首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Onconase (rONC), otherwise known as ranpirnase or P-30 protein, which was initially purified from extracts of Rana pipiens oocytes and early embryos, exhibits anticancer activity both in vitro and in vivo and is in phase III clinical trials for tumor therapy. We have determined the solution NMR structure of a recombinant onconase with Met(-1), Gln1, and Leu23 residues (M-1, Q1, M23L)rONC. The 20 best solution structures had a backbone root mean square deviation of 0.41 +/- 0.09 A with respect to the average structure. The energy-minimized average NMR structure had a backbone root mean square deviation of 0.72 A from the x-ray crystallographic structure of native onconase; however, the orientation of the N-terminal residue in the two structures was very different. Comparison of the 15N HSQC spectrum of (M-1, Q1, M23L)rONC with that of a mutant E1S-rONC, which is identical to the nONC except with the N-terminal pyroglutamyl residue replaced by Ser, showed that N-terminal and residue 23 mutations induced structural changes in regions beyond the mutation sites. Model-free analysis of the backbone amide 15N-T1, 15N-T2, and 15N-1H NOE relaxation data for (M-1, Q1, M23L)rONC and E1S-rONC revealed that the E1S-rONC molecule showed very little flexibility, whereas (M-1, Q1, M23L)rONC exhibited substantial flexibility, which may account for the previously observed reduced stability and increased protease susceptibility. The alpha1 helix and beta-sheets of (M-1, Q1, M23L)rONC displayed bending motions. These data provided strong evidence for the presence of an N-terminal hydrogen bond network in E1S-rONC, but not in (M-1, Q1, M23L)rONC.  相似文献   

2.
The removal of N-terminal translation initiator Met by methionine aminopeptidase (MetAP) is often crucial for the function and stability of proteins. On the basis of crystal structure and sequence alignment of MetAPs, we have engineered Escherichia coli MetAP by the mutation of three residues, Y168G, M206T, Q233G, in the substrate-binding pocket. Our engineered MetAPs are able to remove the Met from bulky or acidic penultimate residues, such as Met, His, Asp, Asn, Glu, Gln, Leu, Ile, Tyr, and Trp, as well as from small residues. The penultimate residue, the second residue after Met, was further removed if the antepenultimate residue, the third residue after Met, was small. By the coexpression of engineered MetAP in E. coli through the same or a separate vector, we have successfully produced recombinant proteins possessing an innate N terminus, such as onconase, an antitumor ribonuclease from the frog Rana pipiens. The N-terminal pyroglutamate of recombinant onconase is critical for its structural integrity, catalytic activity, and cyto-toxicity. On the basis of N-terminal sequence information in the protein database, 85%-90% of recombinant proteins should be produced in authentic form by our engineered MetAPs.  相似文献   

3.
Onconase, an RNAse extracted from embryos of the Northern leopard frog ( Rana pipiens ), is in a confirmatory phase IIIb clinical trial for the treatment of unresectable malignant mesothelioma. Because the current purification process for onconase is cumbersome and laborious, the development of more efficient and cost-effective alternative sources is imperative. In this study, we assessed the potential of Pichia pastoris as an expression host for the large-scale production of onconase. Because of its specific N-terminal structure, active onconase with a correct N-terminus could not be secreted by an α-mating factor (α-MF)-prepro secretion signal, and an α-MF-pre secretion signal should be used instead. Onconase accumulated to a high concentration (about 300 and 150 mg L−1 for glycosylated onconase and aglycosylated mutein, respectively) in high cell density fermentation, and was purified to homogeneity with high yields (56% for glycosylated onconase and 67% for aglycosylated mutein) by a simple purification process consisting of cation exchange chromatography and size exclusion chromatography. In vitro activity assays revealed that glycosylation decreased both the RNAse activity and the cytotoxic activity of onconase. The high expression level and subsequent facile purification process make P. pastoris an efficient and cost-effective host for the large-scale production of onconase.  相似文献   

4.
Onconase, a member of the RNase A superfamily, is a potent antitumor agent which is undergoing phase III clinical trials as an antitumor drug. We have recently shown that onconase is an unusually stable protein. Furthermore, the protein is resistant to the action of proteases, which could influence its use as a drug, prolonging its biological life, and leading to its renal toxicity. Our investigation focused on the contribution of chain termini to onconase conformational stability and biological activities. We used differential scanning calorimetry, isothermal unfolding experiments, limited proteolysis, and catalytic and antitumor activity determinations to investigate the effect of the elimination of the two blocks at the chain termini, the N-terminal cyclized glutamine and the C-terminal disulfide bridge between the terminal Cys104 and Cys87. The determination of the thermodynamic parameters of the protein led to the conclusion that the two blocks at onconase chain termini are responsible for the unusual stability of the protein. Moreover, the reduced stability of the onconase mutants does not influence greatly their catalytic and antitumor activities. Thus, our data would suggest that an onconase-based drug, with a decreased toxicity, could be obtained through the use of less stable onconase variants.  相似文献   

5.
6.
A method for expression of an onconase gene leading to a soluble form of the protein was developed. The enzymatic and cytotoxic properties of the protein's recombinant forms were studied. Recombinant onconase with an additional N-terminal Met residue isolated in nondenaturing conditions did not substantially differ from the native enzyme in ribonucleolytic activity. The addition of a 33-mer peptide containing auxiliary elements for the simplification of isolation and detection of the recombinant protein did not affect the enzyme properties of onconase. The method proposed is useful for the onconase structure-function relation studies and enables construction of onconase-based fusion proteins for anticancer therapy.  相似文献   

7.
N-terminal pyroglutamate (pGlu) formation from glutaminyl precursors is a posttranslational event in the processing of bioactive neuropeptides such as thyrotropin-releasing hormone and neurotensin during their maturation in the secretory pathway. The reaction is facilitated by glutaminyl cyclase (QC), an enzyme highly abundant in mammalian brain. Here, we describe for the first time that human and papaya QC also catalyze N-terminal glutamate cyclization. Surprisingly, the enzymatic Glu(1) conversion is favored at pH 6.0 while Gln(1) conversion occurs with an optimum at pH 8.0. This unexpected finding might be of importance for deciphering the events leading to deposition of highly toxic pyroglutamyl peptides in amyloidotic diseases.  相似文献   

8.
We have previously shown that human interferon α-2b (IFN) produced in Escherichia coli (E. coli) is heterogeneous at the N-terminal, with three major species (Ahsan et al., 2014). These are: (a) the direct translation product of the gene retaining the N-terminal methionine, (b) a species from which the methionyl residue has been removed by E. coli methionyl aminopeptidase to give the native interferon α-2b and (c) in which the N-terminal Cys residue of the latter contains an acetyl group. In this paper we overcome this heterogeneity, using engineered interferon derivatives with phenylalanine residue directly downstream of the N-terminal methionine (Met-Phe-IFN). This modification not only prevented the removal of the N-terminal methionine by E. coli methionyl aminopeptidase but also the subsequent N-acetylation. Critically, Met-Phe-IFN had enhanced activity in a biological assay. N-terminal stabilization was also achieved by fusing human cytochrome b5 at the N-terminal of interferon (b5-IFN-chimera). In this case also, the protein was more active than a reciprocal chimera with cytochrome b5 at the C-terminal of interferon (Met-IFN-b5-chimera). This latter protein also had a heterogeneous N-terminal but addition of phenylalanine following Met, (Met-Phe-IFN-b5-chimera), resolved this problem and gave enhanced biological activity.  相似文献   

9.
Onconase, a cytotoxic ribonuclease from Rana pipiens, possesses pyroglutamate (Pyr) at the N-terminus and has a substrate preference for uridine–guanine (UG). To identify residues responsible for onconase’s cytotoxicity, we cloned the rpr gene from genomic DNA and expressed it in Escherichia coli BL21(DE3). The recombinant onconase with Met at the N-terminus had reduced thermostability, catalytic activity and antigenicity. Therefore, we developed two methods to produce onconase without Met. One relied on the endogeneous E.coli methionine aminopeptidase and the other relied on the cleavage of a pelB signal peptide. The Pyr1 substitutional variants maintained similar secondary structures to wild-type onconase, but with less thermostability and specific catalytic activity for the innate substrate UG. However, the non-specific catalytic activity for total RNAs varied depending on the relaxation of base specificity. Pyr1 promoted the structural integrity by forming a hydrogen bond network through Lys9 in α1 and Val96 in β6, and participated in catalytic activity by hydrogen bonds to Lys9 and P1 catalytic phosphate. Residues Thr35 and Asp67 determined B1 base specificity, and Glu91 determined B2 base specificity. The cytotoxicity of onconase is largely determined by structural integrity and specific catalytic activity for UG through Pyr1, rather than non-specific activity for total RNAs.  相似文献   

10.
Onconase, a member of the pancreatic type ribonuclease family, is currently used as a chemotherapeutic agent for the treatment of different types of cancer. It is widely accepted that one of the properties that renders this enzyme cytotoxic is its ability to evade the cytosolic ribonuclease inhibitor (RI). In the present work, we produced and characterized an onconase variant that lacks the disulfide bond C30/C75. This variant mimics the stable unfolding intermediate des(30-75) produced in the reductive unfolding pathway of onconase. We found that the reduction of the C30/C75 disulfide bond does not significantly alter the cytotoxic properties of onconase, although the variant possesses a notably reduced conformational stability. Interestingly, both its catalytic activity and its ability to evade RI are comparable to wild-type onconase under mild reductive conditions in which the three disulfide containing intermediate des(30-75) is present. These results suggest that the C30/C75 disulfide bond could easily be reduced under physiological redox conditions.  相似文献   

11.
Pyroglutamyl peptidase II (PPII), a highly specific membrane-bound omegapeptidase, removes N-terminal pyroglutamyl from thyrotropin-releasing hormone (相似文献   

12.
Onconase is a small globular protein of the pancreatic ribonuclease superfamily. It is an important molecule because it possesses a selective antitumor activity. The interesting finding is that onconase has a high thermal stability, with a denaturation temperature close to 90d`C at pH 6.0. A detailed comparison between the tertiary structures of onconase and bovine pancreatic ribonuclease has been accomplished in order to identify the molecular determinants of the high stability. The results of differential scanning calorimetry measurements confirm that the mutant forms of onconase, designed to be less stable than the parent enzyme, exhibit lower denaturation temperatures. In particular, the disulfide bridge at the C-terminus of onconase seems to play a pivotal role in stability.  相似文献   

13.
Oxidative folding and N-terminal cyclization of onconase   总被引:1,自引:0,他引:1  
Cyclization of the N-terminal glutamine residue to pyroglutamic acid in onconase, an anti-cancer chemotherapeutic agent, increases the activity and stability of the protein. Here, we examine the correlated effects of the folding/unfolding process and the formation of this N-terminal pyroglutamic acid. The results in this study indicate that cyclization of the N-terminal glutamine has no significant effect on the rate of either reductive unfolding or oxidative folding of the protein. Both the cyclized and uncyclized proteins seem to follow the same oxidative folding pathways; however, cyclization altered the relative flux of the protein in these two pathways by increasing the rate of formation of a kinetically trapped intermediate. Glutaminyl cyclase (QC) catalyzed the cyclization of the unfolded, reduced protein but had no effect on the disulfide-intact, uncyclized, folded protein. The structured intermediates of uncyclized onconase were also resistant to QC catalysis, consistent with their having a native-like fold. These observations suggest that, in vivo, cyclization takes place during the initial stages of oxidative folding, specifically, before the formation of structured intermediates. The competition between oxidative folding and QC-mediated cyclization suggests that QC-catalyzed cyclization of the N-terminal glutamine in onconase occurs in the endoplasmic reticulum, probably co-translationally.  相似文献   

14.
To minutely understand the effect of foreign N-terminal residues on the conformational stability of human lysozyme, five mutant proteins were constructed: two had Met or Ala in place of the N-terminal Lys residue (K1M and K1A, respectively), and others had one additional residue, Met, Gly or Pro, to the N-terminal Lys residue (Met(-1), Gly(-1) and Pro(-1), respectively). The thermodynamic parameters for denaturation of these mutant proteins were examined by differential scanning calorimetry and were compared with that of the wild-type protein. Three mutants with the extra residue were significantly destabilized: the changes in unfolding Gibbs energy (DeltaDeltaG) were -9.1 to -12.2 kJ.mol-1. However, the stability of two single substitutions at the N-terminal slightly decreased; the DeltaDeltaG values were only -0.5 to -2.5 kJ.mol-1. The results indicate that human lysozyme is destabilized by an expanded N-terminal residue. The crystal structural analyses of K1M, K1A and Gly(-1) revealed that the introduction of a residue at the N-terminal of human lysozyme caused the destruction of hydrogen bond networks with ordered water molecules, resulting in the destabilization of the protein.  相似文献   

15.
Onconase (P-30 protein), an enzyme in the ribonuclease A superfamily, exerts cytostatic, cytotoxic, and antiviral activity when added to the medium of growing mammalian cells. We find that onconase enters living mammalian cells and selectively cleaves tRNA with no detectable degradation of rRNA. The RNA specificity of onconase in vitro using reticulocyte lysate and purified RNA substrates indicates that proteins associated with rRNA protect the rRNA from the onconase ribonucleolytic action contributing to the cellular tRNA selectivity of onconase. The onconase-mediated tRNA degradation in cells appears to be accompanied by increased levels of tRNA turnover and induction of tRNA synthesis perhaps in response to the selective toxin-induced loss of tRNA. Degradation products of tRNA(3)(Lys), which acts as a primer for HIV-1 replication, were clearly detected in cells infected with HIV-1 and treated with sublethal concentrations of onconase. However, a new synthesis of tRNA(3)(Lys) also seemed to occur in these cells resulting in plateauing of the steady-state levels of this tRNA. We conclude that the degradation of tRNAs may be a primary factor in the cytotoxic activity of onconase.  相似文献   

16.
BACKGROUND: The N-terminal pyroglutamyl (pGlu) residue of peptide hormones, such as thyrotropin-releasing hormone (TRH) and luteinizing hormone releasing hormone (LH-RH), confers resistance to proteolysis by conventional aminopeptidases. Specialized pyroglutamyl peptidases (PGPs) are able to cleave an N-terminal pyroglutamyl residue and thus control hormonal signals. Until now, no direct or homology-based three-dimensional structure was available for any PGP. RESULTS: The crystal structure of pyroglutamyl peptidase I (PGP-I) from Bacillus amyloliquefaciens has been determined to 1.6 A resolution. The crystallographic asymmetric unit of PGP-I is a tetramer of four identical monomers related by noncrystallographic 222 symmetry. The protein folds into an alpha/beta globular domain with a hydrophobic core consisting of a twisted beta sheet surrounded by five alpha helices. The structure allows the function of most of the conserved residues in the PGP-I family to be identified. The catalytic triad comprises Cys144, His168 and Glu81. CONCLUSIONS: The catalytic site does not have a conventional oxyanion hole, although Cys144, the sidechain of Arg91 and the dipole of an alpha helix could all stabilize a negative charge. The catalytic site has an S1 pocket lined with conserved hydrophobic residues to accommodate the pyroglutamyl residue. Aside from the S1 pocket, there is no clearly defined mainchain substrate-binding region, consistent with the lack of substrate specificity. Although the overall structure of PGP-I resembles some other alpha/beta twisted open-sheet structures, such as purine nucleoside phosphorylase and cutinase, there are important differences in the location and organization of the active-site residues. Thus, PGP-I belongs to a new family of cysteine proteases.  相似文献   

17.
A method for expression of an onconase gene leading to a soluble form of the protein was developed. The enzymatic and cytotoxic properties of the protein's recombinant forms were studied. Recombinant onconase with an additional N-terminal Met residue isolated in non-denaturing conditions did not substantially differ from the native enzyme in ribonucleolytic activity. The addition of a 33-mer peptide containing auxiliary elements for the simplification of isolation and detection of the recombinant protein did not affect the enzyme properties of onconase. The method proposed is useful for the onconase structure–function relation studies and enables construction of onconase-based fusion proteins for anticancer therapy.  相似文献   

18.
Overproduction of N-terminal pyroglutamate (pGlu)-modified proteins utilizing Escherichia coli or eukaryotic cells is a challenging work owing to the fact that the recombinant proteins need to be recovered by proteolytic removal of fusion tags to expose the N-terminal glutaminyl or glutamyl residue, which is then converted into pGlu catalyzed by the enzyme glutaminyl cyclase. Herein we describe a new method for production of N-terminal pGlu-containing proteins in vivo via intracellular self-cleavage of fusion tags by tobacco etch virus (TEV) protease and then immediate N-terminal cyclization of passenger target proteins by a bacterial glutaminyl cyclase. To combine with the sticky-end PCR cloning strategy, this design allows the gene of target proteins to be efficiently inserted into the expression vector using two unique cloning sites (i.e., SnaB I and Xho I), and the soluble and N-terminal pGlu-containing proteins are then produced in vivo. Our method has been successfully applied to the production of pGlu-modified enhanced green fluorescence protein and monocyte chemoattractant proteins. This design will facilitate the production of protein drugs and drug target proteins that possess an N-terminal pGlu residue required for their physiological activities.  相似文献   

19.
Onconase, an anticancer ribonuclease, damages cellular tRNA and causes caspase-dependent apoptosis in targeted cells (M. S. Iordanov, O. P. Ryabinina, J. Wong, T. H. Dinh, D. L. Newton, S. M. Rybak, and B. E. Magun. Cancer Res. 60, 1983–1994, 2000). The proapoptotic action of onconase depends on its RNase activity, but the molecular mechanisms leading to RNA damage-induced caspase activation are completely unknown. In this study, we have investigated whether onconase activates two signal-transduction pathways commonly stimulated by conventional chemo- and radiotherapy, namely the stress-activated protein kinase (SAPK) cascade and the pathway leading to the activation of nuclear factor-kappa B (NF-κB). We found that, in all cell types tested, onconase is a potent activator of SAPK1 (JNK1 and JNK2) and SAPK2 (p38 MAP kinase), but that it is incapable of activating NF-κB. Inhibition of p38 MAP kinase activity with a pharmacological inhibitor, SB203580, demonstrated that p38 MAP kinase is not required for onconase cytotoxicity. Using explanted fibroblasts from mice that contain targeted disruption of both jnk1 and jnk2 alleles, we found that JNKs are important mediators of onconase-induced cytotoxicity. Surprisingly, following the immortalization of these same cells with human papilloma virus (HPV16) gene products E6 and E7, additional proapoptotic pathways (exclusive of JNK) were provoked by onconase. Our results demonstrate that onconase may activate proapoptotic pathways in tumor cells that are not able to be accessed in normal cells. These results present the possibility that the cytotoxic activity of onconase in normal cells may be reduced by blocking the activity of JNKs.  相似文献   

20.
Binding of the human recombinant secretory leukocyte proteinase inhibitor (SLPI) [native and with the methionyl residues at positions 73, 82, 94 and 96 of domain 2 oxidized to the sulfoxide derivative (Met(O) SLPI)] to bovine α-chymotrypsin (α-chymotrypsin) [native and with the Met192 residue converted to the sufoxide derivative (Met(O) α-chymotrypsin)] as well as to native bovine β-trypsin (β-trypsin), which does not contain methionyl residues, has been investigated between pH 4.0 and 8.0, and between 10.0°C ad 30.0°C, from thermodynamic and/or kinetic viewpoints. By increasing the number of oxidized methytonyl residues present at the proteinase: inhibitor contact interface (from 0 to 3), the adducts investigated are increasingly destabilized and the relaxation time of the complexes into conformers less stable is enhanced. On the other hand, the selective oxidation methionyl residues of SLPI and α-chymotrypsin, by the reaction with chloramines T, does not affect the proteinase inhibition recognition mechanism. Therefore, even though conformational changes may occur in the conversion native SLPI and native α-chymotrypsin to their Met(O) derivatives, a localized steric hindrance can be considered as the main structural determinant accounting for the reported results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号