共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary production by phytoplankton in the eutrophic Mikawa Bay, Japan, was studied by simultaneous measurements of natural
carbon isotope ratio (δ
13C) and short-term carbon uptake rates (13C tracer study) of size-fractionated nannoplankton (<10 μm) and net plankton (>10 μm) samples. Short-term photosynthetic rates,
which represent the physiological state of algae, were variable regardless of standing stock sizes. Theδ
13C values of particulate organic carbon (POC) in June and July displayed horizontal variations for both the net plankton fraction
(−19.8 to −12.7‰) and the nannoplankton fraction (−22.0 to −12.8‰). For both fractions, low concentrations of POC had more
negativeδ
13C values (−22 to −18‰). Highδ
13C values for the net plankton were found when POC concentrations were much higher, due to red tide. This suggests that the
increase in algal standing crop for the net plankton fraction resulted from accelerated photosynthetic activity. However the
nannoplankton fractions with higher POC values have relatively lowδ
13C values. 相似文献
2.
A. D. Rombolà Y. Gogorcena A. Larbi F. Morales E. Baldi B. Marangoni M. Tagliavini J. Abadía 《Plant and Soil》2005,271(1-2):39-45
In this experiment we (i) tested the hypothesis that, besides decreasing leaf C fixation, lime induced iron (Fe) deficiency increases root C fixation via PEP carboxylase and (ii) assessed the Fe-induced modifications in the elemental composition of plant tissues. Sugar beet plants were grown in nutrient solutions with Fe (45 M Fe-EDTA; +Fe control) or in a similar nutrient solution without Fe (–Fe) and in presence of CaCO3 (1.0 gL–1), either labelled with 13C (20 at. %) or unlabelled. After 7 and 17 days from treatment imposition, plants were harvested and single organs analysed for total O, C, H, macro and micronutrients. 13C abundance was also assessed in control, unlabelled and labelled –Fe plants. Iron deficiency caused significant growth reductions; chlorophyll and net photosynthesis decreased markedly in Fe-deficient plants when compared to the controls, whereas leaf transpiration rates and stomatal conductance were not affected by Fe deficiency. Iron deficient plants had leaf biomass with lower C (2 to 4%) and higher O (3 to 5%) concentrations than +Fe plants. The 13C was higher (less negative) in +Fe than in –Fe unlabelled plants. Iron deficient plants grown in the nutrient solution enriched with labelled CaCO3 absorbed a relatively small amount of labelled C, which was mainly recovered in the fine roots and accounted for less than 2% of total C gain in the 10 d treatment period. Evidences suggest that iron deficient sugar beets grown in the presence of CaCO3 do not markedly shift their C fixation from leaf RuBP to root PEPC. 相似文献
3.
Measurements of algal carbon metabolism in the light and the dark were conducted in (1) short-term (3-h) light and dark incubations, (2) a diel (24-h) experiment, and (3) a longer-term (4-d) carbon accumulation experiment to examine the relationship between photosynthetic rates, photosynthetic carbon metabolism in the light, and respiration and carbon metabolism in the ensuing dark period in natural assemblages of freshwater phytoplankton. High rates of photosynthesis and polysaccharide synthesis in the light were followed by high rates of respiration and polysaccharide utilization in the dark. Polysaccharide was the major respiratory substrate in the dark, and small molecular weight metabolites, lipids, and protein were less important sources of metabolic energy. The protein pool accumulated carbon during dark incubations, but more slowly than during active photosynthesis in the light. Because the intracellular macromolecular pools turn over at very different rates (polysaccharide > protein and lipid), patterns of short-term photosynthetic carbon metabolism are not necessarily indicative of the biochemical composition of the phytoplankton. 相似文献
4.
J. A. Raven 《Plant, cell & environment》2001,24(2):261-265
A model is presented which quantifies a possible role for the carbonic anhydrase in the mitochondrial matrix of Chlamydomonas reinhardtii which incorporates the observation that the expression of this enzyme is increased under growth conditions in which the expression of the carbon dioxide-concentrating mechanism is increased. It is assumed that the inorganic carbon enters the cytosol from the medium, and leaves the cytosol to the plastids, as HCO3− and that there is negligible carbonic anhydrase activity in the cytosol. The role of the mitochondrial carbonic anhydrase is suggested to be the conversion to HCO3– of the CO2 produced in the mitochondria in the light from tricarboxylic acid cycle activity and from decarboxylation of glycine in any photorespiratory carbon oxidation cycle activity which is not suppressed by the carbon concentrating mechanism. If there is a HCO3− channel in the inner mitochondrial membrane then almost all of the inorganic carbon leaves the mitochondria as HCO3−, thus limiting the potential for CO2 leakage through the plasmalemma. This mechanism could increase inorganic C supply to ribulose bisphosphate carboxylase-oxygenase by some 10% at the energetic expense of less than 1% of the total ATP generation by plastids plus mitochondria. 相似文献
5.
Low light adapted cultures of the marine diatom Thalassiosira pseudonana (3H) were cultured and incubated for 30 min under different ultraviolet (UV) wavelengths of near monochromatic light with
and without background photosynthetically active radiation (PAR, 380–700 nm). Maximum damage to the quantum yield for stable
charge separations was found in the UVB (280-320 nm) wavelengths without background PAR light while the damage under PAR was
30% less. UV induced damage to carbon fixation in the cells was described by a function similar to non-linear functions of
inhibiting irradiance previously published with the exception that damage was slightly higher in the UVA (320–380). Various
measurements of fluorescent transients were measured and the results indicate localised damage most likely on the acceptor
side of the Photosystem II reaction center. However, dark adapted measurements of fluorescence transients with and without
DCMU do not result in similar functions. This is also true for the relationships between fluorescence transients and carbon
fixation for this species of marine diatom. The correlation between the weightings
H from measurements of carbon fixation and the quantum yield for stable charge separation as calculated from induction curves
with DCMU and without DCMU is R
2 0.44 and R
2 0.78, respectively. The slopes of the two measurements are 3.8 and 1.4, respectively. The strong correlation between the
weightings of the induction curves without DCMU and carbon fixation are due to a loss of electron transport from the reaction
center to plastoquinone. Under these experimental conditions of constant photon flux density (PFD) this is manifested as a
strong linear relationship between the decrease in the operational quantum yield of Photosystem II and carbon fixation.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
6.
The characteristics of gas exchange and carbon isotope discrimination were determined for a number of lichen species, representing contrasting associations between fungal (mycobiont) and photosynthetic (photobiont) organism. These parameters were evaluated with regard to the occurrence of any CO2-concentrating mechanism (CCM) expressed specifically by the green algal (phycobiont) or cyanobacterial (cyanobiont) partner. Carbon isotope discrimination () fell into three categories. The highest , found in lichens comprising a phycobiont plus cyanobacteria limited to pockets in the thallus (known as cephalodia), ranged from 24 to 28, equivalent to a carbon isotope ratio (13C) of around -32 to-36 vs. Pee Dee Belemnite (PDB) standard. Further evidence was consistent with CO2 supply to the carboxylating system entirely mediated by diffusion rather than a CCM, in that thallus CO2 compensation point and online instantaneous were also high, in the range normally associated with C3 higher plants. For lichens consisting of phycobiont or cyanobiont alone, organic material formed two distinct ranges around 15 (equivalent to a 13C of -23%.). Thallus compensation point and instantaneous were lower in the cyanobiont group, which also showed higher maximum rates of net photosynthesis, whether expressed on the basis of thallus dry weight, chlorophyll content or area. These data provide additional evidence for the activity of a CCM in cyanobiont lichens, which only show photosynthetic activity when reactivated with liquid water. Rates of net CO2 uptake were lower in both phycobiont associations, but were relatively constant across a wide working range of thallus water contents, usually in parallel with on-line . The phycobiont response was consistent whether photosynthesis had been reactivated with liquid water or water vapour. The effect of diffusion limitation could generally be seen with a 3–4 decrease in instantaneous at the highest water contents. The expression of a CCM in phycobiont algae, although reduced compared with that in cyanobacteria, has already been related to the occurrence of pyrenoids in chloroplasts. In view of the inherent requirement of cyanobacteria for some form of CCM, and the smaller pools of dissolved inorganic carbon (DIC = CO2 + HCO
inf3
su–
+ CO
inf3
su2–
) associated with phycobiont lichens, it appears that characteristics provide a good measure of the magnitude of any CCM, albeit tempered by diffusion limitation at the highest thallus water contents.Abbreviations ANOVA
analysis of variance
- CCM
CO2-concentrating mechanism
- cyanobiont
cyanobacterium
- DIC
CO2 + HCO
inf3
su–
+ CO
inf3
su2–
(dissolved inorganic carbon)
- photobiont
photosynthetic organism present in the association
- phycobiont
green alga
- phycobiont + cephalodia
green algae + cyanobacteria in cephalodia
- Pmax
maximum photosynthetic rate
- PPFD
photosynthetic photon flux density, 400–700 nm
- Rubisco
ribulose-1,5-bisphosphate carboxylase/oxygenase
-
carbon isotope discrimination ()
- 13C
carbon isotope ratio ()
We would like to thank Dr. Enrico Brugnoli (CNR, Porano, Italy) and E.C. Smith (University of Newcastle) for many helpful discussions. Dr. Kristin Palmqvist (Department of Plant Physiology, University of Umeå, Sweden) kindly provided the samples of Peltigera apthosa. In particularly, Cristina Máguas would like to thank to Prof. Fernando Catarino (University of Lisbon) for his support throughout this study. Cristina Máguas has been supported by JNICT-Science Programme studentship (BD/153/90-RN). 相似文献
7.
The aim of this study was to asses vertical and seasonal variations of inorganic carbon allocation into macromolecules by phytoplankton population in an humic and acidic lake (Lake Vassivière) and in a clearwater lake (Lake Pavin). Biochemical fractionation was done by consecutive differential extractions in order to separate proteins, polysaccharides, lipids and low molecular weight compounds (LMW) by virtue of their relative solubilities in different extraction solvents.Independent of depth and season, the principal photosynthetic end products were polysaccharides followed by proteins, LMW and lipids. However, inorganic carbon allocation into macromolecules varied, in these two lakes, with depth and with the taxonomic composition of phytoplankton. Carbon allocation into polysaccharides decreased with increasing depth, especially in the brown-colored humic lake, and Diatoms, showed high C incorporation into polysaccharides. 相似文献
8.
The chemical reactions involving carbon dioxide in mineral culture media are considered. A mathematic model is set up, based on published data, which is valid at pH values below 9, and in which the nonideality of the solution is taken into account. The crucial parameter is the constant expressing the equilibrium between carbon dioxide and bicarbonate, K(1).The reactions were studied in three different aqueous solutions: water, mineral salt medium, and a suspension with nongrowing bacterial cells. For each situation, three methods were compared for the determination of the bicarbonate concentration in the solution: equilibrium state total carbon analysis, dynamic monitoring of the rate of acid or alkali addition, and dynamic measurement of the carbon dioxide gas phase mole fraction.In a batch-stirred tank reactor, the equilibrium constant K(1) agreed with the published value, and the three bicarbonate analysis methods give the same results. If the nonideality is not taken into account, the result significantly differed from the published value and is likely to be incorrect.A real alkalophilic process, using Acinetobacter calcoaceticus in a continuous stirred tank reactor at steady state, also gave results that are in accord with the literature. However, the results do not allow validation of the equation expressing the nonideality.The steady state in the batch system and in continuous culture can be well described with the mathematical model. However, in the transient state there are some unexplained differences between simulation and measurement. 相似文献
9.
Abstract. In the marine environment, the range of values of carbon isotope fractionation between particulate tissue of phytoplankton and inorganic carbon can be more than 20‰ (− 35‰ < δ13 C < − 14‰). This review considers the influence of seawater temperature, lipid content of phytoplanktonic cells, kinetic fractionation, and carbon pathway on δ13 C values observed at sea.
In order to study the contribution of carboxylases (RUBISCO and the β-carboxylases phosphoenolpyruvate carboxylase, phosphoenoplpyruvate carboxykinase and pyruvate carboxylase) to variations of particulate δ13 C values at sea, we present results obtained simultenously on carboxylase activities and δ13 C in various environmental conditions. The lowest δ13 C values are clearly associated with predominance of ribulose-1.5-bisphosphate carboxylase activity, but it was more difficult to explain the high δ13 C values. Different hypotheses are discussed. 相似文献
In order to study the contribution of carboxylases (RUBISCO and the β-carboxylases phosphoenolpyruvate carboxylase, phosphoenoplpyruvate carboxykinase and pyruvate carboxylase) to variations of particulate δ
10.
Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants 总被引:5,自引:1,他引:5
Andrea Belgrano rew P. Allen Brian J. Enquist & James F. Gillooly 《Ecology letters》2002,5(5):611-613
A primary goal of macroecology is to identify principles that apply across varied ecosystems and taxonomic groups. Here we show that the allometric relationship observed between maximum abundance and body size for terrestrial plants can be extended to predict maximum population densities of marine phytoplankton. These results imply that the abundance of primary producers is similarly constrained in terrestrial and marine systems by rates of energy supply as dictated by a common allometric scaling law. They also highlight the existence of general mechanisms linking rates of individual metabolism to emergent properties of ecosystems. 相似文献
11.
The Effect of Atmospheric Carbon Dioxide Elevation on Plant Growth in Freshwater Ecosystems 总被引:3,自引:0,他引:3
We developed a dynamic model to investigate the effect of atmospheric carbon dioxide (CO2) increase on plant growth in freshwater ecosystems. Steady-state simulations were performed to analyze the response of phytoplankton and submerged macrophytes to atmospheric CO2 elevation from 350 to 700 ppm. We studied various conditions that may affect this response, such as alkalinity, the air–water exchange rate of CO2, the community respiration rate, and the phosphorus (P) supply rate. The increase in atmospheric CO2 could affect submerged plant growth only under relatively eutrophic conditions and at a low community respiration rate. Alkalinity had little effect on the response of the different species. When the air–water exchange was low, the proportional effect of the CO2 increase on plant growth was higher. Under eutrophic conditions, algae and macrophytes using CO2 and HCO3– may double their growth rate due to atmospheric CO2 elevation, while the growth of macrophytes restricted to CO2 assimilation may be threefold. The differences in response of the species under various conditions indicate that the elevation of atmospheric CO2 may induce drastic changes in the productivity and species dominance in freshwater systems. 相似文献
12.
J. A. RAVEN 《Plant, cell & environment》1992,15(9):1083-1091
The use of stable isotope natural abundance measurements in plant ecophysiological research is discussed in the context of studies of 13C/12C ratios in marine plants, with emphasis on the uniqueness of the information given by natural abundance measurements and of the importance of complementary data obtained by other techniques in making full use of the natural abundance data. (1) Inorganic C acquisition and assimilation in marine plants can involve diffusive entry of CO2, or the occurrence of a CO2-concentrating mechanism frequently involving active HCO3? influx. For diffusive CO2 entry, the δ13C measurements can give unique information on the fractional limitation of photosynthesis by CO2 transport which, with photosynthetic rate measurements, can be used to compute transport conductances. For active HCO3?, influx, the δ13C values uniquely permit computation of the ratio of the bidirection fluxes (influx/efflux) which, with photon yield data, can be used to given information on the mechanism of the efflux. The analyses are absolutely dependent on external (non-δ13C) data distinguishing between diffusive CO2 entry and the occurrence of a CO2 concentrating mechanism. (2) δ13C measurements on marine photolithotrophs and on members of other trophic levels collected from the sea can give unique data on food webs, with measurements of δ values for other isotopes and compositional data adding precision to the interpretations. (3) Measurements of in situδ13C values for extant marine photolithotrophs, compared with δ13C values for ancient atmospheric CO2, can give unique information on the mechanism of atmospheric CO2 draw-down at the start of glacials; other information permits more concrete conclusions to be drawn. 相似文献
13.
中国热带天然林变迁对大气CO2的影响及经济损益评估 总被引:9,自引:0,他引:9
我国目前保存较好的热带天然林(包括热带原始林、结构良好的天然更新林,而不包括疏林、残次林、灌木林等)面积约1187万hm2,其中云南南部约有60万hm2,海南中南部山区约有587万hm2。在过去的45年中,我国的热带原始林面积减少了50%(约110hm2)。在海南岛尖峰岭的实例结果表明,热带原始林的生态系统的C素库为342t/hm2(其中,森林群落C素库为234t/hm2,土壤为105t/hm2,凋落物层为3t/hm2),系统每年净固定CO2量为1336t/hm2,折合C量为0373t/hm2;热带天然更新林生态系统每年净固定CO2量为7213t/hm2,折合成C量为197t/hm2。在我国现有的热带天然林生态系统中,森林植被层的C素库为1448亿t,土壤中的C素库为1422亿t,与植被层C库相当。在减少的热带森林中,C素库减少了约2231亿t、CO2净同化量减少了0183亿t,其经济损益高达2200亿元。最后从森林与CO2的关系方面探讨了热带林可持续经营的问题。 相似文献
14.
During the summer of 1983, cryptophytes, diatoms, cyanophytes, and the dinoflagellate, Ceratium hirundinella were most prominant among the phytoplankton of Eau Galle Reservoir. In the open water, cryptophytes and diatoms peaked in the spring, cyanophytes were most successful in the early summer, and Ceratium was dominant from mid-July until early August. In general, the sequence of events corresponded quite closely to the model of seasonal succession developed by the Plankton Ecology Group of the International Society of Limnology. To a large extent, the same pattern held in four experimental water columns. Departures from the model involved the roles of specific nutrients in diatom and cyanophyte periodicity. Diatoms began to yield to cyanophytes in late spring despite intermittent mixing and silica enrichment. Although capable of buoyancy regulation and thus well adapted to stable water columns, cyanophytes had greater increases in biomass in mixed columns, and in those columns, were most successful during a period of intermittent mixing. Cyanophyte success varied inversely with TN : TP ratios during the period of intermittent mixing, but not subsequently. By mid-July, Ceratium dominated the phytoplankton of every column except that of a mixed column in which conditions favored cyanophytes and large diatom species. 相似文献
15.
Silicate availability, vertical mixing and grazing control of phytoplankton blooms in mesocosms 总被引:1,自引:1,他引:1
Lake Sempach, located in the central part of Switzerland, has a surface area of 14 km2, a maximum depth of 87 m and a water residence time of 15 years. Restoration measures to correct historic eutrophication, including artificial mixing and oxygenation of the hypolimnion, were implemented in 1984. By means of the combination of external and internal load reductions, total phosphorus concentrations decreased in the period 1984–2000 from 160 to 42 mg P m–3. Starting from 1997, hypolimnion oxygenation with pure oxygen was replaced by aeration with fine air bubbles. The reaction of the plankton has been investigated as part of a long-term monitoring program. Taxa numbers, evenness and biodiversity of phytoplankton increased significantly during the last 15 years, concomitant with a marked decline of phosphorus concentration in the lake. Seasonal development of phytoplankton seems to be strongly influenced by the artificial mixing during winter and spring and by changes of the trophic state. Dominance of nitrogen fixing cyanobacteria (Aphanizomenon sp.), causing a severe fish kill in 1984, has been correlated with lower N/P-ratio in the epilimnion. Buoyant algae such as Planktothrix rubescens (syn. Oscillatoria
rubescens) increased in abundance due to enlargement of the trophogenic layer and extended mixing depth during winter. The interactions between zoo- and phytoplankton seemed to be depressed as a result of restoration measures. Zooplankton composition changed to more carnivorous and less herbivorous species. Oxygenation of the hypolimnion induced bioturbation of sediments, mainly by oligochaetae worms, and stimulated germination of spores and cysts and hatching of resting eggs. 相似文献
16.
Stephen C. Maberly Lucy A. Ball John A. Raven Dieter Sültemeyer 《Journal of phycology》2009,45(5):1052-1061
Twelve species, representing 12 families of the chrysophytes sensu lato, were tested for their ability to take up inorganic carbon. Using the pH‐drift technique, CO2 compensation points generally varied between 1 and 20 μmol · L?1 with a mean concentration of 5 μmol · L?1. Neither pH nor alkalinity affected the CO2 compensation point. The concentration of oxygen had a relatively minor effect on CO2‐uptake kinetics, and the mean CO2 compensation point calculated from the kinetic curves was 3.6 μmol · L?1 at 10–15 kPa starting oxygen partial pressure and 3.8 μmol · L?1 at atmospheric starting oxygen partial pressure (21 kPa). Similarly, uptake kinetics were not affected by alkalinity, and hence concentration of bicarbonate. Membrane inlet mass spectrometry (MIMS) in the presence and absence of acetazolamide suggested that external carbonic anhydrase in Dinobryon sertularia Ehrenb. and Synura petersenii Korschikov was either very low or absent. Rates of net HCO3? uptake were very low (~5% of oxygen evolution) using MIMS and decreased rather than increased with increasing HCO3? concentration, suggesting that it was not a real uptake. The CO2 compensation points determined by MIMS for CO2 uptake and oxygen evolution were similar to those determined in pH‐drift and were >1 μmol · L?1. Overall, the results suggest that chrysophytes as a group lack a carbon‐concentrating mechanism (CCM), or an ability to make use of bicarbonate as an alternative source of inorganic carbon. The possible evolutionary and ecological consequences of this are briefly discussed. 相似文献
17.
For the competition system of phytoplankton and bacteria through inorganic phosphorus, our mathematical model showed that mutualistic relationships between them could occur due to production and consumption of extracellular organic carbon by phytoplankton and bacteria. In our model, phytoplankton are limited in their growth by light and phosphorus, and bacteria are limited in their growth by phosphorus and carbon released from phytoplankton. We adopted permanence as a criterion of the coexistence in mathematical analysis, and led necessary conditions of permanence in the model. Under these coexistence conditions, we estimated the strength of total effects of interactions between phytoplankton and bacteria at the steady state by press perturbation method. The results of this estimation indicated the mutualistic interactions between phytoplankton and bacteria. This suggests that mutualistic situation could occur due to the introduction of carbon flow from phytoplankton to bacteria, even if phytoplankton and bacteria compete with each other through common resource, inorganic phosphorus. 相似文献
18.
High rates of carbon dioxide fixation, both in the light and the dark have been observed in Nant-y-Moch Mountain reservoir; these are surprising because of the sparse algal population. The values of CO2-carbon fixed in the light per milligramme of Chlorophyll a per hour, ranged from 0.1167 mgC/ mg Chl a/hr. to infinity and are much higher than any recorded previously. The uptake of 14C-sucrose and 14C glucose was also determined. Factors which might possibly account for these observations, either alone or in combination are discussed. Possible CO2 fixing agencies include detritus, flagellates and other organisms capable of obtaining energy by dark reactions (chemotrophs). 相似文献
19.
Physiological properties of photosynthesis were determined in the marine diatom, Phaeodactylum tricornutum UTEX640, during acclimation from 5% CO2 to air and related to H2CO3 dissociation kinetics and equilibria in artificial seawater. The concentration of dissolved inorganic carbon at half maximum rate of photosynthesis (K0·5[DIC]) value in high CO2‐grown cells was 1009 mmol m ? 3 but was reduced three‐fold by the addition of bovine carbonic anhydrase (CA), whereas in air‐grown cells K0·5[DIC] was 71 mmol m ? 3, irrespective of the presence of CA. The maximum rate of photosynthesis (Pmax) values varied between 300 and 500 μ mol O2 mg Chl ? 1 h ? 1 regardless of growth pCO2. Bicarbonate dehydration kinetics in artificial seawater were re‐examined to evaluate the direct HCO3 ? uptake as a substrate for photosynthesis. The uncatalysed CO2 formation rate in artificial seawater of 31·65°/oo of salinity at pH 8·2 and 25 °C was found to be 0·6 mmol m ? 3 min ? 1 at 100 mmol m ? 3 DIC, which is 53·5 and 7·3 times slower than the rates of photosynthesis exhibited in air‐ and high CO2‐grown cells, respectively. These data indicate that even high CO2‐grown cells of P. tricornutum can take up both CO2 and HCO3 ? as substrates for photosynthesis and HCO3 ? use improves dramatically when the cells are grown in air. Detailed time courses were obtained of changes in affinity for DIC during the acclimation of high CO2‐grown cells to air. The development of high‐affinity photosynthesis started after a 2–5 h lag period, followed by a steady increase over the next 15 h. This acclimation time course is the slowest to be described so far. High CO2‐grown cells were transferred to controlled DIC conditions, at which the concentrations of each DIC species could be defined, and were allowed to acclimate for more than 36 h. The K0·5[DIC] values in acclimated cells appeared to be correlated only with [CO2(aq)] in the medium but not to HCO3 ? , CO32 ? , total [DIC] or the pH of the medium and indicate that the critical signal regulating the affinity of cells for DIC in the marine diatom, P. tricornutum, is [CO2(aq)] in the medium. 相似文献
20.
Some physiological characteristics of photosynthetic inorganic carbon uptake have been examined in the marine diatoms Phaeodactylum tricornutum and Cyclotella sp. Both species demonstrated a high affinity for inorganic carbon in photosynthesis at pH7.5, having K1/2(CO2) in the range 1.0 to 4.0mmol m?3 and O2? and temperature-insensitive CO2 compensation concentrations in the range 10.8 to 17.6 cm3 m?3. Intracellular accumulation of inorganic carbon was found to occur in the light; at an external pH of 7.5 the concentration in P. tricornutum was twice, and that in Cyclotella 3.5 times, the concentration in the suspending medium. Carbonic anhydrase (CA) was detected in intact Cyclotella cells but not in P. tricornutum, although internal CA was detected in both species. The rates of photosynthesis at pH 8.0 of P. tricornutum cells and Cyclotella cells treated with 0.1 mol m?3 acetazolamide, a CA inhibitor, were 1.5- to 5-fold the rate of CO2 supply, indicating that both species have the capacity to take up HCO3? as a source of substrate for photosynthesis. No Na+ dependence for HCO3? could be detected in either species. These results indicate that these two marine diatoms have the capacity to accumulate inorganic carbon in the light as a consequence, in part, of the active uptake of bicarbonate. 相似文献