首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defects in intestinal epithelial integrity occur commonly in various pathologies. miR-222 is implicated in many aspects of cellular function and plays an important role in several diseases, but its exact biological function in the intestinal epithelium is underexplored. We generated mice with intestinal epithelial tissue-specific overexpression of miR-222 to investigate the function of miR-222 in intestinal physiology and diseases in vivo. Transgenic expression of miR-222 inhibited mucosal growth and increased susceptibility to apoptosis in the small intestine, thus leading to mucosal atrophy. The miR-222–elevated intestinal epithelium was vulnerable to pathological stress, since local overexpression of miR-222 not only delayed mucosal repair after ischemia/reperfusion-induced injury, but also exacerbated gut barrier dysfunction induced by exposure to cecal ligation and puncture. miR-222 overexpression also decreased expression of the Wnt receptor Frizzled-7 (FZD7), cyclin-dependent kinase 4 and tight junctions in the mucosal tissue. Mechanistically, we identified the Fzd7 messenger ribonucleic acid (mRNA) as a novel target of miR-222 and found that [miR-222/Fzd7 mRNA] association repressed Fzd7 mRNA translation. These results implicate miR-222 as a negative regulator of normal intestinal epithelial regeneration and protection by downregulating expression of multiple genes including the Fzd7. Our findings also suggest a novel role of increased miR-222 in the pathogenesis of mucosal growth inhibition, delayed healing and barrier dysfunction.  相似文献   

2.
Bronchoalveolar lavage (BAL) of canine peripheral airways was performed at various times after hyperventilation, and BAL fluid (BALF) cell and mediator data were used to evaluate two hypotheses: 1) hyperventilation-induced mucosal injury stimulates mediator production, and 2) mucosal damage is correlated with the magnitude of hyperventilation-induced bronchoconstriction. We found that epithelial cells increased in BALF immediately after a 2- and a 5-min dry air challenge (DAC). Prostaglandins D(2) and F(2alpha) and thromboxane B(2) were unchanged immediately after a 2-min DAC but were significantly increased after a 5-min DAC. Leukotriene C(4), D(4), and E(4) did not increase until 5 min after DAC. Hyperventilation with warm moist air did not alter BALF cells or mediators and caused less airway obstruction that occurred earlier than DAC. BALF epithelial cells were correlated with mediator release, and mediator release and epithelial cells were correlated with hyperventilation-induced bronchoconstriction. These observations are consistent with the hypothesis that hyperventilation-induced mucosal damage initiates peripheral airway constriction via the release of biochemical mediators.  相似文献   

3.
IL-4 and IL-13 promote gastrointestinal worm expulsion, at least in part, through effects on nonlymphoid cells, such as intestinal epithelial cells. The role of IL-4/IL-13 in the regulation of intestinal epithelial function during Heligmosomoides polygyrus (Hp) infection was investigated in BALB/c mice infected with Hp or treated with a long-lasting formulation of recombinant mouse IL-4/alphaIL-4 complexes (IL-4C) for 7 days. Separate groups of BALB/c mice were drug-cured of initial infection and later reinfected and treated with anti-IL-4R mAb, an antagonist of IL-4 and IL-13 receptor binding, or with a control mAb. Segments of jejunum were mounted in Ussing chambers, and short circuit current responses to acetylcholine, histamine, serotonin, PGE2, and glucose were determined. Although only modest changes in epithelial cell function were observed during primary Hp infection, IL-4C or a secondary Hp infection each induced more dramatic changes, including increased mucosal permeability, reduced sodium-linked glucose absorption, and increased Cl- secretory response to PGE2. Some, but not all, effects of IL-4C and Hp infection were dependent on enteric nerves. Hp-induced changes in epithelial function were attenuated or prevented by anti-IL-4R mAb. Thus, IL-4/IL-13 mediate many of the effects of Hp infection on intestinal epithelial cell function and do so both through direct effects on epithelial cells and through indirect, enteric nerve-mediated prosecretory effects. These immune system-independent effector functions of IL-4/IL-13 may be important for host protection against gastrointestinal nematodes.  相似文献   

4.
Myeloid differentiation factor (MyD)88, an adaptor protein shared by the Toll-interleukin 1 receptor superfamily, plays a critical role in host defence during many systemic bacterial infections by inducing protective inflammatory responses that limit bacterial growth. However, the role of innate responses during gastrointestinal (GI) infections is less clear, in part because the GI tract is tolerant to commensal antigens. The current study investigated the role of MyD88 following infection by the murine bacterial pathogen, Citrobacter rodentium . MyD88-deficient mice suffered a lethal colitis coincident with colonic mucosal ulcerations and bleeding. Their susceptibility was associated with an overwhelming bacterial burden and selectively impaired immune responses in colonic tissues, which included delayed inflammatory cell recruitment, reduced iNOS and abrogated production of TNF-α and IL-6 from MyD88-deficient macrophages and colons cultured ex vivo . Immunostaining for Ki67 and BrDU revealed that MyD88 signalling mediated epithelial hyper-proliferation in response to C. rodentium infection. Thus, MyD88-deficient mice could not promote epithelial cell turnover and repair, leading to deep bacterial invasion of colonic crypts, intestinal barrier dysfunction and, ultimately, widespread mucosal ulcerations. In conclusion, MyD88 signalling within the GI tract plays a critical role in mediating host defence against an enteric bacterial pathogen, by controlling bacterial numbers and promoting intestinal epithelial homeostasis.  相似文献   

5.
Transepithelial migration of neutrophils (PMN) is a defining characteristic of active inflammatory states of mucosal surfaces. The process of PMN transepithelial migration, while dependent on the neutrophil beta 2 integrin CD11b/CD18, remains poorly understood. In these studies, we define a monoclonal antibody, C5/D5, raised against epithelial membrane preparations, which markedly inhibits PMN migration across polarized monolayers of the human intestinal epithelial cell line T84 in a bidirectional fashion. In T84 cells, the antigen defined by C5/D5 is upregulated by epithelial exposure to IFN-gamma, and represents a membrane glycoprotein of approximately 60 kD that is expressed on the basolateral membrane. While transepithelial migration of PMN was markedly inhibited by either C5/D5 IgG or C5/D5 Fab fragments, the antibody failed to inhibit both adhesion of PMN to T84 monolayers and adhesion of isolated T84 cells to the purified PMN integrin, CD11b/CD18. Thus, epithelial-PMN interactions blocked by C5/D5 appear to be downstream from initial CD11b/CD18-mediated adhesion of PMN to epithelial cells. Purification, microsequence analysis, and cross-blotting experiments indicate that the C5/D5 antigen represents CD47, a previously cloned integral membrane glycoprotein with homology to the immunoglobulin superfamily. Expression of the CD47 epitope was confirmed on PMN and was also localized to the basolateral membrane of normal human colonic epithelial cells. While C5/D5 IgG inhibited PMN migration even in the absence of epithelial, preincubation of T84 monolayers with C5/D5 IgG followed by antibody washout also resulted in inhibition of transmigration. These results suggest the presence of both neutrophil and epithelial components to CD47-mediated transepithelial migration. Thus, CD47 represents a potential new therapeutic target for downregulating active inflammatory disease of mucosal surfaces.  相似文献   

6.
Antrum mucosal protein (AMP)-18 and a synthetic peptide of amino acids 77-97 have mitogenic and motogenic properties for epithelial cells. The possibility that AMP-18 is also protective was evaluated in the colonic mucosa of mice and monolayer cultures of human colonic epithelial Caco-2/bbe (C2) cells. Administration of AMP peptide to mice with dextran sulfate sodium (DSS)-induced colonic injury delayed the onset of bloody diarrhea and reduced weight loss. Treatment of C2 cells with AMP peptide protected monolayers against decreases in transepithelial electrical resistance induced by the oxidant monochloramine, indomethacin, or DSS. A molecular mechanism for these barrier-protective effects was sought by asking whether AMP peptide acted on specific tight junction (TJ) proteins. Immunoblots of detergent-insoluble fractions of C2 cells treated with AMP peptide exhibited increased accumulation of specific TJ proteins. Occludin immunoreactivity was also increased in detergent-insoluble fractions obtained from colonic mucosal cells of mice injected with AMP peptide. Observations using laser scanning confocal (CF) microscopy supported the capacity of AMP peptide to enhance accumulation of occludin and zonula occludens-1 in TJ domains of C2 cell monolayers and together with immunoblot analysis showed that the peptide protected against loss of these TJ proteins following oxidant injury. AMP peptide also protected against a fall in TER during disruption of actin filaments by cytochalasin D and stabilized perijunctional actin during oxidant injury when assessed by CF. These findings suggest that AMP-18 could protect the intestinal mucosal barrier by acting on specific TJ proteins and stabilizing perijunctional actin.  相似文献   

7.
8.
We report an inverse relationship between expression of the orphan candidate tumor suppressor gene esophageal cancer related gene 4 (Ecrg4), and the mucosal epithelial cell response to infection in the middle ear (ME). First, we found constitutive Ecrg4 mRNA expression in normal, quiescent ME mucosa that was confirmed by immunostainning of mucosal epithelial cells and immunoblotting of tissue lysates for the 14 kDa Ecrg4 protein. Upon experimental ME infection, Ecrg4 gene expression rapidly decreased by over 80%, between 3 to 48 hrs, post infection. When explants of this infected mucosa were placed in culture and transduced with an adenovirus (AD) encoding Ecrg4 gene (ADEcrg4), the proliferative and migratory responses of mucosal cells were significantly inhibited. ADEcrg4 transduction of control explants from uninfected MEs had no effect on basal growth and migration. Over-expression of Ecrg4 in vivo, by pre-injecting MEs with ADEcrg4 48 hrs prior to infection, prevented the natural down-regulation of Ecrg4, reduced mucosal proliferation and prevented inflammatory cell infiltration normally observed after infection. Taken together, these data support a hypothesis that Ecrg4 plays a role in coordinating the inflammatory and proliferative response to infection of mucosal epithelium suggesting a possible mechanism for its putative anti-tumor activity.  相似文献   

9.
Expression and function of the UM4D4 antigen in human thymus   总被引:3,自引:0,他引:3  
UM4D4 is a newly identified T cell surface molecule, distinct from the Ag receptor and CD2, which is expressed on 25% of peripheral blood T cells, resting or activated. Monoclonal anti-UM4D4 is mitogenic for T cells and T cell clones. Since alternative activation pathways independent of Ag/MHC recognition may be important in thymic differentiation, the expression and function of UM4D4 was examined in human thymus. UM4D4 was found on the surface of 6% of thymocytes. All thymocyte subsets contained UM4D4+ cells but expression was greatest on thymocytes that were CD1- (12%), CD3+ (11%) and especially CD4-CD8- (18%). CD3+CD4- CD8- cells, most of which bear the gamma delta-receptor, were greater than or equal to 50% + for UM4D4. Moreover, anti-UM4D4 was comitogenic for thymocytes together with PMA or IL-2. Anti-UM4D4 also reacted strongly with a subset of thymic epithelial cells in both cortex and medulla. Dual color fluorescence microscopy, with anti-UM4D4 and antibodies to other thymic epithelial Ag, showed UM4D4 expression on neuroendocrine thymic epithelium but not on thymic fibrous stroma. Thus, UM4D4 is expressed on, and represents an activation pathway for, a subset of thymic T cells. In addition, this determinant, initially identified as a novel T cell activating molecule, is broadly expressed by neuroendocrine thymic epithelium. Although the function of UM4D4 on the thymic epithelial cells is not yet clear, it is possible that UM4D4 represents a pathway for the functional activation of a subset of the thymic epithelium as well as a subset of thymocytes, thus playing a dual role in T cell differentiation.  相似文献   

10.
Mucosal Toll-like receptors (TLRs) respond to pathogens, but remain inert to the indigenous flora, suggesting that the TLRs can receive pathogen-specific signals. For example, TLR4 signalling is activated in CD14-negative epithelial cells by P-fimbriated, uropathogenic Escherichia coli, but not by lipopolysaccharide. The fimbriae use glycosphingolipids as recognition receptors and there is release of ceramide, which is the membrane-anchoring domain of the receptors. In this study, ceramide was identified as a TLR4 agonist and as a putative signalling intermediate between the glycosphingolipid recognition receptors and TLR4. Exogenous ceramide activated a TLR4-dependent epithelial cell response, as shown by exposing stably transfected TLR4-positive or -negative human embryonal kidney cells to C2 and C6 ceramide. A similar, TLR4-dependent response occurred after deliberate release of endogenous long-chained ceramide with sphingomyelinase. Microbial ligands with glycosphingolipid specificity (P fimbriae or the B subunit of Shiga toxin) were shown to increase the levels of ceramide and to trigger a TLR4-dependent response in epithelial cells. The results show that ceramide activates TLR4 signalling and suggest that this mechanism might allow pathogens to elicit mucosal TLR4 responses by perturbing sphingolipid receptors for virulence ligands like P fimbriae.  相似文献   

11.
Endothelin-1 (ET-1), nitric oxide, and cytokines are recognized mediators of the inflammatory processes associated with gastric mucosal injury. In this study, we investigated mucosal expression of ET-1, interleukin-4 (IL-4), and the activity of constitutive nitric oxide synthase (cNOS) during indomethacin-induced gastric mucosal injury, and evaluated the effect of antiulcer agents on this process. The experiments were conducted with groups of rats pretreated intragastrically with ranitidine (100 mg/kg), ebrotidine (100 mg/kg), sulglycotide (200 mg/kg) or vehicle, followed 30 min later by an intragastric dose of indomethacin (60 mg/kg). The animals were killed 2 h later and their mucosal tissue subjected to macroscopic damage assessment and the measurements of epithelial cell apoptosis, ET-1, IL-4, and cNOS. In the absence of antiulcer agents, indomethacin caused multiple hemorrhagic lesions and extensive epithelial cell apoptosis, accompanied by a 20.7% reduction in IL-4, a 3.1-fold increase in mucosal expression of ET-1 and a 4.2-fold decline in cNOS. Pretreatment with H2-receptor antagonist, ranitidine produced a 15.7% reduction in the mucosal damage caused by indomethacin, 29.5% decrease in epithelial cell apoptosis and a 19.6% reduction in ET-1, while the expression of IL-4 increased by 10.8% and that of cNOS showed a 2-fold increase. The H2-blocker, ebrotidine, also known for its gastroprotective effects, reduced the indomethacin-induced lesions by 90.2%, epithelial cell apoptosis decreased by 61% and ET-1 showed a 58.2% decline, while IL-4 increased by 30.6% and that of cNOS showed a 3.1-fold increase. Pretreatment with gastroprotective agent, sulglycotide, led to a 51.2% reduction in the extent of mucosal damage caused by indomethacin, a 43.9% decrease in apoptosis, and a 63.5% decrease in ET-1, while the expression of cNOS increased by 3.4-fold and the level of IL-4 showed a 32.2% increase. The results suggest that an increase in vasoconstrictive ET-1 level combined with a decrease in regulatory cytokine, IL-4, and a loss of compensatory action by cNOS may be responsible for gastric mucosal injury caused by indomethacin. Our findings also point to a value of ebrotidine and sulglycotide in countering the untoward gastrointestinal side effects of NSAID therapy.  相似文献   

12.
13.
Szabó A  Vollmar B  Boros M  Menger MD 《Life sciences》2006,78(26):3058-3065
Female sex hormones have been reported to preserve endothelial integrity and to reduce inflammation. However, gender-related differences in the intestinal mucosal barrier function during compromised perfusion after ischemia and transplantation have not been defined. Herein, we applied intravital microscopy to determine the mucosal epithelial and intestinal microcirculatory responses in ileal villus and longitudinal muscle layers in a murine model of 30-min intestinal ischemia and 90-min reperfusion. In male animals, the entire reperfusion period was characterized by a significantly increased epithelial permeability. This was associated with an early leukocytic inflammatory response and late alterations in functional capillary density, capillary red blood cell velocity and mitochondrial redox state. In contrast, the female intestine exhibited a delayed increase in epithelial permeability during postischemic reperfusion. This was associated with a late leukocytic inflammatory response which did not affect the microcirculatory function. Nonetheless, at the end of the 90-min reperfusion period, the neutrophilic infiltration and structural mucosal disintegration in the female intestine were found to be pronounced to a similar extent as in the male intestine. These results suggest that in small intestinal ischemia-reperfusion the leukocytic inflammatory response and microcirculatory dysfunction develop more rapidly and are initially more pronounced in males, but the hormonal status in females is not capable of preventing the final manifestations of reperfusion injury.  相似文献   

14.
Wound healing of the gastrointestinal mucosa is essential for the maintenance of gut homeostasis and integrity. Enteric glial cells play a major role in regulating intestinal barrier function, but their role in mucosal barrier repair remains unknown. The impact of conditional ablation of enteric glia on dextran sodium sulfate (DSS)-induced mucosal damage and on healing of diclofenac-induced mucosal ulcerations was evaluated in vivo in GFAP-HSVtk transgenic mice. A mechanically induced model of intestinal wound healing was developed to study glial-induced epithelial restitution. Glial-epithelial signaling mechanisms were analyzed by using pharmacological inhibitors, neutralizing antibodies, and genetically engineered intestinal epithelial cells. Enteric glial cells were shown to be abundant in the gut mucosa, where they associate closely with intestinal epithelial cells as a distinct cell population from myofibroblasts. Conditional ablation of enteric glia worsened mucosal damage after DSS treatment and significantly delayed mucosal wound healing following diclofenac-induced small intestinal enteropathy in transgenic mice. Enteric glial cells enhanced epithelial restitution and cell spreading in vitro. These enhanced repair processes were reproduced by use of glial-conditioned media, and soluble proEGF was identified as a secreted glial mediator leading to consecutive activation of epidermal growth factor receptor and focal adhesion kinase signaling pathways in intestinal epithelial cells. Our study shows that enteric glia represent a functionally important cellular component of the intestinal epithelial barrier microenvironment and that the disruption of this cellular network attenuates the mucosal healing process.  相似文献   

15.
Intestinal epithelial cell migration plays a key role in gastrointestinal mucosal barrier formation, enterocyte development, differentiation, turnover, wound healing, and adenocarcinoma metastasis. Chemokines, through engagement of their corresponding receptors, are potent mediators of directed cell migration and are critical in the establishment and regulation of innate and adaptive immune responses. The aim of this study was to define the role for the chemokine CXCL12 and its sole cognate receptor CXCR4 in regulating intestinal epithelial cell migration and to determine its impact on barrier integrity. CXCL12 stimulated the dose-dependent chemotactic migration of human T84 colonic epithelial cells. Epithelial cell migration was inhibited by CXCR4 neutralizing antibody, pertussis toxin, LY-294002, and PD-98059, thereby implicating Galpha(i), phosphatidylinositol 3-kinase (PI3-kinase), and the ERK1/2 MAP kinase pathways in CXCR4-specific signaling. CXCL12 was also shown to increase barrier integrity, as defined by transepithelial resistance and paracellular flux across differentiating T84 monolayers. To determine whether CXCL12 regulated epithelial restitution, we used the normal nontransformed intestinal epithelial cell-6 (IEC-6) wound healing model. By using RT-PCR, immunoblot analysis, and immunofluorescence microscopy, we first showed expression of both CXCR4 and its ligand by IEC-6 cells. We then demonstrated that CXCL12 activated comparable signaling mechanisms to stimulate epithelial migration in the absence of proliferation in wounded IEC-6 monolayers. Taken together, these data indicate that CXCL12 signaling via CXCR4 directs intestinal epithelial cell migration, barrier maturation, and restitution, consistent with an important mechanistic role for these molecules in mucosal barrier integrity and innate host defense.  相似文献   

16.
Exosomes are membranous nanovesicles released by most cell types from multi-vesicular endosomes. They are speculated to transfer molecules to neighboring or distant cells and modulate many physiological and pathological procedures. Exosomes released from the gastrointestinal epithelium to the basolateral side have been implicated in antigen presentation. Here, we report that luminal release of exosomes from the biliary and intestinal epithelium is increased following infection by the protozoan parasite Cryptosporidium parvum. Release of exosomes involves activation of TLR4/IKK2 signaling through promoting the SNAP23-associated vesicular exocytotic process. Downregulation of let-7 family miRNAs by activation of TLR4 signaling increases SNAP23 expression, coordinating exosome release in response to C. parvum infection. Intriguingly, exosomes carry antimicrobial peptides of epithelial cell origin, including cathelicidin-37 and beta-defensin 2. Activation of TLR4 signaling enhances exosomal shuttle of epithelial antimicrobial peptides. Exposure of C. parvum sporozoites to released exosomes decreases their viability and infectivity both in vitro and ex vivo. Direct binding to the C. parvum sporozoite surface is required for the anti-C. parvum activity of released exosomes. Biliary epithelial cells also increase exosomal release and display exosome-associated anti-C. parvum activity following LPS stimulation. Our data indicate that TLR4 signaling regulates luminal exosome release and shuttling of antimicrobial peptides from the gastrointestinal epithelium, revealing a new arm of mucosal immunity relevant to antimicrobial defense.  相似文献   

17.
18.
19.
The changing patterns of goblet cell hyperplasia, intestinal epithelial cell turnover, and intestinal motility were studied in ICR and C57BL/6 mice infected with Gymnophalloides seoi (Digenea: Gymnophallidae). Whereas ICR mice retained G. seoi worms until day 7 post-infection (PI), C57BL/6 mice showed a rapid worm expulsion within day 3 PI. Immunosuppression with Depo-Medrol significantly delayed the worm expulsion in C57BL/6 mice. Goblet cell counts were increased in both strains of mice, peaking at day 1 PI in C57BL/6 mice and slowly increasing until day 7 PI in ICR mice. In C57BL/6 mice infected with G. seoi, newly proliferating intestinal epithelial cells were remarkably increased in the crypt, and the increase was the highest at day 1 PI. However, in ICR mice, newly proliferating intestinal epithelial cells increased slowly from day 1 to day 7 PI. Intestinal motility was increased in G. seoi-infected mice, and its chronological pattern was highly correlated with the worm load in both strains of mice. Meanwhile, immunosuppression of C57BL/6 mice abrogated the goblet cell proliferation, reduced the epithelial cell proliferation, and suppressed the intestinal motility. Goblet cell hyperplasia, increased intestinal epithelial cell turnover, and increased intestinal motility should be important mucosal defense mechanisms in G. seoi-infected C57BL/6 mice.  相似文献   

20.
Helicobacter pylori causes severe, rapidly progressive gastritis in severe combined immunodeficient (SCID) mouse recipients of congenic splenocytes. The H. pylori-infected and uninfected C57BL/6J and recipient SCID mice were evaluated to detect CD4+ and CD8+ T cells, B cells, apoptotic epithelial cells, and epithelial cell proliferation at postinoculation weeks 5, 6, 8, and 12. Serum was evaluated for anti-H. pylori IgG and IgM. In all H. pylori-infected mice, gastric CD4+ cell scores were increased, compared with scores for uninfected controls. Recipient mice differed, however, according to the source of the transferred CD4+ cells. The CD4+ cell scores for recipients of splenocytes from H. pylori-infected (immune) donors were indistinguishable from those for wild-type donor mice at all time points. In contrast, gastric mucosal CD4+ cell scores did not become significantly high until two weeks after transfer (postinoculation week 6) in recipients of cells from uninfected (na?ve) donors. Gastric epithelial apoptosis and the gastric epithelial proliferation zone were significantly (P < 0.05) increased in infected recipient and donor, compared with non-recipient and uninfected mice at postinoculation week 12. Results indicated that CD4 cells are sensitized in vivo and migrate to the gastric mucosa where they induce gastritis in response to H. pylori antigens. Influx of CD4 cells and gastritis are correlated with epithelial proliferation and apoptosis, and suggest that CD4-dependent H. pylori gastritis leads to epithelial damage with attendant proliferative and metaplastic responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号