首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
H P Too  J E Maggio 《Peptides》1991,12(3):431-443
Specific antisera directed against substance P and neuromedin K (neurokinin B) have been used in double-label immunofluorescence studies to unambiguously localize these two neuropeptides of the tachykinin family in single tissue sections of rat spinal cord and dorsal root ganglia. Substance P-like immunoreactivity (SPLI) is present but neuromedin K-like immunoreactivity (NMKLI) is undetectable in dorsal root ganglia. Both peptides are present in the spinal cord, but NMKLI is largely restricted to the dorsal gray while SPLI shows a broader distribution. In the spinal gray, NMKLI coexists with SPLI in some, but not all, fibers. While substance P in the dorsal spinal cord is largely of primary afferent origin, neuromedin K appears to originate largely from intrinsic spinal neurons.  相似文献   

2.
The accumulation of transported materials in cut axons is demonstrated by the light and electron microscopic immunocytochemical localization of substance P and enkephalin in the caudal medulla and cervical spinal cord of adult rat. Two days following unilateral knife-cuts in the caudal medulla or spinal (C2-C3) levels, substance P and enkephalin-like immunoreactivity (SPLI and ELI) are detected in lesioned axons located rostral and caudal to the transection. Rostrally, SPLI and ELI are detected in the lateral reticular region and ventrolateral fasciculus corresponding to the location of previously identified bulbospinal pathways. Caudally, previously unidentified, propriospinal pathways showing SPLI are detected in the dorsal columns and in the dorsolateral fasciculus. In contrast, ELI is found caudal to the transection only in the reticular region of the medulla. For both peptides, immunoreactivity is present throughout axons containing numerous large, dense core, and small clear vesicles. These results support the concept of both particulate and soluble modes of transport for substance P and enkephalin within axons of the central nervous system.  相似文献   

3.
Ten minutes after a single injection of 0.8 mg/kg nicotine SC (free base) the level of substance P-like immunoreactivity (SPLI) was reduced by 61–73% in rat caudate-putamen, nucleus accumbens, and olfactory tubercle, with smaller and not significant reductions in the frontal cortex, substantia nigra, and ventral tegmental area. The nicotinic receptor antagonist mecamylamine (1.0 mg/kg IP) prevented the reductions in SPLI. The rapidity and the degree of the changes in SPLI after nicotine exceed those previously reported for other agents and implicate substance P neurotransmission as a major component of nicotinic action.Preliminary data were presented at the 17th annual meeting of the American Society for Neurochemistry, Montreal, 1986 (1).  相似文献   

4.
Summary The release of substance P-like immunoreactive material (SPLI) from the vascularly perfused stomach of the rainbow trout, Oncorhynchus mykiss, was studied. In most cases, SPLI was detected in the collected vascular perfusate during experimental resting conditions. Distensions of the stomach, accomplished by a water-filled intragastric balloon, produced an initial rapid relaxation of the stomach, followed by a slow further relaxation and a stimulation of contractile activity. The amount of SPLI in the vascular perfusate was significantly elevated during the distension period. Tetrodotoxin had no effect on the response to distension or on the release of SPLI during distension, indicating release from tetrodotoxin-insensitive neurons or endocrine cells. The results suggest that a substance P-like peptide may be involved in the contractile response and/or in the maintenance of muscular tone during gastric distensions in the rainbow trout. Infusion of capsaicin had no effect on the release of SPLI. However, capsaicin caused an increase in vascular flow, an effect that could be repeated on a second infusion of capsaicin, indicating that the action may not be specific to sensory neurons.Abbreviations 5-HT 5-Hydroxytryptamine - RIA radioimmunoassay - SP substance P - SPLI substance P-like immunoreactive material - TTX tetrodotoxin  相似文献   

5.
Abstract: The effects of a novel prolyl endopeptidase (PEP) inhibitor, ( S )-2-[[( S )-2-(hydroxyacetyl)-1-pyrrolidinyl]carbonyl]- N -(phenylmethyl)-1-pyrrolidinecarboxamide (JTP-4819), on the PEP activity in the brain and on the contents of substance P (SP)- and arginine-vasopressin (AVP)-like immunoreactivity (LI) in the cerebral cortex and hippocampus of young and aged rats were investigated using enzyme immunoassay. JTP-4819 exhibited a concentration-dependent in vitro inhibitory action on PEP activity in the brains of both young and aged rats, with IC50 values of ∼0.7 and 0.8 n M , respectively. A single dose of JTP-4819 (3 mg/kg, p.o.) increased the SPLI content in the cerebral cortex but not the hippocampus of aged rats (23–24 months old). In addition, repeated administration of JTP-4819 (1 mg/kg, p.o., for 21 days) increased the SPLI content in the cerebral cortex and restored the SPLI content in the hippocampus, which had decreased with aging. In contrast, single (1 mg/kg, p.o.) and repeated (1 mg/kg, p.o., for 21 days) administration of JTP-4819 only tended to increase the AVPLI content of the hippocampus and cerebral cortex in aged rats, respectively. These results indicate that JTP-4819 increases the cerebral and hippocampal SPLI content in aged rats by inhibiting the action of PEP.  相似文献   

6.
The regional distribution of various forms of tachykinin-like immunoreactivity (TKLI) was studied in rat brain using radioimmunoassay. TKLI was measured with two different tachykinin-antisera (K12 and E7), which react with neurokinin A (NKA) and neurokinin B (NKB) but not with substance P (SP) and with a specific SP-antiserum. TKLI-K12 and TKLI-E7 were found to have similar regional distributions which were, however, significantly different from that of the substance P-like immunoreactivity (SPLI). Thus, the ratio of the tissue concentrations of TKLI-K12 or TKLI-E7 to that of SPLI was higher in frontal cortex and hippocampus and lower in pons/medulla oblongata than in the other regions studied. Cation-exchange chromatography of neutral water extracts of brain tissue revealed two major immunoreactive components of TKLI-K12 and TKLI-E7, one of which co-eluted with synthetic NKB while the other appeared in the same region as synthetic NKA. The relative quantities of these components varied depending on the brain region studied. No TKLI-K12 or TKLI-E7 co-eluted with synthetic SP. Almost all of the SPLI in acetic acid or water extracts of brain tissue eluted as a single chromatographic component in the same position as synthetic SP. Potassium-stimulated in vivo release of TKLI-K12, TKLI-E7 and SPLI in striatum of rat brain could be demonstrated using intracerebral dialysis. The present results imply that tachykinins, which may serve as neurotransmitters or neuromodulators, are present in different proportions in different regions of rat brain.  相似文献   

7.
本文用免疫组化方法结合计算机图像处理技术观察大鼠后脚掌皮下注射福尔马林后脊髓背角P物质免疫阳性反应(SPLI)变化的节段性分布及中脑导水管周围灰质(PAG)内甲啡肽样免疫阳性反应(MELI)的变化。结果显示,注射福尔马林后,脊髓腰段(L1-2,L4-5)背角SPLI显著增强(P<.05),30min组与60min组相比较无显著变化(P>0.05);胸脊髓(T8)无显著变化(P>0.05);颈脊髓背角SPLI有增强趋势(0.05<P<0.1);PAG中MELI减弱,腹外侧部30min组比60min组变化更大(P<0.05)。PAG中MELI与脊髓背角SPLI变化的时相关系提示福尔马林致痛引起的脊髓背角P物质的增多可能与PAG中甲啡肽及阿片受体活动有关。  相似文献   

8.
Substance P-like immunoreactive (SPLI) nerve fibers were demonstrated in the Krause corpuscles of the dog's tongue using the indirect immunofluorescence method and cholinesterase histochemistry. SPLI nerve fibers were often in contact with Krause end bulbs and occasionally entered them. From this result it was suggested that substance P might be involved in sensory mechanism of the Krause apparatus.  相似文献   

9.
Summary Two neuropeptides, substance P and vasoactive intestinal polypeptide, have been shown to increase secretion of exocrine glands. We have studied immunohistochemically the intra- and exorbital lacrimal glands of the rat and the guinea pig for the presence of substance P-like and vasoactive intestinal polypeptide-like immunoreactive (SPLI and VIPLI, respectively) nerve fibers. Both SPLI and VIPLI nerve fibers were found surrounding glandular acini, secretory ducts and blood vessels. Their distribution, however, was uneven. The SPLI fibers predominated around the ducts whereas VIPLI fibers predominated around acini. The results suggest that the two neuropeptides may both regulate the lacrimal secretion, but they may have two different sites of actions because they prevail in different locations.  相似文献   

10.
Rat thyroid tissue and three rat medullary thyroid carcinoma cell lines, 6-23, WE4/2, and CA77, have been examined for substance P (SP) and SP-like peptide expression. Analysis by combined HPLC and radioimmunoassay revealed the presence of SP in thyroid and 6-23 cell extracts. The presence of SP-encoding mRNAs was also detected in 6-23 cells by solution hybridization-nuclease protection analysis. SP-encoding mRNA expression was increased (fourfold) by maintaining the 6-23 cells in low serum (2%) for 4 or 10 days. The 6-23 cells also expressed other SP-like immunoreactive species, which were chromatographically and immunologically distinct from established tachykinin peptides. WE4/2 cells did not contain SP but did display SP-like immunoreactivity (SPLI), which migrated like the unidentified SPLI in 6-23 cells. CA77 cells did not contain SP or SP-encoding mRNA but did contain SPLI that migrated identically to the unidentified SPLI in the other cell lines. This novel SPLI was detected with an antiserum directed against the SP carboxyl terminus and to a lesser extent with an antiserum directed against the neurokinin A carboxyl terminus, but it showed minimal cross-reactivity using an antiserum directed against the midportion of SP. Treatment with 50 mM KCl resulted in secretion of this SPLI from CA77 cells. Gel filtration analysis demonstrated that this novel SPLI had an apparent molecular weight of approximately 1,000. These results are discussed in terms of cell lines that express tachykinin peptides and in terms of the molecular nature of the new SPLI detected in CA77 cells.  相似文献   

11.
Abstract: The role of nitric oxide (NO) in the control of 5-hydroxytryptamine (5-HT)-induced release of substance P was investigated in rat spinal cord in vitro. 5-HT facilitated the 60 m M K+-evoked release of substance P-like immunoreactive materials (SPLI) from the superfused rat dorsal spinal cord slices without affecting spontaneous SPLI release. The facilitatory effect of 5-HT was significantly inhibited by ICS 205-930 or granisetron (potent and specific 5-HT3 receptor antagonists), by N G-monomethyl- l -arginine (NMMA, a NO synthase inhibitor), and by methylene blue or 1 H -[1,2,4]oxadiazolo[4,3- a ]quinoxaline-1-one (MB or ODQ, respectively; both are inhibitors of soluble guanylyl cyclase) and was mimicked by 2-methylserotonin (2-m-5-HT, a selective 5-HT3 receptor agonist), l -arginine (a precursor of NO), or 8-bromo-cyclic GMP. NMMA, MB, or ODQ inhibited the 2-m-5-HT-induced increase of cyclic GMP levels in the rat dorsal spinal cord slices. These data suggest that the facilitatory effect of 5-HT on the release of SPLI is mediated by the 5-HT3 receptor and that the intracellular signaling is mediated via NO by an increase in cyclic GMP production.  相似文献   

12.
Superfusion of slices from the dorsal half of the lumbar enlargement of rat spinal cord with Krebs-Henseleit medium supplemented with 30 microM bacitracin allowed the collection of substance P-like immunoreactive material (SPLI), which was released at a rate of approximately 10 pg/4 min. Tissue depolarization by an excess of K+ (30-60 mM) or veratridine (50 microM) induced a marked increase in SPLI outflow, provided that Ca2+ was present in the superfusing fluid. K+- or veratridine-induced SPLI overflow could be modulated in opposite directions by mu and delta opioid receptor agonists. Thus, the two preferential mu agonists Tyr-D-Ala-Gly-MePhe-Gly-ol (DAGO; 10 microM) and Tyr-D-Ala-Gly-MePhe-Met(O)5-OH (FK-33824; 0.1 microM) enhanced SPLI overflow from depolarized tissues, whereas the selective delta agonists Tyr-D-Thr-Gly-Phe-Leu-Thr (deltakephalin; 3 microM) and [2-D-penicillamine, 5-D-penicillamine]enkephalin (50 microM) reduced it. The effect of DAGO was antagonized by a low concentration (1 microM) of naloxone but not by the selective delta antagonist ICI-154129 (50 microM). In contrast, the latter drug prevented the inhibitory influence of delta agonists on K+-induced SPLI release. Complementary experiments with morphine (10 microM) and [2-D-alanine, 5-D-leucine]enkephalinamide (3 microM), in combination with 1 microM naloxone or 50 microM ICI-154129 for the selective blockade of mu or delta receptors, respectively, confirmed that the stimulation of mu receptors increased, whereas the stimulation of delta receptors reduced, SPLI overflow. The results suggest that, at the spinal level, and antinociceptive action of delta but not mu agonists might involve a presynaptic inhibition of substance P-containing primary afferent fibers.  相似文献   

13.
Summary With the peroxidase-antiperoxidase immunohistochemical method we ascertained the presence of substance P-like immunoreactivity (SPLI) in fibers and cell bodies of the trigeminal sensory system of the pit viper, Agkistrodon blomhoffi. There are a few SPLI fibers each in the principal sensory nucleus and the main neuropil of the lateral descending nucleus (i.e., the infrared sensory nucleus); a moderate number in the descending nucleus; and a large number in the caudal subnucleus, the medial edges of the interpolar subnucleus, and the marginal neuropil of the lateral descending nucleus. About 30% of the cell bodies in the ophthalmic and maxillo-mandibular ganglia show SPLI, and of the two craniocervical ganglia, the proximal ganglion has many more cells with SPLI than the distal ganglion. The SPLI distribution in the common trigeminal sensory system is similar to that of mammals, and suggests that the function of this system is also similar. In the infrared sensory system, the differing distribution in the main and marginal neuropils suggests separate functions for these two structures in the system.  相似文献   

14.
Substance P-like immunoreactivity (SPLI) was studied by immunocytochemistry and radioimmunoassay in the cerebral arteries, choroid plexus and dura mater of the guinea-pig, rabbit, cat and man. The highest concentrations were found in cerebral blood vessels: 6.1 +/- 2.3 pmol/g (guinea-pig), 9.0 +/- 1.1 pmol/g (rabbit), 7.1 +/- 0.4 pmol/g (cat), and 2.4 +/- 0.9 pmol/g (man). Lower levels were obtained in the choroid plexus and dura mater. The distribution of substance P (SP)-immunoreactive nerve fibres found in various regions of the guinea-pig correlated well with the amount of SPLI measured. Sympathectomy did not alter the concentration of SPLI in the dura mater or in cerebral blood vessels. Electrical field stimulation or 124 mM potassium enhanced the spontaneous efflux of SPLI by 10 and 20%, respectively, from superfused pial arteries in vitro. These data are in support of a functional role of perivascular SP within the cranial circulation.  相似文献   

15.
Abstract: The concentration of substance P-like immunoreactive material (SPLI) and somatostatin-like immunoreactive material (SLI) and the activity of acetyl-CoA: choline- O -acetyltransferase (ChAT; EC 2.3.1.6.) were measured in eight brain regions of 13 normal patients and 12 patients with Alzheimer disease/senile dementia of the Alzheimer type (AD/SDAT). SPLI was significantly lower in five of eight regions in the patients with AD/SDAT. Younger patients with AD/SDAT had significantly lower SLI in the parietal cortex than older patients. ChAT activity and SPLI in the parietal cortex of the presenile patients with ADISDAT were not significantly different from values found in older patients.  相似文献   

16.
We have purified angiotensin-converting enzyme (ACE, EC 3.4.15.1) from rat brain corpus striatum and rat lung. The brain enzyme has Mr 165,000 by sodium dodecyl sulfate gel electrophoresis, whereas the lung enzyme is 175,000. This difference is not an artifact of preparation since mixture of the two tissues prior to purification results in isolation of two proteins with Mr 165,000 and 175,000. Separation of tryptic fragments of 125I-labeled lung and brain ACE by reverse-phase chromatography yields distinct but similar patterns. No differences between the native enzymes are detected in dansyl-tripeptide cleavage specificity, inhibitor profile, immunological properties, sucrose gradient sedimentation, or gel filtration of ACE from the two tissues. However, lung and brain ACE can be differentiated in their ability to cleave amidated peptides. Both lung and brain ACE cleave Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2 (substance P) via two pathways. In one pathway, ACE first releases Gly-Leu-Met-NH2 and then dipeptides sequentially from the carboxyl terminus. The other first produces Leu-Met-NH2, and then releases dipeptides to leave substance P 1-5. Lung ACE favors initial tripeptide release 3:1, while the striatal enzyme acts via the two pathways to a similar extent. Lung and striatal ACE also differ in their ability to degrade other amidated peptides. His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2 (substance K) and bombesin are degraded by striatal but not lung ACE. Physalaemin and luteinizing hormone-releasing hormone are cleaved by both enzymes, while eledoisin, kassinin, thyrotropin-releasing hormone, and substance P 5-11 are not cleaved by either enzyme. Physalaemin is degraded more rapidly by the lung enzyme. The coincidence of an ACE isozyme with substance P and substance K in the descending striatonigral pathway and the unique ability of this isozyme to cleave substance P and substance K suggest that one or both of these peptides is a physiological substrate for striatonigral ACE.  相似文献   

17.
The aim of the present microdialysis study was to investigate whether the increase in striatal glutamate levels induced by intrastriatal perfusion with NMDA was dependent on the activation of extrastriatal loops and/or endogenous striatal substance P and dopamine. The NMDA-evoked striatal glutamate release was mediated by selective activation of the NMDA receptor-channel complex and action potential propagation, as it was prevented by local perfusion with dizocilpine and tetrodotoxin, respectively. Tetrodotoxin and bicuculline, perfused distally in the substantia nigra reticulata, prevented the NMDA-evoked striatal glutamate release, suggesting its dependence on ongoing neuronal activity and GABA(A) receptor activation, respectively, in the substantia nigra. The NMDA-evoked glutamate release was also dependent on striatal substance P and dopamine, as it was antagonized by intrastriatal perfusion with selective NK(1) (SR140333), D(1)-like (SCH23390) and D(2)-like (raclopride) receptor antagonists, as well as by striatal dopamine depletion. Furthermore, impairment of dopaminergic transmission unmasked a glutamatergic stimulation by submicromolar NMDA concentrations. We conclude that in vivo the NMDA-evoked striatal glutamate release is mediated by activation of striatofugal GABAergic neurons and requires activation of striatal NK(1) and dopamine receptors. Endogenous striatal dopamine inhibits or potentiates the NMDA action depending on the strength of the excitatory stimulus (i.e. the NMDA concentration).  相似文献   

18.
19.
E H South  R C Ritter 《Peptides》1988,9(3):601-612
Capsaicin treatment destroys small primary sensory neurons including a subpopulation of vagal afferents. Intraperitoneal, fourth ventricular or perivagal application of capsaicin attenuated or abolished cholecystokinin (CCK)-induced suppression of food intake. Capsaicin applied to the thoracolumbar spinal cord or to the pyloric region of the stomach did not alter CCK-induced reductions of food intake. Intraperitoneal capsaicin treatment reduced substance P-like immunoreactivity (SPLI) in the spinal dorsal horn and parts of the dorsal hindbrain. SPLI depletion, therefore, served as a histochemical indicator of the spread of capsaicin from its site of application. Capsaicin applied directly to the vagal trunks did not reduce SPLI in the spinal cord or hindbrain. Intraventricular capsaicin reduced SPLI in the hindbrain but not in the spinal cord. These data indicate that localized capsaicin application attenuates CCK-induced suppression of food intake by impairing the function of either central or peripheral portions of vagal afferent neurons. The data also support the conclusion that intraperitoneal capsaicin attenuates CCK-induced suppression of feeding by impairing vagal sensory function.  相似文献   

20.
The ontogeny of the neurons exhibiting substance P-like immunoreactivity (SPLI) was examined in the spinal and cranial sensory ganglia of chick and quail embryos. It was shown that in dorsal root ganglia (DRG) virtually all neuronal somas occupying the mediodorsal (MD) region of the ganglia are SPLI-positive while the larger neurons of the lateroventral (LV) area are SPLI-negative. In the cranial nerve ganglia, both types of neurons coexist in the trigeminal ganglion but with a different distribution: small neurons with SPLI are proximal while large neurons without SPLI occupy the maxillomandibular and ophthalmic lobes. The distal ganglia of nerves VII and IX (i.e., geniculate, petrosal) do not show cell bodies with SPLI in the two species considered. A few of them only (about 12%) are found in the nodose (distal ganglion of nerve X). The proximal ganglia of nerves IX and X (i.e., superior-jugular complex) are composed of small neurons which virtually all exhibit SPLI. Chimaeric cranial sensory ganglia were constructed by grafting the quail hind-brain primordium into chick embryos. Revelation of SPLI was combined with acridine orange staining on the same sections in order to ascertain the placodal (chick host) or neural crest (quail donor) origin of the SP-positive neurons in each type of ganglion. We found that all the neurons showing SPLI are derived from the neural crest in the trigeminal and in the superior and jugular ganglia. In the geniculate, petrosal, and nodose all the neurons are derived from the placodal ectoderm. The small number of SPLI-positive cells of the nodose ganglia are not an exception to this rule. Therefore, generally speaking, the sensory neurons of the cranial ganglia that express the SP phenotype are derived from the crest, with the exception of some neurons present in the nodose of both quail and chick embryos and which are of placodal origin. The vast majority of placode-derived neurons do not have amounts of SP that can be detected under the conditions of the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号