首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
All members of the YidC/Oxal/Alb3 protein family are evolutionarily conserved and appear to function in membrane protein integration and protein complex stabilization. Here, we report on a second thylakoidal isoform of Alb3, named Alb4. Analysis of Arabidopsis knockout mutant lines shows that AIb4 is required in assembly and/or stability of the CF1CF0-ATP synthase (ATPase). alb4 mutant lines not only have reduced steady-state levels of ATPase subunits, but also their assembly into high-molecular-mass complexes is altered, leading to a reduction of ATP synthesis in the mutants. Moreover, we show that Alb4 but not AIb3 physically interacts with the subunits CF1β and CF0ll. Summarizing, the data indicate that AIb4 functions to stabilize or promote assembly of CF1 during its attachment to the membrane-embedded CF0 part.  相似文献   

4.
5.
The low-density lipoprotein receptor (LDLR) mediates cholesterol homeostasis through endocytosis of lipoprotein particles, particularly low-density lipoproteins (LDLs). Normally, the lipoprotein particles are released in the endosomes and the receptors recycle to the cell surface. Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the gene encoding the LDLR. These mutations are divided into five functional classes where Class 5 mutations encode receptors that suffer from ligand-induced degradation and recycling deficiency. The aim of this study was to investigate whether it is possible to prevent the fast ligand-induced degradation of Class 5-mutant LDLR and to restore its ability to recycle to the cell surface. E387K is a naturally occurring Class 5 mutation found in FH patients, and in the present study, we used Chinese hamster ovary cells transfected with an E387K-mutant LDLR. Abrogation of endosomal acidification by adding bafdomycin A1 or addition of the irreversible serine protease inhibitors, 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF) and 3,4-dichloroisocoumarin (DCI), prevented the degradation of the E387K-mutant LDLR. However, the undegraded receptor did not recycle to the cell surface in the presence of LDL. Unexpectedly, AEBSF caused aggregation of early endosome antigen-1positive endosomes and the intracellular trapped LDLR co-localized with these aggregated early endosomes.  相似文献   

6.
7.
ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-Iocalized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated, and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOClATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses.  相似文献   

8.
Chlorophyll (Chl) degradation causes leaf yellowing during senescence or under stress conditions. For Chl breakdown, STAY-GREEN1 (SGR1) interacts with Chl catabolic enzymes (CCEs) and light-harvesting complex II (LHCII) at the thylakoid membrane, possibly to allow metabolic channeling of potentially phototoxic Chl breakdown intermediates. Among these Chl catabolic components, SGR1 acts as a key regulator of leaf yellowing. In addition to SGR1 (At4g22920), the Arabidopsis thaliana genome contains an additional homolog, SGR2 (At4g11910), whose biological function remains elusive. Under senescence-inducing conditions, SGR2 expression is highly up-regulated, similarly to SGR1 expression. Here we show that SGR2 function counteracts SGR1 activity in leaf Chl degradation; SGR2-overexpressing plants stayed green and the sgr2-1 knockout mutant exhibited early leaf yellowing under age-, dark-, and stress-induced senescence conditions. Like SGR1, SGR2 interacted with LHCII but, in contrast to SGR1, SGR2 interactions with CCEs were very limited. Furthermore, SGR1 and SGR2 formed homo- or heterodimers, strongly suggesting a role for SGR2 in negatively regulat- ing Chl degradation by possibly interfering with the proposed CCE-recruiting function of SGR1. Our data indicate an antagonistic evolution of the functions of SGR1 and SGR2 in Arabidopsis to balance Chl catabolism in chloroplasts with the dismantling and remobilizing of other cellular components in senescing leaf cells.  相似文献   

9.
10.
11.
目的:实验旨在观察急性间歇低氧(氧含量12.7%)跑台运动后不同恢复环境下大鼠腓肠肌热休克蛋白HSP70表达的时程变化。方法:雄性sD大鼠进行低氧环境下的急性间歇跑台运动,用Western blot方法检测低氧运动后即刻、低氧运动后低氧恢复及常氧氧恢复1d,2d,7d的大鼠腓肠肌HSP70蛋白表达水平。结果:急性间歇低氧运动后即刻HSP70蛋白表达水平开始升高。常氧恢复第1dHSP70蛋白表达水平显著高于常氧对照组,P〈0.05。第2d、第7d呈现先降低后升高的趋势;低氧恢复中HSP70蛋白表达水平均显著高于常氧对照组,P〈0.05。结论:急性间歇低氧运动后能诱导HSP70蛋白表达水平升高;低氧恢复过程中HSP70蛋白高水平表达维持的时间要比常氧恢复长。  相似文献   

12.
The basic premise of high yield in rice is to improve leaf photosynthetic efficiency and coordinate the sourcesink relationship in rice plants. Quantitative trait loci (QTLs) related to morphological traits and chlorophyll content of rice leaves were detected at the stages of heading to maturity, and a major QTL (qLSCHL4) related to flag leaf shape and chlorophyll content was detected at both stages in recombinant inbred lines constructed using the indica rice cultivar 93-11 and the japonica rice cultivar Nipponbare. Map-based cloning and expression analysis showed that LSCHL4 is allelic to NAL1, a gene previously reported in narrow leaf mutant of rice. Overexpression lines transformed with vector carrying LSCHL4 from Nipponbare and a near-isogenic line of 93-11 (NIL-9311) had significantly increased leaf chlorophyll content, enlarged flag leaf size, and improved panicle type. The average yield of NIL-9311 was 18.70% higher than that of 93-11. These results indicate that LSCHL4 had a pleiotropic function. Exploring and pyramiding more high-yield alleles resem- bling LSCHL4 for super rice breeding provides an effective way to achieve new breakthroughs in raising rice yield and generate new ideas for solving the problem of global food safety.  相似文献   

13.
Arabidopsis VERNALIZATION2 (VRN2), EMBRYONIC FLOWER2 (EMF2), and FERTILIZATION-INDEPENDENT SEED2 (FIS2) are involved in vernalization-mediated flowering, vegetative development, and seed development, respectively. Together with Arabidopsis VEF-L36, they share a VEF domain that is conserved in plants and animals. To investigate the evolution of VEF-domain-containing genes (VEF genes), we analyzed sequences related to VEF genes across land plants. To date, 24 full-length sequences from 11 angiosperm families and 54 partial sequences from another nine families were identified. The majority of the full-length sequences identified share greatest sequence similarity with and possess the same major domain structure as Arabidopsis EMF2. EMF2-1ike sequences are not only widespread among angiosperms, but are also found in genomic sequences of gymnosperms, lycophyte, and moss. No FIS2- or VEF-L36-1ike sequences were recovered from plants other than Arabidopsis, including from rice and poplar for which whole genomes have been sequenced. Phylogenetic analysis of the full-length sequences showed a high degree of amino acid sequence conservation in EMF2 homologs of closely related taxa. VRN2 homologs are recovered as a clade nested within the larger EMF2 clade. FIS2 and VEF-L36 are recovered in the VRN2 clade. VRN2 clade may have evolved from an EMF2 duplication event that occurred in the rosids prior to the divergence of the eurosid I and eurosid II lineages. We propose that dynamic changes in genome evolution contribute to the generation of the family of VEF-domain-containing genes, Phylogenetic analysis of the VEF domain alone showed that VEF sequences continue to evolve following EM F2NRN2 divergence in accordance with species relationship. Existence of EMF2-1ike sequences in animals and across land plants suggests that a prototype form of EMF2 was present prior to the divergence of the plant and animal lineages. A proposed sequence of events, based on domain organization and occurrence of intermediate seque  相似文献   

14.
15.
Glutaredoxins (GRXs) are ubiquitous oxidoreductases that play a crucial role in response to oxidative stress by reducing disulfides in various organisms. In planta, three different GRX classes have been identified according to their active site motifs. CPYC and CGFS classes are found in all organisms, whereas the CC-type class is specific for higher land plants. Recently, two Arabidopsis CC-type GRXs, ROXY1 and ROXY2, were shown to exert crucial functions in petal and anther initiation and differentiation. To analyze the function of CC-type GRXs in the distantly related monocots, we isolated and characterized OsROXY1 and OsROXY2-two rice homologs of ROXY1. Both genes are expressed in vegetative and reproductive stages. Although rice flower morphology is distinct from eudicots, OsROXY1/2 floral expression patterns are similar to their Arabidopsis counterparts ROXY1/2. Complementation experiments demonstrate that OsROXY1 and OsROXY2 can fully rescue the roxyl floral mutant phenotype. Overexpression of OsROXY1, OsROXY2, and ROXY1 in Arabidopsis causes similar vegetative and reproductive plant developmental defects. ROXY1 and its rice homologs thus exert a conserved function during eudicot and monocot flower development. Strikingly, overexpression of these CC-type GRXs also leads to an increased accumulation of hydrogen peroxide levels and hyper-susceptibility to infection from the necrotrophic pathogen Botrytis cinerea, revealing the importance of balanced redox processes in flower organ develop- ment and pathogen defence.  相似文献   

16.
Pyrrolidine dithiocarbamate (PDTC) can lower the bloot glucose level and improve the insulin sensitivity in diabeti, rats. However, the mechanisms underlying this effect o PDTC treatment in diabetic rats remained uncertain, h this study, we evaluated the mechanisms by which PDT( conferred protection against oxidative damage to pancreat ic islet β-cells in rats with experimental type 2 diabete mellitus (DM). DM in the rats was elicited by long-tern high-fat diet accompanied with a single intraperitonea (i.p.) injection of a low dose of streptozotocin. After a 7-da1 administration of PDTC (50 mg/kg/day i.p.), blood glucos levels were measured and pancreatic tissues were collecte / for the determination of various biochemical and enzyma 1 ic activities using immunohistochemistry, immunofluoresI cence, and western blot techniques. The percentage o 1 apoptotic pancreatic islet β-cells was detected by flow cyto metry. The results showed that diabetic rats had elevate blood glucose levels and insulin resistance, accompanieq with an increase in malondialdehyde content, nitrotyrosin production, and inducible nitric oxide synthase expression A decrease in superoxide dismutase and glutathione pero idase activities was also observed in DM rats, culminatin with elevated β-cell apoptosis. PDTC treatment significantl reduced the oxidative damage and the β-cell apoptosi and also increased the insulin production through down-reg lating FoxO1 acetylation and up-regulating nuclear PDX- level. These data suggested that PDTC can protect islet βcells from oxidative damage and improve insulin productio through regulation of PDX-1 and FoxO1 in a DM rat model.  相似文献   

17.
Root branching or lateral root formation is crucial to maximize a root system acquiring nutrients and water from soil. A lateral root (LR) arises from asymmetric cell division of founder cells (FCs) in a pre-branch site of the primary root, and FC establishment is essential for lateral root formation. FCs are known to be specified from xylem pole pericycle cells, but the molecular genetic mechanisms underlying FC establishment are unclear. Here, we report that, in Arabidopsis thaliana, a PRC2 (for Polycomb repressive complex 2) histone H3 lysine-27 (H3K27) methyltransferase complex, functions to inhibit FC establishment during LR initiation. We found that functional loss of the PRC2 subunits EMF2 (for EMBRYONIC FLOWER 2) or CLF (for CURLY LEAF) leads to a great increase in the number of LRs formed in the primary root. The CLF H3K27 methyltransferase binds to chromatin of the auxin efflux carrier gene PIN FORMED 1 (PIN1), deposits the repres- sive mark H3K27me3 to repress its expression, and functions to down-regulate auxin maxima in root tissues and inhibit FC establishment. Our findings collectively suggest that EMF2-CLF PRC2 acts to down-regulate root auxin maxima and show that this complex represses LR formation in Arabidopsis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号