治的60例PD患者为研究对象,根据HoehnYahr分级将患者分为早期PD组32例、中期PD组18例、晚期PD组10例,并选择同时期在门诊进行健康体检的20例志愿者作为对照组。对各组研究对象的双侧基底节、双侧额叶、双侧丘脑区进行MRS,并分析PD患者HoehnYahr分级与MRS的关系。结果:晚期PD组双侧基底节、双侧额叶、双侧丘脑区NAA/Cr、NAA/Cho、Cho/Cr比值均低于中期PD组、早期PD组、对照组,且中期PD组低于早期PD组、对照组,早期PD组低于对照组,差异有统计学意义(P0.05)。通过Spearman相关性分析显示,MRS检测出PD患者NAA/Cr、NAA/Cho、Cho/Cr比值与HoehnYahr分级间呈负相关性(P0.05)。结论:MRS与PD患者的HoehnYahr分级具有负相关性,并且可通过MRS预测患者疾病的严重程度,以对其进行相应的治疗以及预后评估。  相似文献   

9.
We compared in vitro1H magnetic resonance spectroscopy (MRS) measurements of rat brain extracts (rats: 2–56 days old) with chromatographic measurements and in a further step also with results of in vivo MRS. The following substances can be reliably measured in brain extracts by in vitro MRS: N-acetylaspartate (NAA), total creatine (Cr), phosphorylethanoloamine (PE), taurine (Tau), glutamate (Glu), glutamine (Gln), -aminobutyrate (GABA) and alanine (Ala). Two different methods of MRS data evaluation compared with chromatographic data on Cr and NAA are shown. During development of the rat from day 2–56 brain concentrations of PE, Tau and Ala decrease, those of NAA, Cr, Glu and Gln increase, while GABA does not change. The developmental patterns of these substances are the same, whether measured by in vitro MRS or by chromatographic methods. Quantification of NAA, Cr, Tau, GABA and PE leads to the same results with both methods, while Glu, Gln and Ala concentrations determined by in vitro MRS are apparently lower than those measured chemically. The NAA/Cr ratios of 7 to 35-day-old rats were determined by in vivo1H MRS. These results correlate with chromatographic and in vitro data. Using appropriate methods in the in vivo and in vitro MR-technique, the obtained data compare well with the chromatographic results.  相似文献   

10.
The effect of pyruvate dehydrogenase kinase-4 (PDK4) deficiency on glucose homeostasis was studied in mice fed a high-fat diet. Expression of PDK4 was greatly increased in skeletal muscle and diaphragm but not liver and kidney of wild-type mice fed the high-fat diet. Wild-type and PDK4(-/-) mice consumed similar amounts of the diet and became equally obese. Insulin resistance developed in both groups. Nevertheless, fasting blood glucose levels were lower, glucose tolerance was slightly improved, and insulin sensitivity was slightly greater in the PDK4(-/-) mice compared with wild-type mice. When the mice were killed in the fed state, the actual activity of the pyruvate dehydrogenase complex (PDC) was higher in the skeletal muscle and diaphragm but not in the liver and kidney of PDK4(-/-) mice compared with wild-type mice. When the mice were killed after overnight fasting, the actual PDC activity was higher only in the kidney of PDK4(-/-) mice compared with wild-type mice. The concentrations of gluconeogenic substrates were lower in the blood of PDK4(-/-) mice compared with wild-type mice, consistent with reduced formation in peripheral tissues. Diaphragms isolated from PDK4(-/-) mice oxidized glucose faster and fatty acids slower than diaphragms from wild-type mice. Fatty acid oxidation inhibited glucose oxidation by diaphragms from wild-type but not PDK4(-/-) mice. NEFA, ketone bodies, and branched-chain amino acids were elevated more in PDK4(-/-) mice, consistent with slower rates of oxidation. These findings show that PDK4 deficiency lowers blood glucose and slightly improves glucose tolerance and insulin sensitivity in mice with diet-induced obesity.  相似文献   

11.
Force characteristics of skeletal muscle of knockout mice lacking creatine (Cr) due to a deletion of guanidinoacetate methyltransferase (GAMT) were studied in situ. Medial gastrocnemius muscles of anesthetized GAMT-deficient (GAMT–/–) and control (Con) littermates were stimulated at optimum length via the sciatic nerve at different stimulation frequencies (60–250 Hz). GAMT–/– mice showed reduced maximal tetanic and twitch force, reduced relative force at 60 Hz, and increased relaxation times. High-intensity fatigue protocols consisting of 30 successive isometric or dynamic contractions showed a strong reduction in force at the beginning of the series in GAMT–/– mice, followed by a smaller reduction compared with Con littermates toward the end of the series. Cr supplementation for 2 days in GAMT–/– animals (GAMT) resulted in normalization to Con values for relaxation times, relative force at lower stimulation frequencies, and relative force during 30 isometric contractions. Force per muscle mass, however, remained decreased. Furthermore,GAMT mice showed differences compared with both Con and unsupplemented animals in maximal rates of force rise and relaxation times during the isometric protocol as well as in force during the dynamic protocol. Our results show that the absence of Cr plays a direct role in relaxation times, maximal rate of force rise, and force production during high-intensity fatigue protocols. The lower force per muscle mass, however, is probably caused by other factors; i.e., high intracellular guanidinoacetate concentrations. energy metabolism; creatine; fatigue; force characteristics  相似文献   

12.
Skeletal muscle atrophy and whole-body glucose intolerance are consequences of muscle disuse associated with conditions leading to prolonged bed rest. Nutritional supplementation with chromium has been shown to prevent weight loss and improve glucose tolerance in malnourished subjects on long-term total parenteral nutrition. The objective of this study was to evaluate the effect of oral supplementation with a novel chromium complex, chromium (d-phenylalanine)3 [Cr(d-phe)3] at 45 μg/kg/day for 5 weeks, on skeletal muscle atrophy and glucose intolerance in a hindlimb suspension mouse model. Hindlimb-suspended mice exhibited reduced skeletal muscle fiber size and enhanced whole-body glucose intolerance, both of which were reversed by chromium treatment. The inhibition of skeletal muscle atrophy by chromium was associated with reductions in the ubiquitination ligase atrogin-1/muscle atrophy F-box, which is elevated in hindlimb-suspended mice. Neither hindlimb suspension nor chromium treatment altered the protein levels of the myostatin, phospho-Forkhead box O-1 and mammalian target of rapamycin. Chromium-treated animals exhibited elevated Akt (Homo sapiens v-akt murine thymoma viral oncogene homolog) phosphorylation in their skeletal muscle, with no change observed in the levels of activated JNK (c-Jun N-terminal kinase). Thus, these data suggest that nutritional supplementation with chromium may have potential therapeutic benefits in minimizing skeletal muscle atrophy associated with long periods of muscle disuse.  相似文献   

13.
The total creatine(TCr) pool of skeletal muscle is composed of creatine (Cr) andphosphocreatine (PCr). In resting skeletal muscle, the ratio ofPCr to TCr (PCr/TCr; PCr energy charge) is ~0.6-0.8, dependingon the fiber type. PCr/TCr is linked to the cellular free energy of ATPhydrolysis by the Cr kinase equilibrium. Dietary Cr supplementationincreases TCr in skeletal muscle. However, many previous studies havereported data indicating that PCr/TCr falls after supplementation,which would suggest that Cr supplementation alters the restingenergetic state of myocytes. This study investigated the effect of Crsupplementation on the energy phosphates of resting skeletal muscle.Male rats were fed either rodent chow (control) or chow supplementedwith 2% (wt/wt) Cr. After 2 wk on the diet, the gastrocnemius andsoleus muscles were freeze clamped and removed from anesthetizedanimals. Cr supplementation increased TCr, PCr, and Cr levels in thegastrocnemius by 20, 22, and 17%, respectively (P < 0.05). A numerical 6% higher mean soleus TCr in Cr-supplemented ratswas not statistically significant. All other energy phosphate concentrations, free energy of ATP hydrolysis, and PCr/TCr were notdifferent between the two groups in either muscle. We conclude that Crsupplementation simply increased TCr in fast-twitch rat skeletal musclebut did not otherwise alter resting cellular energetic state.

  相似文献   

14.
The present study examined the effects of inducible nitric oxide synthase (iNOS) deficiency on skeletal muscle atrophy in single leg-immobilized iNOS knockout (KO) and wild-type (WT) mice. The left leg was immobilized for 1 wk, and the right leg was used as the control. Muscle weight and contraction-stimulated glucose uptake were reduced by immobilization in WT mice, which was accompanied with increased iNOS expression in skeletal muscle. Deficiency of iNOS attenuated muscle weight loss and the reduction in contraction-stimulated glucose uptake by immobilization. Phosphorylation of Akt, mTOR, and p70S6K was reduced to a similar extent by immobilization in both WT and iNOS KO mice. Immobilization decreased FoxO1 phosphorylation and increased mRNA and protein levels of MuRF1 and atrogin-1 in WT mice, which were attenuated in iNOS KO mice. Aconitase and superoxide dismutase activities were reduced by immobilization in WT mice, and deficiency of iNOS normalized these enzyme activities. Increased nitrotyrosine and carbonylated protein levels by immobilization in WT mice were reversed in iNOS KO mice. Phosphorylation of ERK and p38 was increased by immobilization in WT mice, which was reduced in iNOS KO mice. Immobilization-induced muscle atrophy was also attenuated by an iNOS-specific inhibitor N(6)-(1-iminoethyl)-l-lysine, and this finding was accompanied by increased FoxO1 phosphorylation and reduced MuRF1 and atrogin-1 levels. These results suggest that deficiency of iNOS attenuates immobilization-induced skeletal muscle atrophy through reduced oxidative stress, and iNOS-induced oxidative stress may be required for immobilization-induced skeletal muscle atrophy.  相似文献   

15.
In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg. kg(-1). day(-1) sc), or food restriction (HF-FR) for 12-15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic beta-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.  相似文献   

16.
Skeletal muscle injury is often assessed by clinical findings (history, pain, tenderness, strength loss), by imaging, or by invasive techniques. The purpose of this work was to determine if in vivo proton magnetic resonance spectroscopy ((1)H MRS) could reveal metabolic changes in murine skeletal muscle after contraction-induced injury. We compared findings in the tibialis anterior muscle from both healthy wild-type (WT) muscles (C57BL/10 mice) and dystrophic (mdx mice) muscles (an animal model for human Duchenne muscular dystrophy) before and after contraction-induced injury. A mild in vivo eccentric injury protocol was used due to the high susceptibility of mdx muscles to injury. As expected, mdx mice sustained a greater loss of force (81%) after injury compared with WT (42%). In the uninjured muscles, choline (Cho) levels were 47% lower in the mdx muscles compared with WT muscles. In mdx mice, taurine levels decreased 17%, and Cho levels increased 25% in injured muscles compared with uninjured mdx muscles. Intramyocellular lipids and total muscle lipid levels increased significantly after injury but only in WT. The increase in lipid was confirmed using a permeable lipophilic fluorescence dye. In summary, loss of torque after injury was associated with alterations in muscle metabolite levels that may contribute to the overall injury response in mdx mice. These results show that it is possible to obtain meaningful in vivo (1)H MRS regarding skeletal muscle injury.  相似文献   

17.
Methionine-S-sulfoxide reductase (MsrA) protects against high-fat diet-induced insulin resistance due to its antioxidant effects. To determine whether its counterpart, methionine-R-sulfoxide reductase (MsrB) has similar effects, we compared MsrB1 knockout and wild-type mice using a hyperinsulinemic-euglycemic clamp technique. High-fat feeding for eight weeks increased body weights, fat masses, and plasma levels of glucose, insulin, and triglycerides to similar extents in wild-type and MsrB1 knockout mice. Intraperitoneal glucose tolerance test showed no difference in blood glucose levels between the two genotypes after eight weeks on the high-fat diet. The hyperglycemic-euglycemic clamp study showed that glucose infusion rates and whole body glucose uptakes were decreased to similar extents by the high-fat diet in both wild-type and MsrB1 knockout mice. Hepatic glucose production and glucose uptake of skeletal muscle were unaffected by MsrB1 deficiency. The high-fat diet-induced oxidative stress in skeletal muscle and liver was not aggravated in MsrB1-deficient mice. Interestingly, whereas MsrB1 deficiency reduced JNK protein levels to a great extent in skeletal muscle and liver, it markedly elevated phosphorylation of JNK, suggesting the involvement of MsrB1 in JNK protein activation. However, this JNK phosphorylation based on a p-JNK/JNK level did not positively correlate with insulin resistance in MsrB1-deficient mice. Taken together, our results show that, in contrast to MsrA deficiency, MsrB1 deficiency does not increase high-fat diet-induced insulin resistance in mice.  相似文献   

18.
Mutations in the creatine (Cr) transporter (CrT; Slc6a8) gene lead to absence of brain Cr and intellectual disabilities, loss of speech, and behavioral abnormalities. To date, no mouse model of CrT deficiency exists in which to understand and develop treatments for this condition. The purpose of this study was to generate a mouse model of human CrT deficiency. We created mice with exons 2–4 of Slc6a8 flanked by loxP sites and crossed these to Cre:CMV mice to create a line of ubiquitous CrT knockout expressing mice. Mice were tested for learning and memory deficits and assayed for Cr and neurotransmitter levels. Male CrT−/y (affected) mice lack Cr in the brain and muscle with significant reductions of Cr in other tissues including heart and testes. CrT−/y mice showed increased path length during acquisition and reversal learning in the Morris water maze. During probe trials, CrT−/y mice showed increased average distance from the platform site. CrT−/y mice showed reduced novel object recognition and conditioned fear memory compared to CrT+/y. CrT−/y mice had increased serotonin and 5-hydroxyindole acetic acid in the hippocampus and prefrontal cortex. Ubiquitous CrT knockout mice have learning and memory deficits resembling human CrT deficiency and this model should be useful in understanding this disorder.  相似文献   

19.
Stearoyl-CoA desaturase 1 (SCD1) deficiency partitions fatty acids away from lipid synthesis towards fatty acid oxidation in liver and skeletal muscle in part due to activation of AMP-activated protein kinase (AMPK) pathway. The mechanism of AMPK activation by SCD1 mutation is unknown, however since SCD1-/- animals have increased relative amounts of polyunsaturated fatty acids (PUFA), we hypothesized that the increased levels of PUFA might be responsible for the activation of AMPK in SCD1 deficient mice. Therefore, the present study was undertaken to analyze the effect of PUFA on AMPK in liver, skeletal muscle, and heart. We fed mice ad libitum for 14 days with diet supplemented with fish oil (5% fat). As expected, fish oil supplementation significantly increased n-3 PUFA content in each of the analyzed tissues. Hepatic mRNA levels of fatty acid synthase and acyl-CoA oxidase decreased by 92% and increased by 60%, respectively, consistent with known PUFA effects. However, after 14 days of PUFA feeding, we did not find any changes in AMPK phosphorylation and protein content in mouse liver, skeletal muscle, and heart. The data suggest that PUFA are not involved in AMPK activation in mouse tissues and that the increased activity of AMPK in SCD1-/- mice is probably PUFA-independent.  相似文献   

20.
Diacylglycerol (DAG) acyl transferase 1 (Dgat1) knockout ((-/-)) mice are resistant to high-fat-induced obesity and insulin resistance, but the reasons are unclear. Dgat1(-/-) mice had reduced mRNA levels of all three Ppar genes and genes involved in fatty acid oxidation in the myocardium of Dgat1(-/-) mice. Although DGAT1 converts DAG to triglyceride (TG), tissue levels of DAG were not increased in Dgat1(-/-) mice. Hearts of chow-diet Dgat1(-/-) mice were larger than those of wild-type (WT) mice, but cardiac function was normal. Skeletal muscles from Dgat1(-/-) mice were also larger. Muscle hypertrophy factors phospho-AKT and phospho-mTOR were increased in Dgat1(-/-) cardiac and skeletal muscle. In contrast to muscle, liver from Dgat1(-/-) mice had no reduction in mRNA levels of genes mediating fatty acid oxidation. Glucose uptake was increased in cardiac and skeletal muscle in Dgat1(-/-) mice. Treatment with an inhibitor specific for DGAT1 led to similarly striking reductions in mRNA levels of genes mediating fatty acid oxidation in cardiac and skeletal muscle. These changes were reproduced in cultured myocytes with the DGAT1 inhibitor, which also blocked the increase in mRNA levels of Ppar genes and their targets induced by palmitic acid. Thus, loss of DGAT1 activity in muscles decreases mRNA levels of genes involved in lipid uptake and oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号