首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pho85 is a versatile cyclin-dependent kinase (CDK) found in budding yeast that regulates a myriad of eukaryotic cellular functions in concert with 10 cyclins (called Pcls). Unlike cell cycle CDKs that require phosphorylation of a serine/threonine residue by a CDK-activating kinase (CAK) for full activation, Pho85 requires no phosphorylation despite the presence of an equivalent residue. The Pho85-Pcl10 complex is a key regulator of glycogen metabolism by phosphorylating the substrate Gsy2, the predominant, nutritionally regulated form of glycogen synthase. Here we report the crystal structures of Pho85-Pcl10 and its complex with the ATP analog, ATPγS. The structure solidified the mechanism for bypassing CDK phosphorylation to achieve full catalytic activity. An aspartate residue, invariant in all Pcls, acts as a surrogate for the phosphoryl adduct of the phosphorylated, fully activated CDK2, the prototypic cell cycle CDK, complexed with cyclin A. Unlike the canonical recognition motif, SPX(K/R), of phosphorylation sites of substrates of several cell cycle CDKs, the motif in the Gys2 substrate of Pho85-Pcl10 is SPXX. CDK5, an important signal transducer in neural development and the closest known functional homolog of Pho85, does not require phosphorylation either, and we found that in its crystal structure complexed with p25 cyclin a water/hydroxide molecule remarkably plays a similar role to the phosphoryl or aspartate group. Comparison between Pho85-Pcl10, phosphorylated CDK2-cyclin A, and CDK5-p25 complexes reveals the convergent structural characteristics necessary for full kinase activity and the variations in the substrate recognition mechanism.  相似文献   

2.
Nanoseconds long molecular dynamics (MD) trajectories of differently active complexes of human cyclin-dependent kinase 2 (inactive CDK2/ATP, semiactive CDK2/Cyclin A/ATP, fully active pT160-CDK2/Cyclin A/ATP, inhibited pT14-; pY15-; and pT14,pY15,pT160-CDK2/Cyclin A/ATP) were compared. The MD simulations results of CDK2 inhibition by phosphorylation at T14 and/or Y15 sites provide insight into the structural aspects of CDK2 deactivation. The inhibitory sites are localized in the glycine-rich loop (G-loop) positioned opposite the activation T-loop. Phosphorylation of T14 and both inhibitory sites T14 and Y15 together causes ATP misalignment for phosphorylation and G-loop conformational change. This conformational change leads to the opening of the CDK2 substrate binding box. The phosphorylated Y15 residue negatively affects substrate binding or its correct alignment for ATP terminal phospho-group transfer to the CDK2 substrate. The MD simulations of the CDK2 activation process provide results in agreement with previous X-ray data.  相似文献   

3.
Zhang B  Tan VB  Lim KM  Tay TE 《Biochemistry》2007,46(38):10841-10851
Despite the very similar 3-dimensional structures as reflected by the more than 60% identity in amino acid sequences, CDK2 and CDK5 have very different functions and characteristics. Phosphorylation on a conserved Thr14 can inhibit activities of both the kinases, but phosphorylating another conserved Tyr15, however, can lead to totally opposite inhibition and stimulation consequences in CDK2 and CDK5. Our molecular dynamics (MD) simulations suggest a similar inhibition mechanism of phosphorylation on the Thr14 as in the CDK2 system. In both the systems, the kinase activities are inhibited by the phosphorylation because it causes ATP phosphate moiety misalignment and changes in the Mg2+ ion coordination sphere, which have been proven to be critical for the phosphate group of the ATP transferring to the hydroxyl group on the serine in the substrate peptide. The calculations indicate that ATP adopts a more favorable conformation and location in the phosphorylated Tyr15 complex to facilitate the interactions with the substrate and the Mg2+ is wrapped more strongly by the phosphate group than in the unphosphorylated system, which might be favored by the transfer reaction.  相似文献   

4.
Molecular dynamics (MD) simulations were used to explain structural details of cyclin-dependent kinase-2 (CDK2) inhibition by phosphorylation at T14 and/or Y15 located in the glycine-rich loop (G-loop). Ten-nanosecond-long simulations of fully active CDK2 in a complex with a short peptide (HHASPRK) substrate and of CDK2 inhibited by phosphorylation of T14 and/or Y15 were produced. The inhibitory phosphorylations at T14 and/or Y15 show namely an ATP misalignment and a G-loop shift (~5 A) causing the opening of the substrate binding box. The biological functions of the G-loop and GxGxxG motif evolutionary conservation in protein kinases are discussed. The position of the ATP gamma-phosphate relative to the phosphorylation site (S/T) of the peptide substrate in the active CDK2 is described and compared with inhibited forms of CDK2. The MD results clearly provide an explanation previously not known as to why a basic residue (R/K) is preferred at the P(2) position in phosphorylated S/T peptide substrates.  相似文献   

5.
Aristolochia manshuriensis has been used for centuries in Chinese medicinal system for their versatile medicinal uses. Recent studies have revealed two new aristolactames (compound A and B) with γ-lactame ring fused with the phenentherene ring as potent inhibitors of human Cycline Dependent Kinase2 (CDK2). Studies on aristolactames and related compounds claim for their CDK2 inhibition without delineating the involved mechanism and structural basis of interaction. Molecular structural model was used to we propose a structural basis of CDK2 inhibition. We showed that these compounds (A and B) can successfully dock into the inhibitor binding pockets of human CDK2. Predicted binding affinities are comparable to known inhibitors of CDK2. Results were in agreement with the earlier biochemical studies. Hence, suggest that studied compounds A and B can be a promising scaffold for rational design of novel and potential drugs against cancer. ABBREVIATIONS: CDK2 - cyclin-dependent kinase 2, OLO - Olomoucine, NW1 - Cyclohexylmethyloxy-5-Nitroso-Pyrimidine- 2, 4-Diamine, CMG - 6-O-Cyclohexylmethyl Guanine.  相似文献   

6.
A cyclin-dependent kinase (CDK) 5 inhibitory peptide (CIP) from p25 was recently reported to inhibit CDK5/p25 activity in vitro but had no effect on endogenous cdc2 kinase activity. This may lead to a specific CDK5 inhibition strategy in the treatment of neurodegeneration. However, the mechanism of the inhibition remains unclear. In this work, molecular dynamics simulations and energy decomposition calculation models were set up to investigate the deregulation mechanisms of CIP on CDK5 activity. The results show that truncation of the N, and C terminals of p25 introduces important conformational changes into a hydrophobic pocket that is crucial for accommodating Ile153 on the activation loop of CDK5. In addition, such truncations lead to distortion and displacement of the activation loop and consequently affect binding of the substrate peptide. New inhibition sites for selectively inhibiting the activity of CDK5 are also suggested.  相似文献   

7.
We have developed a method to study the primary sequence specificities of protein kinases by using an oriented degenerate peptide library. We report here the substrate specificities of eight protein Ser/Thr kinases. All of the kinases studied selected distinct optimal substrates. The identified substrate specificities of these kinases, together with known crystal structures of protein kinase A, CDK2, Erk2, twitchin, and casein kinase I, provide a structural basis for the substrate recognition of protein Ser/Thr kinases. In particular, the specific selection of amino acids at the +1 and -3 positions to the substrate serine/threonine can be rationalized on the basis of sequences of protein kinases. The identification of optimal peptide substrates of CDK5, casein kinases I and II, NIMA, calmodulin-dependent kinases, Erk1, and phosphorylase kinase makes it possible to predict the potential in vivo targets of these kinases.  相似文献   

8.
CDK5 plays an indispensable role in the central nervous system, and its deregulation is involved in neurodegeneration. We report the crystal structure of a complex between CDK5 and p25, a fragment of the p35 activator. Despite its partial structural similarity with the cyclins, p25 displays an unprecedented mechanism for the regulation of a cyclin-dependent kinase. p25 tethers the unphosphorylated T loop of CDK5 in the active conformation. Residue Ser159, equivalent to Thr160 on CDK2, contributes to the specificity of the CDK5-p35 interaction. Its substitution with threonine prevents p35 binding, while the presence of alanine affects neither binding nor kinase activity. Finally, we provide evidence that the CDK5-p25 complex employs a distinct mechanism from the phospho-CDK2-cyclin A complex to establish substrate specificity.  相似文献   

9.
Cyclin-dependent kinase 5 (CDK5), unlike other CDKs, is active only in neuronal cells where its neuron-specific activator p35 is present. However, it phosphorylates serines/threonines in S/TPXK/R-type motifs like other CDKs. The tail portion of neurofilament-H contains more than 50 KSP repeats, and CDK5 has been shown to phosphorylate S/T specifically only in KS/TPXK motifs, indicating highly specific interactions in substrate recognition. CDKs have been shown to have a high preference for a basic residue (lysine or arginine) as the n+3 residue, n being the location in the primary sequence of a phosphoacceptor serine or threonine. Because of the lack of a crystal structure of a CDK-substrate complex, the structural basis for this specific interaction is unknown. We have used site-directed mutagenesis ("charged to alanine") and molecular modeling techniques to probe the recognition interactions for substrate peptide (PKTPKKAKKL) derived from histone H1 docked in the active site of CDK5. The experimental data and computer simulations suggest that Asp86 and Asp91 are key residues that interact with the lysines at positions n+2 and/or n+3 of the substrates.  相似文献   

10.
Molecular model of cyclin-dependent kinase 5 complexed with roscovitine   总被引:2,自引:0,他引:2  
Here is described a structural model for the binary complex CDK5-roscovitine. Roscovitine has been shown to potently inhibit cyclin-dependent kinases 1, 2 and 5 (CDK1, 2, and 5), and the structure of CDK2 complexed with roscovitine has been reported; however, no structural data are available for complexes of CDK5 with inhibitors. The structural model indicates that roscovitine strongly binds to the ATP-binding pocket of CDK5 and structural comparison of the CDK2-roscovitine complex correlates the structural differences with differences in inhibition of these CDKs by this inhibitor. This structure opens the possibility of testing new inhibitor families, in addition to new substituents for the already known lead structures of adenine derivatives.  相似文献   

11.
12.
Roscovitine and flavopiridol have been shown to potently inhibit cyclin-dependent kinase 1 and 2 (CDK1 and 2). The structures of CDK2 complexed with roscovitine and deschoroflavopiridol have been reported, however no crystallographic structure is available for complexes of CDK1 with inhibitors. The present work describes two molecular models for the binary complexes CDK1:roscovitine and CDK1:flavopiridol. These structural models indicate that both inhibitors strongly bind to the ATP-binding pocket of CDK1 and structural comparison of the CDK complexes correlates the structures with differences in inhibition of these CDKs by flavopiridol and roscovitine. This article explains the structural basis for the observed differences in activity of these inhibitors.  相似文献   

13.
Ruiz EJ  Hunt T  Nebreda AR 《Molecular cell》2008,32(2):210-220
Cell-cycle progression is regulated by cyclin-dependent kinases (CDKs). CDK1 and CDK2 can be also activated by noncyclin proteins named RINGO/Speedy, which were identified as inducers of the G2/M transition in Xenopus oocytes. However, it is unclear how XRINGO triggers M phase entry in oocytes. We show here that XRINGO-activated CDKs can phosphorylate specific residues in the regulatory domain of Myt1, a Wee1 family kinase that plays a key role in the G2 arrest of oocytes. We have identified three Ser that are major phosphoacceptor sites for CDK/XRINGO but are poorly phosphorylated by CDK/cyclin. Phosphorylation of these Ser inhibits Myt1 activity, whereas their mutation makes Myt1 resistant to inhibition by CDK/XRINGO. Our results demonstrate that XRINGO-activated CDKs have different substrate specificity than the CDK/cyclin complexes. We also describe a mechanism of Myt1 regulation based on site-specific phosphorylation, which is likely to mediate the induction of G2/M transition in oocytes by XRINGO.  相似文献   

14.
15.
Small molecule inhibitors of cyclin-dependent kinase 5 (CDK5) protect neurons from cell death following various insults. To elucidate the cellular mechanism of action we investigated changes in protein phosphorylation in cultured rat cerebellar granule neurons after administration of the CDK5 inhibitor Indolinone A. By immunoblot analysis we detected enhanced phosphorylation of the extracellular signal-regulated kinase1/2 (ERK1/2) and the Jun N-terminal kinase (JNK) substrate c-Jun. Co-administration of U0126, an inhibitor of ERK1/2, or SP600125, an inhibitor of JNK, blocked phosphorylation of ERK1/2 or c-Jun, but did not affect neuroprotection by the CDK5 inhibitor. By metal affinity chromatography, two-dimensional (2D) gel electrophoresis, and MALDI-TOF mass spectrometry we identified several phosphoproteins that accumulated in neurons treated with Indolinone A. Among them were proteins involved in neurotransmitter release, which is consistent with a physiological function of CDK5 in synaptic signaling. Moreover, we identified proteins acting in energy metabolism, protein folding, and oxidative stress response. Similar findings have been reported in yeast following inhibition of Pho85 kinase, which is homologous to mammalian CDK5 and acts in environmental stress signaling. These results suggest that inhibition of CDK5 activates stress responsive proteins that may protect neurons against subsequent injurious stimuli.  相似文献   

16.
17.
The optimal amino acid sequence of substrates for recognition by the cyclin-dependent kinases is well established as -Ser/Thr0-Pro+1-Lys+2-Lys+3-. The catalytic efficiency of CDK2-cyclin A is impaired 2000-, 10-, and 150-fold, when Pro+1, Lys+2, or Lys+3, respectively, is substituted with Ala in a short synthetic peptide substrate. Yet, in physiological substrates of both CDK2-cyclin A and CDK2-cyclin E, it is found that Lys+2, and, occasionally, both Lys+2 and Lys+3 together are replaced with suboptimal determinants. Such suboptimal phosphorylation site motifs are invariably associated with a distinct cyclin-binding (Cy) motif, which has been shown to compensate for otherwise poor catalysis. Here we have investigated the kinetic basis for substrate recognition by CDK2-cyclin A. In the optimal motif, Pro+1 serves to dramatically enhance both substrate binding affinity as well as the rate of chemical phosphotransfer, whereas Lys+2 and Lys+3 both serve to enhance mainly substrate binding. When linked to a suboptimal phosphorylation site sequence (Lys+2 --> Pro) the Cy motif increases catalytic efficiency (kcat/Km) by increasing affinity without affecting turnover (kcat). When fused to the optimal sequence, however, catalytic efficiency is only minimally enhanced, because the resulting high substrate affinity impedes the rate of the phosphoryl transfer reaction. Our results provide kinetic insight into the basis for selecting suboptimal specificity determinants for the phosphorylation of cellular substrates.  相似文献   

18.
19.
20.
DNA replication initiation in eukaryotes is tightly regulated through two cell-cycle specific processes, replication licensing to install inactive minichromosome maintenance (MCM) double-hexamers (DH) on origins in early G1 phase and origin firing to assemble and activate Cdc45-Mcm2-7-GINS (CMG) helicases upon S phase entry. Two kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), are responsible for driving the association of replication factors with the MCM-DH to form CMG helicases for origin melting and DNA unwinding and eventually replisomes for bi-directional DNA synthesis. In recent years, cryo-electron microscopy studies have generated a collection of structural snapshots for the stepwise assembly and remodeling of the replication initiation machineries, creating a framework for understanding the regulation of this fundamental process at a molecular level. Very recent progress is the structural characterization of the elusive MCM-DH-DDK complex, which provides insights into mechanisms of kinase activation, substrate recognition and selection, as well as molecular role of DDK-mediated MCM-DH phosphorylation in helicase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号