首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these interactions are poorly understood.

Methodology/Principal Findings

Using an experimental seagrass mesocosm system, we factorially manipulated water column nutrient concentrations, food chain length, and diversity of crustacean grazers to address two questions: (1) Does food web composition modulate the effects of nutrient enrichment on plant and grazer biomasses and stoichiometry? (2) Do ecosystem fluxes of dissolved oxygen and nutrients more closely reflect above-ground biomass and community structure or sediment processes? Nutrient enrichment and grazer presence generally had strong effects on biomass accumulation, stoichiometry, and ecosystem fluxes, whereas predator effects were weaker or absent. Nutrient enrichment had little effect on producer biomass or net ecosystem production but strongly increased seagrass nutrient content, ecosystem flux rates, and grazer secondary production, suggesting that enhanced production was efficiently transferred from producers to herbivores. Gross ecosystem production (oxygen evolution) correlated positively with above-ground plant biomass, whereas inorganic nutrient fluxes were unrelated to plant or grazer biomasses, suggesting dominance by sediment microbial processes. Finally, grazer richness significantly stabilized ecosystem processes, as predators decreased ecosystem production and respiration only in the zero- and one- species grazer treatments.

Conclusions/Significance

Overall, our results indicate that consumer presence and species composition strongly influence ecosystem responses to nutrient enrichment, and that increasing herbivore diversity can stabilize ecosystem flux rates in the face of perturbations.  相似文献   

2.
Anne D. Guerry 《Oikos》2008,117(8):1185-1196
Understanding the ways in which consumers and productivity act and interact to yield differences in diversity is of primary conceptual and pragmatic importance in a world in which humans are simultaneously changing ecological communities and substantially altering the availability of nutrients. Here, I used macroalgal communities on rocky reefs to examine the effects of both limpet grazing and nutrient enrichment on algal diversity throughout almost two years of succession. The experimental design included three levels each of grazing and nutrients, with unglazed terracotta pots attached to the rock as replicate plots in a high intertidal limpet-macroalgal community. Grazing effects varied by year. During the first year, grazing effects were context-dependent with limpets resulting in lower species richness, especially at the highest level of limpet density. However, at this highest level of limpet density, high enrichment counteracted the negative effect of limpets such that diversity was similar to that in treatments with lower limpet densities. In the second year, grazing generally decreased richness, regardless of enrichment. The results of this experiment are partially consistent with the grazer-reversal hypothesis – grazing decreased richness in low nutrient conditions and this effect was neutralized (rather than reversed) under high enrichment. Inconsistencies with model predictions may be explained by the apparent unresponsiveness of algal productivity to experimental enrichment, the unique substrate-scraping feeding mechanisms of limpets, and potentially limited propagule supply.  相似文献   

3.
Soil nitrogen (N) and phosphorus (P) contents, and soil acidification have greatly increased in grassland ecosystems due to increased industrial and agricultural activities. As major environmental and economic concerns worldwide, nutrient enrichment and soil acidification can lead to substantial changes in the diversity and structure of plant and soil communities. Although the separate effects of N and P enrichment on soil food webs have been assessed across different ecosystems, the combined effects of N and P enrichment on multiple trophic levels in soil food webs have not been studied in semiarid grasslands experiencing soil acidification. Here we conducted a short‐term N and P enrichment experiment in non‐acidified and acidified soil in a semiarid grassland on the Mongolian Plateau. We found that net primary productivity was not affected by N or P enrichment alone in either non‐acidified or acidified soil, but was increased by combined N and P enrichment in both non‐acidified and acidified soil. Nutrient enrichment decreased the biomass of most microbial groups in non‐acidified soil (the decrease tended to be greatest with combined N and P enrichment) but not in acidified soil, and did not affect most soil nematode variables in non‐acidified or acidified soil. Nutrient enrichment also changed plant and microbial community structure in non‐acidified but not in acidified soil, and had no effect on nematode community structure in non‐acidified or acidified soil. These results indicate that the responses to short‐term nutrient enrichment were weaker for higher trophic groups (nematodes) than for lower trophic groups (microorganisms) and primary producers (plants). The findings increase our understanding of the effects of nutrient enrichment on multiple trophic levels of soil food webs, and highlight that soil acidification, as an anthropogenic stressor, reduced the responses of plants and soil food webs to nutrient enrichment and weakened plant–soil interactions.  相似文献   

4.
毛庆功  鲁显楷  陈浩  莫江明 《生态学报》2015,35(17):5884-5897
人类活动的加剧改变了陆地生态系统矿质元素(如氮、磷、钾等)循环的速度和方向,并且对生态系统的结构和功能也产生重要影响。如今,矿质元素输入量的改变及其产生的后续效应对陆地生态系统生物多样性的影响备受学者们的关注。从4个方面综述了全球氮沉降背景下主要矿质元素输入的改变对陆地植物多样性的影响及其机理:1)矿质营养元素限制的概念、确定方法以及与植物多样性的耦合关系;2)概述了氮、磷、钾等主要矿质元素输入对陆地植物多样性的影响:主要表现为负面效应;3)探讨了矿质元素输入影响植物多样性的可能机制,包括生态系统水平上的机制(如竞争排斥、酸化铝毒、物种入侵、同质性假说,间接诱导机制等)和植物个体水平上的机制(如元素失衡和环境敏感性增加等);4)根据目前研究现状,指出了已有研究的局限性,分析了未来可能的研究方向和重点。  相似文献   

5.
Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2, nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long‐term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non‐significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC.  相似文献   

6.
Integration and modularity are fundamental determinants of how natural selection effects evolutionary change in complex multivariate traits. Interest in the study of the specific developmental basis of integration through experimental approaches is fairly recent and it has mainly focused on its genetic determinants. In this study, we present evidence that postnatal environmental perturbations can modify the covariance structure by influencing the variance of some developmental processes relative to the variances of other processes that contribute to such structure. We analyzed the effects of the reduction of nutrient supply in different ontogenetic stages (i.e. before and after weaning, and from birth to adulthood) in Rattus norvegicus. Our results show that this environmental perturbation alters the phenotypic variation/covariation structure of the principal modules of the skull (base, vault, and face). The covariance matrices of different treatment groups exhibit low correlations and are significantly different, indicating that the treatments influence covariance structure. Postnatal nutrient restriction also increases the variance of somatic growth. This increased variance drives an increase in overall integration of cranial morphology through the correlated allometric effects of size variation. The extent of this increase in integration depends on the time and duration of the nutritional restriction. These results support the conclusion that environmental perturbations can influence integration and thus covariance structure via developmental plasticity.  相似文献   

7.
Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (>25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming‐induced fertilization. In addition, we compared our measured ecosystem CO2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO2 exchange with nutrient addition. We observed declines in abundance‐weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%–50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization—over an order of magnitude or more than warming‐induced rates—significantly alter the capacity for tundra CO2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming‐related nutrient availability may impact ecosystems differently than single‐level fertilization experiments.  相似文献   

8.
Understanding the factors that govern the stability of populations and communities has gained increasing importance as habitat fragmentation and environmental perturbations continue to escalate due to human activities. Dispersal is commonly viewed as essential to the maintenance of diversity in spatially subdivided communities, but few experiments have explored how dispersal interacts with the spatiotemporal components of environmental perturbations to determine community-level stability. We examined these processes using an experimental planktonic system composed of three competing species of zooplankton. We subjected zooplankton metacommunities to varying levels of dispersal and pH perturbations that varied in their degree of spatial synchrony. We show that dispersal can reverse the destabilizing effects of environmental forcing when perturbations are spatially asynchronous. Asynchrony in pH perturbations generated spatially and temporally varying species refugia that promoted source-sink dynamics and allowed prolonged persistence of zooplankton species that were otherwise extirpated in synchronously varying metacommunities. This, in turn, increased local species diversity, promoted compensatory population dynamics, and enhanced local community-level stability. Our results indicate that patterns of spatial covariation in environmental variability are critical to predicting the effects of dispersal on the dynamics and persistence of communities.  相似文献   

9.
It is widely accepted that global warming will adversely affect ecological communities. As ecosystems are simultaneously exposed to other anthropogenic influences, it is important to address the effects of climate change in the context of many stressors. Nutrient enrichment might offset some of the energy demands that warming can exert on organisms by stimulating growth at the base of the food web. It is important to know whether indirect effects of warming will be as ecologically significant as direct physiological effects. Declining body size is increasingly viewed as a universal response to warming, with the potential to alter trophic interactions. To address these issues, we used an outdoor array of marine mesocosms to examine the impacts of warming, nutrient enrichment and altered top‐predator body size on a community comprised of the predator (shore crab Carcinus maenas), various grazing detritivores (amphipods) and algal resources. Warming increased mortality rates of crabs, but had no effect on their moulting rates. Nutrient enrichment and warming had near diametrically opposed effects on the assemblage, confirming that the ecological effects of these two stressors can cancel each other out. This suggests that nutrient‐enriched systems might act as an energy refuge to populations of species under metabolic constraints due to warming. While there was a strong difference in assemblages between mesocosms containing crabs compared to mesocosms without crabs, decreasing crab size had no detectable effect on the amphipod or algal assemblages. This suggests that in allometrically balanced communities, the expected long‐term effect of warming (declining body size) is not of similar ecological consequence to the direct physiological effects of warming, at least not over the six week duration of the experiment described here. More research is needed to determine the long‐term effects of declining body size on the bioenergetic balance of natural communities.  相似文献   

10.
Warming and nutrient enrichment are major environmental factors shaping ecological dynamics. However, cross‐scale investigation of their combined effects by linking theory and experiments is lacking. We collected data from aquatic microbial ecosystems investigating the interactive effects of warming (constant and rising temperatures) and enrichment across levels of organisation and contrasted them with community models based on metabolic theory. We found high agreement between our observations and theoretical predictions: we observed in many cases the predicted antagonistic effects of high temperature and high enrichment across levels of organisation. Temporal stability of total biomass decreased with warming but did not differ across enrichment levels. Constant and rising temperature treatments with identical mean temperature did not show qualitative differences. Overall, we conclude that model and empirical results are in broad agreement due to robustness of the effects of temperature and enrichment, that the mitigating effects of temperature on effects of enrichment may be common, and that models based on metabolic theory provide qualitatively robust predictions of the combined ecological effects of enrichment and temperature.  相似文献   

11.
Warming-induced nutrient enrichment in the Arctic may lead to shifts in leaf-level physiological properties and processes with potential consequences for plant community dynamics and ecosystem function. To explore the physiological responses of Arctic tundra vegetation to increasing nutrient availability, we examined how a set of leaf nutrient and physiological characteristics of eight plant species (representing four plant functional groups) respond to a gradient of experimental nitrogen (N) and phosphorus (P) enrichment. Specifically, we examined a set of chlorophyll fluorescence measures related to photosynthetic efficiency, performance and stress, and two leaf nutrient traits (leaf %C and %N), across an experimental nutrient gradient at the Arctic Long Term Ecological Research site, located in the northern foothills of the Brooks Range, Alaska. In addition, we explicitly assessed the direct relationships between chlorophyll fluorescence and leaf %N. We found significant differences in physiological and nutrient traits between species and plant functional groups, and we found that species within one functional group (deciduous shrubs) have significantly greater leaf %N at high levels of nutrient addition. In addition, we found positive, saturating relationships between leaf %N and chlorophyll fluorescence measures across all species. Our results highlight species-specific differences in leaf nutrient traits and physiology in this ecosystem. In particular, the effects of a gradient of nutrient enrichment were most prominent in deciduous plant species, the plant functional group known to be increasing in relative abundance with warming in this ecosystem.  相似文献   

12.
13.
Mounting evidence points to a linkage between biodiversity and ecosystem functioning (B-EF). Global drivers, such as warming and nutrient enrichment, can alter species richness and composition of aquatic fungal assemblages associated with leaf-litter decomposition, a key ecosystem process in headwater streams. However, effects of biodiversity changes on ecosystem functions might be countered by the presumed high functional redundancy of fungal species. Here, we examined how environmental variables and leaf-litter traits (based on leaf chemistry) affect taxonomic and functional α- and β-diversity of fungal decomposers. We analysed taxonomic diversity (DNA-fingerprinting profiles) and functional diversity (community-level physiological profiles) of fungal communities in four leaf-litter species from four subregions differing in stream-water characteristics and riparian vegetation. We hypothesized that increasing stream-water temperature and nutrients would alter taxonomic diversity more than functional diversity due to the functional redundancy among aquatic fungi. Contrary to our expectations, fungal taxonomic diversity varied little with stream-water characteristics across subregions, and instead taxon replacement occurred. Overall taxonomic β-diversity was fourfold higher than functional diversity, suggesting a high degree of functional redundancy among aquatic fungi. Elevated temperature appeared to boost assemblage uniqueness by increasing β-diversity while the increase in nutrient concentrations appeared to homogenize fungal assemblages. Functional richness showed a negative relationship with temperature. Nonetheless, a positive relationship between leaf-litter decomposition and functional richness suggests higher carbon use efficiency of fungal communities in cold waters.  相似文献   

14.
Greater biodiversity is often associated with increased ecosystem process rates, and is expected to enhance the stability of ecosystem functioning under abiotic stress. However, these relationships might themselves be altered by environmental factors, complicating prediction of the effects of species loss in ecosystems subjected to abiotic stress. In boreal streams, we investigated effects of biodiversity and two abiotic perturbations on three related indices of ecosystem functioning: leaf decomposition, detritivore leaf processing efficiency (LPE) and detritivore growth. Replicate field enclosures containing leaves and detritivore assemblages were exposed to liming and nutrient enrichment, raising pH and nutrient levels. Both treatments constitute perturbations for our naturally acidic and nutrient-poor streams. We also varied detritivore species richness and density. The effects of the abiotic and diversity manipulations were similar in magnitude, but whereas leaf decomposition increased by 18% and 8% following liming and nutrient enrichment, respectively, increased detritivore richness reduced leaf decomposition (6%), detritivore LPE (19%) and detritivore growth (12%). The detritivore richness effect on growth was associated with negative trait-independent complementarity, indicating interspecific interference competition. These interactions were apparently alleviated in both enriched and limed enclosures, as trait-independent complementarity became less negative. LPE increased with detritivore density in the monocultures, indicating benefits of intra-specific aggregation that outweighed the costs of intra-specific competition, and dilution of these benefits probably contributed to lowered leaf decomposition in the species mixtures. Finally, the effects of liming were reduced in most species mixtures relative to the monocultures. These results demonstrate how environmental changes might regulate the consequences of species loss for functioning in anthropogenically perturbed ecosystems, and highlight potential influences of biodiversity on functional stability. Additionally, the negative effects of richness and positive effects of density in our field study were opposite to previous laboratory observations, further illustrating the importance of environmental context for biodiversity–ecosystem functioning relationships.  相似文献   

15.
The long-term effects of manipulating light intensity and nutrient enrichment on the structural characteristics of a diatom community inhabiting the sediments beneath a pure stand of dwarf Spartina alterniflora Loisel. were investigated over a yearly cycle. Clipping or shading the cord grass cover, or phosphorus enrichment caused significant decreases in both species diversity (H') and the number of diatom species, whereas nitrogen enrichment only significantly decreased the latter parameter. Of the 105 diatom taxa identified, only 10 were restricted to certain of the 12 study areas; and of these, 8 occurred exclusively in the clipped habitats. An analysis of variance (light × nutrient × collection date) involving 19 of the most abundant taxa revealed that certain experimental treatments had significant effects on the relative abundances of each and every taxon. However, attempts to group taxa with similar response patterns proved unsuccessful because of the frequent significance of the 3-way interaction term. Synthesis of these results with earlier work by the author showed that differences in structure of diatom communities inhabiting the sediments beneath the 3 dominant marsh grasses were not primarily caused by differences in reduction of light intensity by their grass canopies, and that clipping of the cord grass produced a shift in community structure towards that characteristic of a salt panne algal mat.  相似文献   

16.
Impacts of Nutrient Reduction on Coastal Communities   总被引:1,自引:0,他引:1  
Eutrophication due to high anthropogenic nutrient loading has greatly impacted ecological processes in marine coastal waters and, therefore, much effort has been put into reducing nitrogen and phosphorus discharges into European and North-American waters. Nutrient enrichment usually resulted in increase of biomass and production of phytoplankton and microphytobenthos, often coinciding with shifts in species composition within the primary producer community. Consequences of increasing eutrophication for higher trophic levels are still being disputed, and even less is known about the consequences of nutrient reduction on coastal food webs. Here, we present 30-year concurrent field observations on phytoplankton, macrozoobenthos and estuarine birds in the Dutch Wadden Sea, which has been subject to decades of nutrient enrichment and subsequent nutrient reduction. We demonstrate that long-term variations in limiting nutrients (phosphate and silicon) were weakly correlated with biomass and more strongly with community structures of phytoplankton, macrozoobenthos and estuarine birds. Although we cannot conclusively determine if, and if so to what extent, nutrient enrichment and subsequent nutrient reduction actually contributed to the concurrent trends in these communities, it appears likely that part of the variance in the studied coastal communities is related to changes in nutrient loads. Our results imply that nutrient reduction measures should not ignore the potential consequences for policies aimed at bird conservation and exploitation of marine living resources. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
In a chain of lakes along which nutrient availability varies in a gradient, we performed factorial nutrient enrichment experiments to determine if nitrogen limitation was the principal factor controlling the differences in phytoplankton biomass, photosynthetic productivity, diversity, and species composition among two of the lakes in the chain. In the least productive lake, East Graham Lake, P and C enrichments (in the absence of N enrichment) had no effect on biomass and diversity, whereas within two weeks the N enrichments (alone or in any combination with P and/or C) increased the biomass and decreased the diversity of East Graham Lake phytoplankton to levels similar or identical to those in more productive Shoe Lake. Short-term 14C photosynthetic rates in East Graham Lake water also responded only to N in the third week. However, photosynthesis was stimulated by P in the first week, and a few species did increase in numbers with P enrichment, suggesting that some degree of P limitation remains in addition to the strong N limitation in East Graham Lake. A number of species responded individually to the enrichments in a manner similar to that of the overall community, and a strong overlapping of discriminant analysis scores for N-enriched East Graham Lake with those of Shoe Lake was consistent with our prediction that the community structure of N-enriched East Graham Lake water would shift toward that of Shoe Lake. However, many species did not respond consistently with these results, and the nutrients tested were clearly not a major factor in the differences in abundance of those species among the two lakes. The results support the argument that overall biomass production and diversity of the phytoplankton community in a lake can be a relatively simple function of a single most-limiting nutrient. However, many of the species responses also confirm that, while nutrient availability is an important factor in the control of the species composition of the community, other factors are likely to prevent reliable predictions of all species effects on the basis of nutrient availability alone.  相似文献   

18.
Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients.  相似文献   

19.
Cyanobacterial blooms are an increasing threat to water quality and global water security caused by the nutrient enrichment of freshwaters. There is also a broad consensus that blooms are increasing with global warming, but the impacts of other concomitant environmental changes, such as an increase in extreme rainfall events, may affect this response. One of the potential effects of high rainfall events on phytoplankton communities is greater loss of biomass through hydraulic flushing. Here we used a shallow lake mesocosm experiment to test the combined effects of: warming (ambient vs. +4°C increase), high rainfall (flushing) events (no events vs. seasonal events) and nutrient loading (eutrophic vs. hypertrophic) on total phytoplankton chlorophyll‐a and cyanobacterial abundance and composition. Our hypotheses were that: (a) total phytoplankton and cyanobacterial abundance would be higher in heated mesocosms; (b) the stimulatory effects of warming on cyanobacterial abundance would be enhanced in higher nutrient mesocosms, resulting in a synergistic interaction; (c) the recovery of biomass from flushing induced losses would be quicker in heated and nutrient‐enriched treatments, and during the growing season. The results supported the first and, in part, the third hypotheses: total phytoplankton and cyanobacterial abundance increased in heated mesocosms with an increase in common bloom‐forming taxa—Microcystis spp. and Dolichospermum spp. Recovery from flushing was slowest in the winter, but unaffected by warming or higher nutrient loading. Contrary to the second hypothesis, an antagonistic interaction between warming and nutrient enrichment was detected for both cyanobacteria and chlorophyll‐a demonstrating that ecological surprises can occur, dependent on the environmental context. While this study highlights the clear need to mitigate against global warming, oversimplification of global change effects on cyanobacteria should be avoided; stressor gradients and seasonal effects should be considered as important factors shaping the response.  相似文献   

20.
Sea-level rise threatens low-lying coastal ecosystems globally. In Florida, USA, salinity stress due to increased tidal flooding contributes to the dramatic and well documented decline of species-rich coastal forest areas along the Gulf of Mexico. Here, we present the results of a study of coastal forest stand dynamics in thirteen 400 m2 plots representing an elevation gradient of 0.58–1.1 m affected by tidal flooding and rising sea levels. We extended previously published data from 1992–2000 to 2005 to quantify the full magnitude of the 1998–2002 La Niña-associated drought. Populations of the dominant tree species, Sabal palmetto (cabbage palm), declined more rapidly during 2000–2005 than predicted from linear regressions based on the 1992–2000 data. Dramatic increases in Juniperus virginiana (Southern red cedar) and S. palmetto mortality during 2000–2005 as compared with 1995–2000 are apparently due to the combined effects of a major drought and ongoing sea-level rise. Additionally, coastal forest stands continued to decline in species richness with increased tidal flooding frequency and decreasing elevation. Stable isotope (H, O) analyses demonstrate that J. virginiana accesses fresher water sources more than S. palmetto . Carbon isotopes reveal increasing δ 13C enrichment of S. palmetto and J. virginiana with increased tidal flooding and decreased elevation, demonstrating increasing water stress in both species. Coastal forests with frequent tidal flooding are unable to support species-rich forests or support regeneration of the most salt-tolerant tree species over time. Given that rates of sea-level rise are predicted to increase and periodic droughts are expected to intensify in the future due to global climate change, coastal forest communities are in jeopardy if their inland retreat is restricted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号