首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein gp120 mediates receptor binding and is the major target for neutralizing antibodies. A broadly neutralizing antibody response is likely to be a critical component of the immune response against HIV-1. Although antibodies against monomeric gp120 are readily elicited in immunized individuals, these antibodies are inefficient in neutralizing primary HIV-1 isolates. As a chronic pathogen, HIV-1 has evolved to avoid an optimal host response by a number of immune escape mechanisms. Monomeric gp120 that has dissociated from the functional trimer presents irrelevant epitopes that are not accessible on functional trimeric envelope glycoproteins. The resulting low level of antigenic cross-reactivity between monomeric gp120 and the functional spike may contribute to the inability of monomeric gp120 to elicit broadly neutralizing antibodies. Attempts to generate native, trimeric envelope glycoproteins as immunogens have been frustrated by both the lability of the gp120-gp41 interaction and the weak association between gp120 subunits. Here, we present solid-phase HIV-1 gp160DeltaCT (cytoplasmic tail-deleted) proteoliposomes (PLs) containing native, trimeric envelope glycoproteins in a physiologic membrane setting. We present data that indicate that the gp160DeltaCT glycoproteins on PLs are trimers and are recognized by several relevant conformational ligands in a manner similar to that for gp160DeltaCT oligomers expressed on the cell surface. The PLs represent a significant advance over present envelope glycoprotein formulations as candidate immunogens for HIV vaccine design and development.  相似文献   

2.
The human immunodeficiency virus type 1 exterior gp120 envelope glycoprotein is highly flexible, and this flexibility may contribute to the inability of monomeric gp120 immunogens to elicit broadly neutralizing antibodies. We previously showed that an S375W modification of a critical interfacial cavity central to the primary receptor binding site, the Phe43 cavity, stabilizes gp120 into the CD4-bound state. However, the immunological effects of this cavity-altering replacement were never tested. Subsequently, we screened other mutations that, along with the S375W alteration, might further stabilize the CD4-bound state. Here, we define a selected second cavity-altering replacement, T257S, and analyze the double mutations in several gp120 envelope glycoprotein contexts. The gp120 glycoproteins with the T257S-plus-S375W double mutation (T257S+S375W) have a superior antigenic profile compared to the originally identified single S375W replacement in terms of enhanced recognition by the broadly neutralizing CD4 binding-site antibody b12. Isothermal titration calorimetry measuring the entropy of the gp120 interaction with CD4 indicated that the double mutant was also stabilized into the CD4-bound state, with increasing relative fixation between core, full-length monomeric, and full-length trimeric versions of gp120. A significant increase in gp120 affinity for CD4 was also observed for the cavity-filling mutants relative to wild-type gp120. The most conformationally constrained T257S+S375W trimeric gp120 proteins were selected for immunogenicity analysis in rabbits and displayed a trend of improvement relative to their wild-type counterparts in terms of eliciting neutralizing antibodies. Together, the results suggest that conformational stabilization may improve the ability of gp120 to elicit neutralizing antibodies.  相似文献   

3.
The mature envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) virions is derived by proteolytic cleavage of a trimeric gp160 glycoprotein precursor. Remarkably, proteolytic processing of the HIV-1 Env precursor results in changes in Env antigenicity that resemble those associated with glutaraldehyde fixation. Apparently, proteolytic processing of the HIV-1 Env precursor decreases conformational flexibility of the Env trimeric complex, differentially affecting the integrity/accessibility of epitopes for neutralizing and nonneutralizing antibodies.  相似文献   

4.
Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.  相似文献   

5.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins function as a membrane-anchored trimer of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. Previously, we reported three approaches to stabilize soluble trimers containing parts of the gp41 ectodomains: addition of GCN4 trimeric helices, disruption of the cleavage site between gp120 and gp41, and introduction of cysteines in the gp41 coiled coil to form intersubunit disulfide bonds. Here, we applied similar approaches to stabilize soluble gp140 trimers including the complete gp120 and gp41 ectodomains. A combination of fusion with the GCN4 trimeric sequences and disruption of the gp120-gp41 cleavage site resulted in relatively homogeneous gp140 trimers with exceptional stability. The gp120 epitopes recognized by neutralizing antibodies are intact and exposed on these gp140 trimers. By contrast, the nonneutralizing antibody epitopes on the gp120 subunits of the soluble trimers are relatively occluded compared with those on monomeric gp120 preparations. This antigenic similarity to the functional HIV-1 envelope glycoproteins and the presence of the complete gp41 ectodomain should make the soluble gp140 trimers useful tools for structural and immunologic studies.  相似文献   

6.
Six recombinant human Fab fragments that were derived from the same human immunodeficiency virus type 1 (HIV-1)-infected individual and are directed against the CD4 binding site (CD4bs) of the gp120 envelope glycoprotein were studied. A range of neutralizing activity against the HIV-1 (HXBc2) isolate was observed, with Fab b12 exhibiting the greatest potency among the Fabs tested. The neutralizing potency of Fab b12 was better than that of monoclonal whole antibodies directed against the third variable (V3) region of gp120. To explore the basis for the efficient neutralizing activity of b12, the recognition of a panel of HIV-1 gp120 mutants by the six Fabs was studied. The patterns of sensitivity to particular gp120 amino acid changes were similar for all six Fabs to those seen for anti-CD4bs monoclonal antibodies derived from HIV-1-infected individuals by conventional means. In addition, recognition by Fab b12 demonstrated an atypical sensitivity to changes in the V1 and V2 variable regions. Next, the binding of the Fabs to monomeric gp120 and to the envelope glycoprotein complex was examined. Neither the binding properties of the b12 Fab to monomeric gp120 nor the ability of the Fab to compete with soluble CD4 for monomeric gp120 binding appeared to account for the greater neutralizing potency. However, both quantitative and qualitative differences between the binding of b12 and that of less potent Fabs to the cell surface envelope glycoprotein complex were observed. Relative to less potently neutralizing Fabs, Fab b12 exhibited a higher affinity for a subpopulation of cell surface envelope glycoproteins, the conformation of which was best approximated by the mature gp120 glycoprotein. Apparently, subtle differences in the gp120 epitope recognized allow some members of the group of anti-CD4bs antibodies to bind to the functionally relevant envelope glycoprotein complex and to neutralize virus more efficiently.  相似文献   

7.
The HIV envelope (Env) protein uses a dense coat of glycans to mask conserved domains and evade host humoral immune responses. The broadly neutralizing antibody 2G12, which binds a specific cluster of high-mannose glycans on HIV Env, shows that the glycan shield can also serve as a target for neutralizing antibodies. We have described a triple mutant Saccharomyces cerevisiae strain that expresses high-mannose glycoproteins that bind to 2G12. When used to immunize rabbits, this yeast elicits antibodies that bind to gp120-associated glycans but fail to neutralize virus. Here we sought to determine the reason for these discordant results. Affinity purification of sera over columns conjugated with three 2G12-reactive yeast glycoproteins showed that these proteins could adsorb 80% of the antibodies that bind to gp120 glycans. Despite binding to monomeric gp120, these mannose-specific antibodies failed to bind cell surface-expressed trimeric Env. However, when Env was expressed in the presence of the mannosidase inhibitor kifunensine to force retention of high-mannose glycans at all sites, the purified antibodies gained the abilities to bind trimeric Env and to strongly and broadly neutralize viruses produced under these conditions. Combined, these data show that the triple mutant yeast strain elicits antibodies that bind to high-mannose glycans presented on the HIV envelope, but only when they are displayed in a manner not found on native Env trimers. This implies that the underlying structure of the protein scaffold used to present the high-mannose glycans may be critical to allow elicitation of antibodies that recognize trimeric Env and neutralize virus.  相似文献   

8.
The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane proteins. Soluble gp140 glycoproteins composed of the uncleaved ectodomains of gp120 and gp41 form unstable, heterogeneous oligomers, but soluble gp140 trimers can be stabilized by fusion with a C-terminal, trimeric GCN4 motif (X. Yang et al., J. Virol. 74:5716-5725, 2000). To understand the influence of the C-terminal trimerization domain on the properties of soluble HIV-1 envelope glycoprotein trimers, uncleaved, soluble gp140 glycoproteins were stabilized by fusion with another trimeric motif derived from T4 bacteriophage fibritin. The fibritin construct was more stable to heat and reducing conditions than the GCN4 construct. Both GCN4- and fibritin-stabilized soluble gp140 glycoproteins exhibited patterns of neutralizing and nonneutralizing antibody binding expected for the functional envelope glycoprotein spike. Of note, two potently neutralizing antibodies, immunoglobulin G1b12 and 2G12, exhibited the greatest recognition of the stabilized, soluble trimers, relative to recognition of the gp120 monomer. The observed similarities between the GCN4 and fibritin constructs indicate that the HIV-1 envelope glycoprotein ectodomains dictate many of the antigenic and structural features of these fusion proteins. The melting temperatures and ligand recognition properties of the GCN4- and fibritin-stabilized soluble gp140 glycoproteins suggest that these molecules assume conformations distinct from that of the fusion-active, six-helix bundle.  相似文献   

9.
We previously reported that soluble, stable YU2 gp140 trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein immunogens could elicit improved breadth of neutralization against HIV-1 isolates compared to monomeric YU2 gp120 proteins. In this guinea pig immunization study, we sought to extend these data and determine if adjuvant could quantitatively or qualitatively alter the neutralizing response elicited by trimeric or monomeric immunogens. Consistent with our earlier studies, the YU2 gp140 immunogens elicited higher-titer neutralizing antibodies against homologous and heterologous isolates than those elicited by monomeric YU2 gp120. Additionally, the GlaxoSmithKline family of adjuvants AS01B, AS02A, and AS03 induced higher levels of neutralizing antibodies compared to emulsification of the same immunogens in Ribi adjuvant. Further analysis of vaccine sera indicated that homologous virus neutralization was not mediated by antibodies to the V3 loop, although V3 loop-directed neutralization could be detected for some heterologous isolates. In most gp120-inoculated animals, the homologous YU2 neutralization activity was inhibited by a peptide derived from the YU2 V1 loop, whereas the neutralizing activity elicited by YU2 gp140 trimers was much less sensitive to V1 peptide inhibition. Consistent with a less V1-focused antibody response, sera from the gp140-immunized animals more efficiently neutralized heterologous HIV-1 isolates, as determined by two distinct neutralization formats. Thus, there appear to be qualitative differences in the neutralizing antibody response elicited by YU2 gp140 compared to YU2 monomeric gp120. Further mapping analysis of more conserved regions of gp120/gp41 may be required to determine the neutralizing specificity elicited by the trimeric immunogens.  相似文献   

10.
The HIV-1 envelope glycoproteins are assembled by the trimeric gp120s and gp41s proteins. The gp120 binds sequentially to CD4 and coreceptor for initiating virus entry. Because of noncovalent interaction and heavy glycosylation for envelope glycoproteins, it is highly difficult to determine entire envelope glycoproteins structure now. Such question extremely limits our good understanding of HIV-1 membrane fusion mechanism. Here, a novel and reasonable assembly model of trimeric gp120s and gp41s was proposed based on the conformational dynamics of trimeric gp120-gp41 complex and gp41, respectively. As for gp41, the heptad repeat sequences in the gp41 C-terminal is of enormous flexibility. On the contrary, the heptad repeat sequences in the gp41 N-terminal likely present stable three-helical bundle due to strong nonpolar interaction, and they were predicted to associate three alpha1 helixes from the non-neutralizing face of the gp120 inner domain, which is quite similar to gp41 fusion core structure. Such interaction likely leads to the formation of noncovalent gp120-gp41 complex. In the proposed assembly of trimeric gp120-gp41 complex, three gp120s present not only perfectly complementary and symmetrical distribution around the gp41, but also different flexibility degree in the different structural domains. Thus, the new model can well explain numerous experimental phenomena, present plenty of structural information, elucidate effectively HIV-1 membrane fusion mechanism, and direct to further develop vaccine and novel fusion inhibitors.  相似文献   

11.
In vivo passage of a simian-human immunodeficiency virus (SHIV-89.6) generated a virus, SHIV-89.6P, that exhibited increased resistance to some neutralizing antibodies (G. B. Karlsson et al., J. Exp. Med. 188:1159-1171, 1998). Here we examine the range of human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies to which the passaged virus became resistant and identify envelope glycoprotein determinants of antibody resistance. Compared with the envelope glycoproteins derived from the parental SHIV-89.6, the envelope glycoproteins of the passaged virus were resistant to antibodies directed against the gp120 V3 variable loop and the CD4 binding site. By contrast, both viral envelope glycoproteins were equally sensitive to neutralization by two antibodies, 2G12 and 2F5, that recognize poorly immunogenic structures on gp120 and gp41, respectively. Changes in the V2 and V3 variable loops of gp120 were necessary and sufficient for full resistance to the IgG1b12 antibody, which is directed against the CD4 binding site. Changes in the V3 loop specified complete resistance to a V3 loop-directed antibody, while changes in the V1/V2 loops conferred partial resistance to this antibody. The epitopes of the neutralizing antibodies were not disrupted by the resistance-associated changes. These results indicate that in vivo selection occurs for HIV-1 envelope glycoproteins with variable loop conformations that restrict the access of antibodies to immunogenic neutralization epitopes.  相似文献   

12.
To test whether antibodies that are neutralizing or nonneutralizing for human immunodeficiency virus type 1 (HIV-1) primary isolates can be distinguished by their affinities for the oligomeric envelope glycoproteins, we selected HIV-1(JR-FL) as a model primary virus and a panel of 13 human monoclonal antibodies (MAbs) and evaluated three parameters: (i) half-maximal binding to recombinant monomeric envelope, gp120(JR-FL); (ii) half-maximal binding to oligomeric envelope of HIV-1(JR-FL) expressed on the surface of transfected 293 cells; and (iii) neutralization of HIV-1(JR-FL) in a peripheral blood mononuclear cell-based neutralization assay. Two conclusions can be drawn from these experiments. First, we confirm that antibody interactions with monomeric gp120 do not predict primary virus neutralization. Second, we show that neutralization correlates qualitatively with the relative affinity of an antibody for the oligomeric envelope glycoproteins, at least for HIV-1(JR-FL).  相似文献   

13.
HIV-1 gp120 binds the primary receptor CD4. Recently, a plethora of broadly neutralizing antibodies to the gp120 CD4-binding site (CD4bs) validated this region as a target for immunogen design. Here, we asked if modified HIV-1 envelope glycoproteins (Env) designed to increase CD4 recognition might improve recognition by CD4bs neutralizing antibodies and more efficiently elicit such reactivities. We also asked if CD4bs stabilization, coupled with altering the Env format (monomer to trimer or cross-clade), might better elicit neutralizing antibodies by focusing the immune response on the functionally conserved CD4bs. We produced monomeric and trimeric Envs stabilized by mutations within the gp120 CD4bs cavity (pocket-filling; PF2) or by appending heterologous trimerization motifs to soluble Env ectodomains (gp120/gp140). Recombinant glycoproteins were purified to relative homogeneity, and ligand binding properties were analyzed by ELISA, surface plasmon resonance, and isothermal titration microcalorimetry. In some formats, the PF2 substitutions increased CD4 affinity, and importantly, PF2-containing proteins were better recognized by the broadly neutralizing CD4bs mAbs, VRC01 and VRC-PG04. Based on this analysis, we immunized selected Env variants into rabbits using heterologous or homologous regimens. Analysis of the sera revealed that homologous inoculation of the PF2-containing, variable region-deleted YU2 gp120 trimers (ΔV123/PF2-GCN4) more rapidly elicited CD4bs-directed neutralizing antibodies compared with other regimens, whereas homologous trimers elicited increased neutralization potency, mapping predominantly to the gp120 third major variable region (V3). These results suggest that some engineered Env proteins may more efficiently direct responses toward the conserved CD4bs and be valuable to elicit antibodies of greater neutralizing capacity.  相似文献   

14.
Antibodies that neutralize primary isolates of human immunodeficiency virus type 1 (HIV-1) appear during HIV-1 infection but are difficult to elicit by immunization with current vaccine products comprised of monomeric forms of HIV-1 envelope glycoprotein gp120. The limited neutralizing antibody response generated by gp120 vaccine products could be due to the absence or inaccessibility of the relevant epitopes. To determine whether neutralizing antibodies from HIV-1-infected patients bind to epitopes accessible on monomeric gp120 and/or oligomeric gp140 (ogp140), purified total immunoglobulin from the sera of two HIV-1-infected patients as well as pooled HIV immune globulin were selectively depleted of antibodies which bound to immobilized gp120 or ogp140. After passage of each immunoglobulin preparation through the respective columns, antibody titers against gp120 and ogp140 were specifically reduced at least 128-fold. The gp120- and gp140-depleted antibody fraction from each serum displayed reduced neutralization activity against three primary and two T-cell line-adapted (TCLA) HIV-1 isolates. Significant residual neutralizing activity, however, persisted in the depleted sera, indicating additional neutralizing antibody specificities. gp120- and ogp140-specific antibodies eluted from each column neutralized both primary and TCLA viruses. These data demonstrate the presence and accessibility of epitopes on both monomeric gp120 and ogp140 that are specific for antibodies that are capable of neutralizing primary isolates of HIV-1. Thus, the difficulties associated with eliciting neutralizing antibodies by using current monomeric gp120 subunit vaccines may be related less to improper protein structure and more to ineffective immunogen formulation and/or presentation.  相似文献   

15.
A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences.  相似文献   

16.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior glycoprotein is conformationally flexible. Upon binding the host cell receptor, CD4, gp120 assumes a conformation that is able to bind the chemokine receptors CCR5 or CXCR4, which act as coreceptors for the virus. CD4-binding-site (CD4BS) antibodies are neutralizing antibodies elicited during natural infection that are directed against gp120 epitopes that overlap the binding site for CD4. Recent studies (S. H. Xiang et al., J. Virol. 76:9888-9899, 2002) suggest that CD4BS antibodies recognize conformations of gp120 distinct from the CD4-bound conformation. This predicts that the binding of CD4BS antibodies will inhibit chemokine receptor binding. Here, we show that Fab fragments and complete immunoglobulin molecules of CD4BS antibodies inhibit CD4-independent gp120 binding to CCR5 and cell-cell fusion mediated by CD4-independent HIV-1 envelope glycoproteins. These results are consistent with a model in which the binding of CD4BS antibodies limits the ability of gp120 to assume a conformation required for coreceptor binding.  相似文献   

17.
PG9 and PG16 are antibodies isolated from a subject infected with HIV-1 and display broad anti-HIV neutralizing activities. They recognize overlapping epitopes, which are preferentially expressed on the membrane-anchored trimeric form of the HIV envelope glycoprotein (Env). PG9 and PG16 were reported not to bind to soluble mimetics of Env. The engineering of soluble Env proteins on which the PG9 and PG16 epitopes are optimally exposed will support efforts to elicit broad anti-HIV neutralizing antibodies by immunization. Here, we identified several soluble gp140 Env proteins that are recognized by PG9 and PG16, and we investigated the molecular details of those binding interactions. The IgG versions of PG9 and PG16 recognize the soluble trimeric gp140 form less efficiently than the corresponding monomeric gp140 form. In contrast, the Fab versions of PG9 and PG16 recognized the monomeric and trimeric gp140 forms with identical binding kinetics and with binding affinities similar to the high binding affinity of the anti-V3 antibody 447D to its epitope. Our data also indicate that, depending on the Env backbone, the interactions of PG9 and PG16 with gp140 may be facilitated by the presence of the gp41 ectodomain and are independent of the proper enzymatic cleavage of gp140 into gp120 and gp41. The identification of soluble Env proteins that express the PG9 and PG16 epitopes and the detailed characterization of the molecular interactions between these two antibodies and their ligands provide important and novel information that will assist in improving the engineering of future Env immunogens.  相似文献   

18.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) complex comprises three gp120 exterior glycoproteins each noncovalently linked to a gp41 transmembrane glycoprotein. Monomeric gp120 proteins can elicit antibodies capable of neutralizing atypically sensitive test viruses in vitro, but these antibodies are ineffective against representative primary isolates and the gp120 vaccines failed to provide protection against HIV-1 transmission in vivo. Alternative approaches to raising neutralizing antibodies are therefore being pursued. Here we report on the antibody responses generated in rabbits against a soluble, cleaved, trimeric form of HIV-1(JR-FL) Env. In this construct, the gp120 and gp41 moieties are covalently linked by an intermolecular disulfide bond (SOS gp140), and an I559P substitution has been added to stabilize gp41-gp41 interactions (SOSIP gp140). We investigated the value of DNA priming and compared the use of membrane-bound and soluble priming antigens and of repeat boosting with soluble and particulate protein antigen. Compared to monomeric gp120, SOSIP gp140 trimers elicited approximately threefold lower titers of anti-gp120 antibodies. Priming with DNA encoding a membrane-bound form of the SOS gp140 protein, followed by several immunizations with soluble SOSIP gp140 trimers, resulted in antibodies capable of neutralizing sensitive strains at high titers. A subset of these sera also neutralized, at lower titers, HIV-1(JR-FL) and some other primary isolates in pseudovirus and/or whole-virus assays. Neutralization of these viruses was immunoglobulin mediated and was predominantly caused by antibodies to gp120 epitopes, but not the V3 region.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.  相似文献   

20.
Forty-six monoclonal antibodies (MAbs) able to bind to the native, monomeric gp120 glycoprotein of the human immunodeficiency virus type 1 (HIV-1) LAI (HXBc2) strain were used to generate a competition matrix. The data suggest the existence of two faces of the gp120 glycoprotein. The binding sites for the viral receptor, CD4, and neutralizing MAbs appear to cluster on one face, which is presumably exposed on the assembled, oligomeric envelope glycoprotein complex. A second gp120 face, which is presumably inaccessible on the envelope glycoprotein complex, contains a number of epitopes for nonneutralizing antibodies. This analysis should be useful for understanding both the interaction of antibodies with the HIV-1 gp120 glycoprotein and neutralization of HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号