首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Although the mechanisms for regulation of ribosomal protein gene expression have been established for gram-negative bacteria such as Escherichia coli, the regulation of these genes in gram-positive bacteria such as Bacillus subtilis has not yet been characterized. In this study, the B. subtilis rpsD gene, encoding ribosomal protein S4, was found to be subject to autogenous control. In E. coli, rpsD is located in the alpha operon, and S4 acts as the translational regulator for alpha operon expression, binding to a target site in the alpha operon mRNA. The target site for repression of B. subtilis rpsD by protein S4 was localized by deletion and oligonucleotide-directed mutagenesis to the leader region of the monocistronic rpsD gene. The B. subtilis rpsD leader exhibits little sequence homology to the E. coli alpha operon leader but may be able to form a pseudoknotlike structure similar to that found in E. coli.  相似文献   

5.
D. B. Garrity  S. A. Zahler 《Genetics》1994,137(3):627-636
It has been proposed that uncharged tRNA molecules may act as positive regulatory factors to control the expression of a number of operons in Bacillus subtilis and related bacteria by interacting with leader sequences to cause antitermination. In this study we report the isolation and characterization of regulatory mutations that modify one of the tRNA molecules predicted to have such a regulatory role. Three different alleles of the B. subtilis leucine tRNA gene leuG were found that resulted in higher expression of the ilv-leu biosynthetic operon. Each resulted in a base change in the D-loop of the leucine tRNA molecule with the anticodon 5''-GAG-3'' (leucine tRNA(GAG)). Experiments with strains that are diploid for mutant and wild-type alleles suggested that both charged and uncharged tRNA molecules may interact with leader sequences to control expression of the operon.  相似文献   

6.
The gene for Escherichia coli leucyl-tRNA synthetase leuS has been cloned by complementation of a leuS temperature sensitive mutant KL231 with an E.coli gene bank DNA. The resulting clones overexpress leucyl-tRNA synthetase (LeuRS) by a factor greater than 50. The DNA sequence of the complete coding regions was determined. The derived N-terminal protein sequence of LeuRS was confirmed by independent protein sequencing of the first 8 aminoacids. Sequence comparison of the LeuRS sequence with all aminoacyl-tRNA synthetase sequences available reveal a significant homology with the valyl-, isoleucyl- and methionyl-enzyme indicating that the genes of these enzymes could have derived from a common ancestor. Sequence comparison with the gene product of the yeast nuclear NAM2-1 suppressor allele curing mitochondrial RNA maturation deficiency reveals about 30% homology.  相似文献   

7.
A T7 promoter-based His6-tagging vector has been constructed that directs the synthesis in Escherichia coli of fusion proteins containing a stretch of six histidine residues at the N terminus. The vector allows overproduction and single-step purification of His6-fusion protein by immobilized metal (Ni2+) chelate affinity chromatography. The gene encoding leucyl-tRNA synthetase (leuS) was cloned into this vector and expressed in high level. The specific activity of the synthetase in the crude extract of E. coli JM109(DE3) transformant containing the His6-tagging vector with the gene leuS was approximately 110 times that of JM109(DE3) (the host strain without the vector). The overproduced His6-fusion leucyl-tRNA synthetase can be purified to homogeneity under native conditions within 2 h by one-step affinity chromatography with an overall yield of 55%. The His6-tag at the N terminus of leucyl-tRNA synthetase did not affect its aminoacylation activity or the secondary structure.  相似文献   

8.
From a lambda gtWES library of the chromosome of Bacillus subtilis, phages carrying DNA from the hisA and ilv-leu regions were isolated. They were identified by their ability to form complementing plaques on hisB, ilvC or leuB mutants of Escherichia coli K12 under selective conditions and in the presence of a helper phage. The his phages complemented E. coli his A, B or D mutations and could transform seven mutations in the hisA region of the B. subtilis chromosome; each carried a single EcoR1 insert of about 8.2 kb. Phages complementing E. coli ilvC or leuB mutations and carrying the equivalent B. subtilis genes ilvC and leuC transformed a range of mutations in the B. subtilis ilv-leu region. The distribution of genetic markers carried by the phages suggests that the entire ilv-leu cluster from az1A through leuD is covered in the collection of phages obtained and is carried in three EcoR1 restriction fragments of approximately 6.7, 4.7 and 2.85 kb.  相似文献   

9.
10.
11.
12.
过表达TatAdCd转位酶对枯草芽孢杆菌脂肪酶分泌的影响   总被引:1,自引:1,他引:0  
【目的】研究过表达枯草芽孢杆菌Tat运输途径的Tat Ad Cd转位酶对促进脂肪酶分泌的影响。【方法】用cdd基因的串联启动子和前导区,替换tat AD-CD操纵子的启动子和前导区,并在染色体sac B基因位点整合表达;采用q RT-PCR方法表征tat AD-CD操纵子的表达水平;用脂肪酶表达质粒p HP13L转化Tat Ad Cd转位酶过表达菌株,构建产脂肪酶重组菌。通过测定脂肪酶活性,以及聚丙烯酰胺凝胶电泳,考察Tat Ad Cd转位酶过表达对脂肪酶分泌的影响。【结果】tat AD-CD操纵子被过表达,其胞内m RNA相对水平提高了185倍。Tat Ad Cd转位酶的过表达,使脂肪酶发酵单位提高了40%。【结论】使用cdd基因的串联启动子和前导区,能够有效地过表达目的基因;枯草芽孢杆菌脂肪酶可以同时经由Sec途径和Tat途径分泌;过表达Tat Ad Cd转位酶,能够显著提高脂肪酶的分泌量。  相似文献   

13.
Two temperature-sensitive mutants of Escherichia coli have been found in which the conditional growth is a result of a thermosensitive leucyl-transfer ribonucleic acid (tRNA) synthetase and seryl-tRNA synthetase, respectively. The corresponding genetic loci, leuS and serS, cotransduce with lip and serC, respectively. As a result of the mutationally altered leucyl-tRNA synthetase, some leucine-, valine-, and isoleucine-forming enzymes were derepressed. Thus, leucyl-tRNA synthetase is involved in the repression of the enzymes needed for the synthesis of branched-chain amino acids.  相似文献   

14.
15.
The metE gene, encoding S-adenosylmethionine synthetase (EC 2.5.1.6) from Bacillus subtilis, was cloned in two steps by normal and inverse PCR. The DNA sequence of the metE gene contains an open reading frame which encodes a 400-amino-acid sequence that is homologous to other known S-adenosylmethionine synthetases. The cloned gene complements the metE1 mutation and integrates at or near the chromosomal site of metE1. Expression of S-adenosylmethionine synthetase is reduced by only a factor of about 2 by exogenous methioinine. Overproduction of S-adenosylmethionine synthetase from a strong constitutive promoter leads to methionine auxotrophy in B. subtilis, suggesting that S-adenosylmethionine is a corepressor of methionine biosynthesis in B. subtilis, as others have already shown for Escherichia coli.  相似文献   

16.
17.
D Nilsson  B Hove-Jensen 《Gene》1987,53(2-3):247-255
The gene (prs) encoding phosphoribosylpyrophosphate (PRPP) synthetase has been cloned from a library of Bacillus subtilis DNA by complementation of an Escherichia coli prs mutation. Flanking DNA sequences were pruned away by restriction endonuclease and exonuclease BAL 31 digestions, resulting in a DNA fragment of approx. 1.8 kb complementing the E. coli prs mutation. Minicell experiments revealed that this DNA fragment coded for a polypeptide, shown to be the PRPP synthetase subunit, with an Mr of approx. 40,000. B. subtilis strains harbouring the prs gene in a multicopy plasmid contained up to nine-fold increased PRPP synthetase activity. The prs gene was cloned in an integration vector and the resulting hybrid plasmid inserted into the B. subtilis chromosome by homologous recombination. The integration site was mapped by transduction and the gene order established as purA-guaA-prs-cysA.  相似文献   

18.
Cloning the gyrA gene of Bacillus subtilis.   总被引:8,自引:1,他引:7       下载免费PDF全文
We have isolated an eight kilobase fragment of Bacillus subtilis DNA by specific integration and excision of a plasmid containing a sequence adjacent to ribosomal operon rrn O. The genetic locus of the cloned fragment was verified by linkage of the integrated vector to nearby genetic markers using both transduction and transformation. Functional gyrA activity encoded by this fragment complements E. coli gyrA mutants. Recombination between the Bacillus sequences and the E. coli chromosome did not occur. The Bacillus wild type gyrA gene, which confers sensitivity to nalidixic acid, is dominant in E. coli as is the E. coli gene. The cloned DNA precisely defines the physical location of the gyrA mutation on the B. subtilis chromosome. Since an analogous fragment from a nalidixic acid resistant strain has also been isolated, and shown to transform B. subtilis to nalidixic acid resistance, both alleles have been cloned.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号