首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 695 毫秒
1.
The incorporation of [3H]thymidine into the deoxyribonucleic acid (DNA) of Chlamydia psittaci (strain 6BC) growing in thymidine kinase (adenosine 5'-triphosphate-thymidine 5'-phosphotransferase, EC 1.7.1.21)-containing L cells, L(TK+), and thymidine kinase-deficient L cells, LM(TK-), was examined by autoradiography. Label was detected over C. psittaci inclusions in L(TK+) but not LM(TK-) cells. No evidence for a chlamydia-specific thymidine kinase activity in either L(TK+) or LM(TK-) cells was obtained. Entry of [3H]thymidine into the DNA of C. psittaci growing in L(TK+) cells was quantitated by measuring label in purified C. psittaci. It was 265 times less efficient than entry into infected host cell DNA. It is concluded that low levels of exogenous thymidine are incorporated into the DNA of C. psittaci and that this incorporation is dependent on a fully competent host thymidine kinase activity. Evidence also is presented that L cells possess at least two thymidine kinase activities, both of which are capable of supplying thymidylate precursors for nuclear DNA synthesis.  相似文献   

2.
D K Dube  M S Horwitz  L A Loeb 《Gene》1991,99(1):25-29
We have constructed a series of mutants within the putative nucleoside-binding site of the herpes simplex type-1 virus (HSV-1) thymidine kinase (TK)-encoding gene (tk), contained within an expression vector. While most mutations within this sequence produce an inactive protein, we find no absolute requirement for the wild-type Ile166 and Ala167. The uptake of thymidine (dT) into Escherichia coli tdk-, lacking functional endogenous TK activity, is proportional to the amount of TK activity expressed from the heterologous HSV-1 tk gene. In contrast, there is no enhancement in deoxycytidine uptake into E. coli producing (HSV-1) TK. These results imply a specific role for TK in the active transport of dT into E. coli.  相似文献   

3.
Photochemistry of thymidine in ice   总被引:2,自引:0,他引:2  
A J Varghese 《Biochemistry》1970,9(24):4781-4787
  相似文献   

4.
Altered thymidine metabolism due to defects of thymidine phosphorylase.   总被引:9,自引:0,他引:9  
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive human disease due to mutations in the thymidine phosphorylase (TP) gene. TP enzyme catalyzes the reversible phosphorolysis of thymidine to thymine and 2-deoxy-D-ribose 1-phosphate. We present evidence that thymidine metabolism is altered in MNGIE. TP activities in buffy coats were reduced drastically in all 27 MNGIE patients compared with 19 controls. All MNGIE patients had much higher plasma levels of thymidine than normal individuals and asymptomatic TP mutation carriers. In two patients, the renal clearance of thymidine was approximately 20% that of creatinine, and because hemodialysis demonstrated that thymidine is ultrafiltratable, most of the filtered thymidine is likely to be reabsorbed by the kidney. In vitro, fibroblasts from controls catabolized thymidine in medium; by contrast, MNGIE fibroblasts released thymidine. In MNGIE, severe impairment of TP enzyme activity leads to increased plasma thymidine. In patients who are suspected of having MNGIE, determination of TP activity in buffy coats and thymidine levels in plasma are diagnostic. We hypothesize that excess thymidine alters mitochondrial nucleoside and nucleotide pools leading to impaired mitochondrial DNA replication, repair, or both. Therapies to reduce thymidine levels may be beneficial to MNGIE patients.  相似文献   

5.
Experimental evidence presented suggests that [3H]TdR can be rapidly and efficiently transported from the intestine to the systemic circulation. This pathway for thymidine transport may be physiologically important since administration of cold thymidine in the drinking water enhances the utilization of a parenterally injected dose of [3H]TdR in several body tissues of the mouse.  相似文献   

6.
The synthesis of vaccinia virus-induced thymidine kinase is normally arrested several hours after infection. In thymidine kinase-deficient LM cells infected with IHD strain of vaccinia virus, arrest occurs whether or not viral DNA synthesis is inhibited. With virus inactivated by UV irradiation, enzyme synthesis takes place, but arrest is abolished. It is suggested that an early viral genetic function is responsible for the cessation of thymidine kinase synthesis.  相似文献   

7.
Thymidine kinase activity has been demonstrated in purified mitochondria prepared from animal tissue, wild-type tissue culture cells, and BrdU-resistant cell lines. The BrdU-resistant cell lines lack a soluble cytoplasmic thymidine kinase present in wild-type cells, but continue to exhibit the minor mitochondrial activity. This elucidates the mechanism by which mitochondrial DNA is exclusively labeled in BrdU-resistant cells.  相似文献   

8.
The DNAs of bacterial viruses are known to contain diverse, chemically complex modifications to thymidine that protect them from the endonuclease-based defenses of their cellular hosts, but whose biosynthetic origins are enigmatic. Up to half of thymidines in the Pseudomonas phage M6, the Salmonella phage ViI, and others, contain exotic chemical moieties synthesized through the post-replicative modification of 5-hydroxymethyluridine (5-hmdU). We have determined that these thymidine hypermodifications are derived from free amino acids enzymatically installed on 5-hmdU. These appended amino acids are further sculpted by various enzyme classes such as radical SAM isomerases, PLP-dependent decarboxylases, flavin-dependent lyases and acetyltransferases. The combinatorial permutations of thymidine hypermodification genes found in viral metagenomes from geographically widespread sources suggests an untapped reservoir of chemical diversity in DNA hypermodifications.  相似文献   

9.
One assumption made in bacterial production estimates from [3H]thymidine incorporation is that all heterotrophic bacteria can incorporate exogenous thymidine into DNA. Heterotrophic marine bacterium isolates from Tampa Bay, Fla., Chesapeake Bay, Md., and a coral surface microlayer were examined for thymidine uptake (transport), thymidine incorporation, the presence of thymidine kinase genes, and thymidine kinase enzyme activity. Of the 41 isolates tested, 37 were capable of thymidine incorporation into DNA. The four organisms that could not incorporate thymidine also transported thymidine poorly and lacked thymidine kinase activity. Attempts to detect thymidine kinase genes in the marine isolates by molecular probing with gene probes made from Escherichia coli and herpes simplex virus thymidine kinase genes proved unsuccessful. To determine if the inability to incorporate thymidine was due to the lack of thymidine kinase, one organism, Vibrio sp. strain D19, was transformed with a plasmid (pGQ3) that contained an E. coli thymidine kinase gene. Although enzyme assays indicated high levels of thymidine kinase activity in transformants, these cells still failed to incorporate exogenous thymidine into DNA or to transport thymidine into the cells. These results indicate that the inability of certain marine bacteria to incorporate thymidine may not be solely due to the lack of thymidine kinase activity but may also be due to the absence of thymidine transport systems.  相似文献   

10.
In vivo labeling of DNA with thymidine and thymidine analogs has long been a cornerstone of replication studies. Unfortunately, yeast lack a thymidine salvage pathway and thus do not incorporate exogenous thymidine. Specifically, yeast neither efficiently take up exogenous thymidine from their growth media nor phosphorylate it to thymidylate, the precursor of dTTP. We have overcome these problems in fission yeast by expressing the human equilibrative nucleoside transporter 1 (hENT1) along with herpes simplex virus thymidine kinase (tk). hENT1 tk cells are healthy and efficiently incorporate exogenous thymidine and thymidine analogs. We present protocols for labeling DNA with tritiated thymidine, for in situ detection of incorporated BrdU by immunofluorescence, for double labeling with CldU and IdU, for CsCl gradient separation of IdU-labeled DNA, and for using hENT1 and tk as both positive and negative selection markers.  相似文献   

11.
One assumption made in bacterial production estimates from [3H]thymidine incorporation is that all heterotrophic bacteria can incorporate exogenous thymidine into DNA. Heterotrophic marine bacterium isolates from Tampa Bay, Fla., Chesapeake Bay, Md., and a coral surface microlayer were examined for thymidine uptake (transport), thymidine incorporation, the presence of thymidine kinase genes, and thymidine kinase enzyme activity. Of the 41 isolates tested, 37 were capable of thymidine incorporation into DNA. The four organisms that could not incorporate thymidine also transported thymidine poorly and lacked thymidine kinase activity. Attempts to detect thymidine kinase genes in the marine isolates by molecular probing with gene probes made from Escherichia coli and herpes simplex virus thymidine kinase genes proved unsuccessful. To determine if the inability to incorporate thymidine was due to the lack of thymidine kinase, one organism, Vibrio sp. strain D19, was transformed with a plasmid (pGQ3) that contained an E. coli thymidine kinase gene. Although enzyme assays indicated high levels of thymidine kinase activity in transformants, these cells still failed to incorporate exogenous thymidine into DNA or to transport thymidine into the cells. These results indicate that the inability of certain marine bacteria to incorporate thymidine may not be solely due to the lack of thymidine kinase activity but may also be due to the absence of thymidine transport systems.  相似文献   

12.
In non-proliferating cells mitochondrial (mt) thymidine kinase (TK2) salvages thymidine derived from the extracellular milieu for the synthesis of mt dTTP. TK2 is a synthetic enzyme in a network of cytosolic and mt proteins with either synthetic or catabolic functions regulating the dTTP pool. In proliferating cultured cells the canonical cytosolic ribonucleotide reductase (R1-R2) is the prominent synthetic enzyme that by de novo synthesis provides most of dTTP for mt DNA replication. In non-proliferating cells p53R2 substitutes for R2. Catabolic enzymes safeguard the size of the dTTP pool: thymidine phosphorylase by degradation of thymidine and deoxyribonucleotidases by degradation of dTMP. Genetic deficiencies in three of the participants in the network, TK2, p53R2, or thymidine phosphorylase, result in severe mt DNA pathologies. Here we demonstrate the interdependence of the different enzymes of the network. We quantify changes in the size and turnover of the dTTP pool after inhibition of TK2 by RNA interference, of p53R2 with hydroxyurea, and of thymidine phosphorylase with 5-bromouracil. In proliferating cells the de novo pathway dominates, supporting large cytosolic and mt dTTP pools, whereas TK2 is dispensable, even in cells lacking the cytosolic thymidine kinase. In non-proliferating cells the small dTTP pools depend on the activities of both R1-p53R2 and TK2. The activity of TK2 is curbed by thymidine phosphorylase, which degrades thymidine in the cytoplasm, thus limiting the availability of thymidine for phosphorylation by TK2 in mitochondria. The dTTP pool shows an exquisite sensitivity to variations of thymidine concentrations at the nanomolar level.  相似文献   

13.
Human thymidine phosphorylase (hTP) is responsible for thymidine (dT) homeostasis, promotes angiogenesis, and is involved in metabolic inactivation of antiproliferative agents that inhibit thymidylate synthase. Understanding its transition state structure is on the path to design transition state analogues. Arsenolysis of dT by hTP permits kinetic isotope effect (KIE) analysis of the reaction by forming thymine and the chemically unstable 2-deoxyribose 1-arsenate. The transition state for the arsenolytic reaction was characterized using multiple KIEs and computational analysis. Transition state analysis revealed a concerted bimolecular (A(N)D(N)) mechanism. A transition state constrained to match the intrinsic KIE values was found using density functional theory (B3LYP/6-31G*). An active site histidine is implicated as the catalytic base responsible for activation of the arsenate nucleophile and stabilization of the thymine leaving group during the isotopically sensitive step. At the transition state, the deoxyribose ring exhibits significant oxocarbenium ion character with bond breaking (r(C-N) = 2.45 ?) nearly complete and minimal bond making to the attacking nucleophile (r(C-O) = 2.95 ?). The transition state model predicts a deoxyribose conformation with a 2'-endo ring geometry. Transition state structure for the slow hydrolytic reaction of hTP involves a stepwise mechanism [Schwartz, P. A., Vetticatt, M. J., and Schramm, V. L. (2010) J. Am. Chem. Soc. 132, 13425-13433], in contrast to the concerted mechanism described here for arsenolysis.  相似文献   

14.
Thymidine kinase and phosphotransferase activities were assayedin various plant tissues to examine claims that phosphotransferaseis the dominant phosphorylating mechanism. Results showed thatthymidine kinase is the principal activity in young tissuesand that its apparent absence is due to the relatively highinstability of the enzyme in plant extracts. 1Present address: Lab. Applicazioni Agricoltura, CSN Casaccia,Roma, Italy. (Received December 5, 1973; )  相似文献   

15.
16.
Role of thymidine phosphorylase in Fas-induced apoptosis   总被引:2,自引:0,他引:2  
Mori S  Takao S  Ikeda R  Noma H  Mataki Y  Wang X  Akiyama S  Aiko T 《Human cell》2001,14(4):323-330
Thymidine phosphorylase (TP) has chemotactic and angiogenic activity in vitro, and it promotes tumor growth and inhibits apoptosis in vivo. It plays a key role in the invasiveness and metastasis of TP-expressing solid tumors. KB/TP cells transfected with a TP cDNA have been shown to be resistant to hypoxia-induced apoptosis, suggesting that TP has effects on tumor growth and cell death independent of its effects on angiogenesis. However, the mechanisms of cell death inhibition by TP are unknown. In the present study, we demonstrate that caspase-8 is cleaved in control transfectant KB cells early on during Fas-induced apoptosis. Caspase-8 activation leads to the loss of mitochondrial membrane potential, followed by the release of cytochrome c, the activation of caspase-3, and apoptosis. In contrast, Fas-induced caspase-8 cleavage is inhibited in KB/TP cells, which lead to inhibition of the downstream apoptotic cascade and inhibition of apoptosis. These findings indicate that TP plays an important role in intracellular apoptotic signal transduction in the Fas-induced apoptotic pathway. Therefore, inhibition of TP may suppress the progression of TP-overexpressing solid tumors by inducing apoptosis.  相似文献   

17.
18.
We report on Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt) inhibitory activities of a series of new 3′- and 5′-modified thymidine analogues including α- and β-derivatives. In addition, several analogues were synthesized in which the 4-oxygen was replaced by a more lipophilic sulfur atom to probe the influence of this modification on TMPKmt inhibitory activity. Several compounds showed an inhibitory potency in the low micromolar range, with the 5′-arylthiourea 4-thio-α-thymidine analogue being the most active one (Ki = 0.17 μM). This compound was capable of inhibiting mycobacteria growth at a concentration of 25 μg/mL.  相似文献   

19.
20.
Disc polyacrylamide gel electrophoresis (disc PAGE) analyses of chick-mouse somatic cell hybrids [LM(TK)/CRB]isolated from fusion mixtures of chick erythrocytes and thymidine (TdR) kinase-deficient mouse [LM(TK)]cells have demonstrated that the somatic cell hybrids contain only chick cytosol TdR kinase F and mouse mitochondrial TdR kinase A activities. Karyotypes were analysed by the method which sequentially reveals Q- and C-bands. Four hybrid clones contained the full complement of mouse chromosomes and 1 to 3 chick micro-chromosomes. Counterselection of the LM(TK)/CRB hybrids in 5-bromodeoxyuridine (BUdR) medium resulted in the loss of chick cytosol TdR kinase F activity and at least one of the chick chromosomes, but mouse mitochondrial TdR kinase A activity was unaffected. Unlike the LM(TK)/CRB somatic cell hybrids, the BUdR-resistant clones could not grow in HATG (hypoxanthine-aminopte-rin-thymidine-glycine) medium. The results demonstrate that: (1) the chick cytosol TdR kinase F gene is on a member of the micro-chromosomes; and (2) selection in HATG- and BUdR-containing medium involves only cytosol TdR kinase F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号