首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four antibiotics were evaluated for their effects on eliminating the hypervirulent Agrobacterium tumefaciens strain C58C1 ATHV RifR (pEHA101)/p35-gus-intron from walnut somatic embryos and on the production of secondary somatic embryos and the transformed somatic embryos. Exposure to 100–1000 mg l−1 of ampicillin, carbenicillin or cefotaxime respectively for up to 60 days did not eliminate the A. tumefaciens while timentin at 500–1000 mg l−1 eradicated it from somatic embryos. One-hour acidified medium treatments and the addition of 100 mg l−1 kanamycin to 500 mg l−1 ampicillin, carbenicillin, cefotaxime or timentin were of little help in eliminating the Agrobacterium. All four antibiotics reduced somatic embryo production, carbenicillin minimally and cefotaxime maximally, especially at higher concentrations, in comparison with antibiotic-free medium. Putative transformed embryos were selected for continued proliferation on a 100 mg l−1 kanamycin-containing medium. Histochemical assessments indicated that more gus-positive somatic embryos, particularly fully gus-positive embryos, regenerated from timentin-containing medium than from other antibiotic-containing media under equivalent conditions. Transformed embryos have been grown and converted into plants and gus activity was observed in whole plants. Received: 13 July 1999 / Revision received: 2 December 1999 / Accepted: 6 December 1999  相似文献   

2.
In stems of Ricinus communis and leaves of Kalanchoë daigremontiana, rapidly growing tumors were induced by the wild type strains of Agrobacterium tumefaciens C58 and A281 (p35 Sgusint). Transformed cells, monitored by histochemical β-glucuronidase (GUS) staining, showed GUS activity in K. daigremontiana tumors in up to 100% of the tissue. In R. communis tumors, however, GUS activity was patchy, probably due to interference in gus expression from highly active phenolic compounds. Functionality of the sieve elements within the vascular bundles of the tumor and their connection with host stem bundles were shown by applying fluorescein to source leaves as a tracer of phloem-mobile solutes. The transport pathway within the tumor and the mechanism of phloem unloading were investigated by iontophoretic injection of Lucifer yellow CH into sieve tubes. Apparent symplastic solute unloading into parenchyma cells was confirmed by localizing common primary pit fields by staining them with aniline blue. In spite of the evidence for symplastic unloading, the activity of acid cell wall invertase (CWI) was about tenfold higher in tumor than in the adjacent host stem tissue. These results indicate primary independence of phloem unloading of CWI in tumors.  相似文献   

3.
Our previous results demonstrated that endogenous cytokinins are involved in the shooty potential of tumors initiated on Eucalyptus globulus plantlets inoculated with Agrobacterium tumefaciens strain 82.139 [A. Azmi et al. (1997a) Plant Sci 127: 81–90]. In order to investigate whether or not these hormones are distributed homogeneously in the tumors prior to the onset of bud regeneration, decapitated hypocotyls were inoculated with the strain C58pMP90/T139 GUS-INT harboring the wild transferred DNA (T-DNA) of strain 82.139 tagged with the β-glucuronidase (gus)-reporter gene. In situ immunolocalization of zeatin, dihydrozeatin and isopentenyladenine was performed in the developing tumors and combined with the histo-enzymological β-glucuronidase assay. It was found that the expression of the T-DNA was restricted to only some small areas located deeply in the tumors. These sites were also provided with a high cytokinin signal while the untransformed parts of the tumors displayed a weaker signal, except in the early differentiating tracheary elements. The regenerated buds were untransformed and originated from superficial parts of the tumors provided with a moderate signal for cytokinins. The method of co-localization of both cytokinins and gus expression developed here might be helpful for further studies concerning the role of these hormones in controlling gene expression at cell and tissue levels. Received: 24 May 2000 / Accepted: 12 October 2000  相似文献   

4.
A transformation system is described for Datura meteloides using the supervirulent Agrobacterium tumefaciens strain 1065, carrying both the β-glucuronidase (gusA) and neomycin phosphotransferase II (nptII) genes between the T-DNA border sequences of the binary vector. The importance of conditions such as the preculture period of the plant tissues, wounding, bacterial dilution and incubation time were evaluated in terms of transgenic plant production. A preculture period of 2–3 days, using a 1:20 or 1:10 (vol:vol) dilution of an overnight bacterial culture, resulted in optimum shoot regeneration, with 48% from a total of 576 explants regenerating transformed shoots. Expression of the gusA and nptII genes was confirmed by a GUS fluorometric assay and by NPTII ELISA. Southern analysis revealed the integration of both transgenes, which segregated as dominant Mendelian traits in seed progeny. Received: 7 September 1998 / Revision received: 16 November 1998 / Accepted: 16 November 1998  相似文献   

5.
Hypocotyl segments from the seeds of Japanese persimmon (Diospyros kaki Thunb) were cultured on a modified Murashige and Skoog medium supplemented with N-(2-chloro-4-pyridyl)-N′-phenylurea, zeatin or 6-benzylaminopurine. The highest frequency of shoot regeneration was observed when the segments were cultured on medium containing 2 mg/l of zeatin. This culture system was adapted to Agrobacterium-mediated transformation. The hypocotyl segments were inoculated with Agrobacterium tumefaciens strains harboring binary vectors, which contained the neomycin phosphotransferase II gene and the β-glucuronidase gene. Regenerated shoots were selected on a medium containing kanamycin. Histochemical GUS assay showed that the shoots regenerated from the segments inoculated with EHA101/pSMAK251 expressed the gus gene. The presence and integration of the gus gene was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. The regeneration frequency of transformed shoot was 11.1%. The transgenic shoots were rooted and developed into whole plants within 4–5 months. Received: 18 August 1997 / Revision received: 8 October 1997 / Accepted: 11 November 1997  相似文献   

6.
Summary In vitro growth rates of transformed (crown gall) and nontransformed cultures ofVinca rosea L. were greater at 32°C than at 25°C. The growth of transformed cells was significantly inhibited by kanamycin, neomycin, and chloramphenicol but not by cycloheximide. Nontransformed cells were inhibited by all four antibiotics., The relative growth rates of transformed cultures induced by four different strains, ofAgrobacterium tumefaciens did not correspond to the relative rates of tumor weight increase observed in vivo nor with the relative weights of tumor tissue in, plants 8 weeks after inoculation with the corresponding bacterial strains.  相似文献   

7.
Plant regeneration via somatic embryogenesis was achieved from leaf petioles of Pelargonium sp. `Frensham' cultured on Murashige and Skoog medium containing 15 μM N6-benzyladenine, and 5 μM α-naphthaleneacetic acid (NAA). More than 80% of these somatic embryos converted into plants when isolated and cultured on Murashige and Skoog medium supplemented with 15 μM NAA. Stable transgenic plants were obtained by co-cultivation of the petioles (prior to culture) with Agrobacterium tumefaciens strains LBA4404 (harbouring a binary vector pBI121 carrying the nptII and gus genes) and LBG66 (harbouring a binary plasmid pJQ418 carrying the gus/int:nptII fusion gene). Transformants were selected using kanamycin and transformation was verified by β-glucuronidase histochemical assay and polymerase chain reaction. Southern analysis further confirmed the integration of these genes into the genome of transgenic plants. We report here for the first time, an Agrobacterium-mediated model transformation system coupled with regeneration via somatic embryogenesis for production of transgenics in Pelargonium sp. Received: 20 September 1996 / Accepted: 13 November 1996  相似文献   

8.
9.
 Short-season adapted soybean [Glycine max (L.) Merrill] genotypes (maturity group 0 and 00) were susceptible to Agrobacterium tumefaciens in tumor-formation assays with A. tumefaciens strains A281, C58 and ACH5. The response was bacterial-strain and plant-cultivar dependent. In vitro Agrobacterium-mediated transformation of cotyledonary node explants of these genotypes with A. tumefaciens EHA105/pBI121 was inefficient but resulted in a transgenic AC Colibri plant carrying a linked insertion of the neomycin phosphotransferase and β-glucuronidase (gus) transgenes. The transgenes were transmitted to the progeny and stable gus expression was detected in the T7 generation. The low rate of recovery of transgenic plants from the co-cultured cotyledonary explants was attributed to inefficient transformation of regenerable cells, and/or poor selection or survival of such cells and not to poor susceptibility to Agrobacterium, since, depending on the cultivar, explants were transformed at a rate of 27–92%, but transformation events were usually restricted to non-regenerable callus. Received: 8 January 1998 / Revision received: 30 June 1999 / Accepted: 12 July 1999  相似文献   

10.
Genetically transformed plants of Cymbidium were regenerated after cocultivating protocorm-like bodies (PLB) with Agrobacterium tumefaciens strain EHA101 (pIG121Hm) that harbored genes for β-glucuronidase (gus), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase II (nptII). PLB of three genotypes maintained in liquid new Dogashima medium (NDM), were subjected to transformation experiments. The PLB inoculated with Agrobacterium produced secondary PLB, 4 weeks after transfer onto 2.5 g L−1 gellan gum-solidified NDM containing 10 g L−1 sucrose, 20 mg L−1 hygromycin and 40 mg L−1 meropenem. Transformation efficiency was affected by genotype and the presence of acetosyringone during cocultivation. The highest transformation efficiency was obtained when PLB from the genotype L4 were infected and cocultivated with Agrobacterium on medium containing 100 μM acetosyringone. Transformation of the hygromycin-resistant plantlets regenerated from different sites of inoculated PLB was confirmed by histochemical GUS assay, PCR analysis and Southern blot hybridization.  相似文献   

11.
A transformation system is described for Solanum dulcamara usingthe supervirulentAgrobacterium tumefaciens strain 1065, carryingboth the ß-glucuronidase (gus) and neomycin phosphotransferaseII (npt II) genes adjacent to the right and left T-DNA borders,respectively. Leaf explants were more efficient for the productionof transformed plants compared to stem explants on medium containing50 mg l-1of kanamycin sulphate. A 1:10 (v:v) dilution of anovernight culture ofAgrobacterium gave optimal transformationin terms of transgenic plant regeneration. From a total of 174kanamycin-resistant plants selected by their antibiotic resistance,16 failed to exhibit GUS activity. Southern analysis revealedthat these GUS-negative transformants originated from threeindependently transformed cell lines. Restriction enzyme analysesshowed that the GUS-negative plants had both the gus and nptII genes integrated into their genome (one plant had a singlecopy of each gene; the other two plants had multiple copies),with major rearrangement of the gus gene occurring in plantswith several copies of the transgene. GUS-negative plants showedleaf malformations, delayed flowering and a reduction in flower,fruit and seed production compared to GUS-positive and non-transformed(control) plants. Although gene silencing of the gus gene occurred,albeit at a low frequency (9.2%), the transformation systemdescribed generates large numbers of phenotypically normal,stably transformed plants. Copyright 2000 Annals of Botany Company Agrobacterium -mediated transformation, gene silencing, Solanum dulcamara L. (Bittersweet, Woody Nightshade), T-DNA truncation, transgene expression  相似文献   

12.
Cotyledonary explants of two “Egusi” genotypes, ‘Ejagham’ and NHC1-130, were co-cultivated with Agrobacterium tumefaciens strain EHA101 carrying either plasmid pIG121-Hm harbouring genes coding for beta-glucuronidase (gus), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase II (nptII) or plasmid pBBRacdS harbouring these same genes along with a gene coding for 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Six weeks after co-cultivation, more than 35% of explants produced shoots in both cultivars. A DNA fragment corresponding to the gus gene or the selection marker nptII was amplified from genomic DNA extracted from leaves of regenerated plant clones rooted on hormone-free MS medium containing 100 mg/l kanamycin, suggesting their transgenic nature. Southern blot analysis confirmed successful integration of one to three copies of the gus gene. Transformation efficiencies of cultivar NHC1-130 with EHA101(pIG121-Hm) and EHA101(pIG121-Hm, pBBRacdS) were 3.8% and 10%, respectively, which were higher than those obtained for cultivar ‘Ejagham’ of 2.4% and 5.7%, respectively. Co-cultivation medium containing 5 mg/l BA was effective for obtaining high transformation efficiency for both cultivars as compared with that without it.  相似文献   

13.
14.
Greenhouse-grown plants of turnip rape Brassica rapa ssp. oleifera (syn. B. campestris) cv. Valtti and Sisu were transformed by Agrobacterium tumefaciens infection. Of the three A. tumefaciens strains tested (C58C1, EHA105 and LBA4404), LBA4404 gave the best results. Segments excised from one to two upper internodes of an inflorescence-carrying stem served as explants for the Agrobacterium infection. Cultivation of the explants horizontally during the first 3 days of co-cultivation with A. tumefaciens following immediate selection of transformed tissue of the stem segments placed vertically basal side down were critical. Use of silver nitrate (5–10 mg/l) in the culture medium and Micropore (3 M) paper tape for sealing plates was also beneficial. Transgenic shoots were recovered using either hygromycin or kanamycin (20–25 mg/l) selection. Hygromycin was preferable, as the proportion of `escapes' was 90% under kanamycin and 10% under hygromycin selection. Regeneration was achieved by culturing the explants for 3–6 days on 0.5 mg/l of 2,4-di-chlorophenoxyacetic acid and 1–2 weeks on 2–3 mg/l of 6-benzyl aminopurine with/without 0.05 mg/l α-naphthaleneacetic acid. Recovered shoots were then cultured on hormone-free MS medium. This culture program gave 60–80% shoot regeneration. Regenerants were tested by histological β-glucuronidase staining and Southern blotting. The recovery rate of transgenic shoots was 4–9% of the number of explants used in the experiments. Received: 28 November 1997 / Revision received: 25 March 1998 / Accepted: 22 November 1998  相似文献   

15.
16.
Oncidium and Odontoglosum orchid species have reduced display lives and are thus commercially less important than Phalaenopsis. One approach to prolonging display life permanently is to transform Oncidium and Odontoglossum with the ethylene receptor mutant gene etr1-1 from Arabidopsis under control of a flower specific promoter; this should reduce their sensitivity to exogenous ethylene. To achieve this it will be necessary to establish an efficient regeneration protocol using somatic embryogenesis and a routine Agrobacterium tumefaciens-mediated transformation procedure. Protocorm-like bodies (PLBs) of both orchid genera were regenerated from leaf tip explants. Leaf tips and PLBs, cultured in liquid and solid media, were compared as targets for genetic transformation. No transgenic shoots were obtained from leaf tips, while PLBs of Oncidium and Odontoglossum cultured on solid medium were successfully transformed with an expression vector containing nptII and gus genes driven by the cauliflower mosaic virus (CaMV) 35S promoter. Applying the A. tumefaciens strain EHA 105, transformation efficiencies of 1.3–2.7% were achieved for the investigated genotypes. Transformation with etr1-1 gene was achieved subsequently. Oncidium ‘Sweet Sugar’ has been successfully transformed and validated by PCR and Southern analysis.  相似文献   

17.
The technologies allowing the production of transgenic plants without selectable marker genes, is of great interest in public and environmental safety. For generating such marker-free transgenic plants, possibility has been offered by Multi-Auto-Transformation [MAT] vector system, which combines positive selection, using the isopentenyl transferase (ipt) gene, with a site-specific recombination that generates marker-free plants. In this study Agrobacterium tumefaciens strain EHA105 harboring an ipt-type MAT vector, pMAT21, containing lacZ, gus genes and the removable cassette in the T-DNA region was used to produce marker-free transgenic Kalanchoe blossfeldiana Poelln., employing ipt gene as the selectable marker gene. Co-cultivated explants were cultured on hormone- and selective agent-free MS medium, and 85% of the regenerated shoots showed ipt-shooty phenotype with GUS expression. Forty-one morphologically normal shoots were produced during the subculture. More than ninety percent of the normal shoots were ipt , gus but lacZ + as determined by PCR analyses. These results indicate that the ipt phenotype was clearly distinguishable from non-transgenic as well as transgenic marker-free shoots. This study opens interesting perspective for the generation of marker-free transgenic K. blossfeldiana with objective useful transgene.  相似文献   

18.
In vivo cytokine gene transfer may greatly simplify autologous tumor vaccine production. Herpes simplex viral amplicon vectors (HSV) are efficient gene-transfer vehicles and may overcome many limitations of prior gene-transfer methods. The interleukin-2 (IL-2) and β-galactosidase genes (lac) were inserted into an HSV amplicon vector and tested in a subcutaneous squamous cell carcinoma of lung origin to determine the efficiency of in vivo gene transfer and the utility of such a direct gene-transfer approach in cancer therapy. Gene transfer and expression were assessed by histochemical staining and enzyme-linked immunosorbent assay (ELISA). Growth of injected tumors as well as non-injected tumors remote from the site of injection was assessed. Assessment of lymphocytic infiltrates into tumors was performed by immunohistochemistry. Survival was recorded. Direct in vivo injection of established tumors with a HSVil2 resulted in efficient gene transfer and production of IL-2 in the injected tumor but not at tumors remote from the sites of injection. There was a significant suppression of growth of the tumors injected with HSVil2 (P < 0.01) when compared with tumors injected with HSV without il2. Of note, growth of tumors remote from sites of HSVil2 injection was also retarded and treatment was associated with a significant (P < 0.05) improvement in survival. Direct intratumoral administration of HSV amplicon vectors can result in efficient transfer of cytokine genes and have antitumor efficacy. HSV vectors are therefore potentially useful agents in such in vivo gene-therapy strategies and simplify cytokine antitumor gene-therapy strategies. Received: 19 June 1998 / Accepted: 25 September 1998  相似文献   

19.
A protocol was developed for rapid and efficient production of transgenic celery plants via somatic embryo regeneration from Agrobacterium tumefaciens- inoculated leaf sections, cotyledons and hypocotyls. These explants were excised from in vitro seedlings of the cvs. XP166 and XP85 and inoculated with A. tumefaciens strain EHA105 containing the binary vector pBISN1. PBISN1 has the neomycin phosphotransferase gene (nptII) and an intron interrupted β-glucuronidase (GUS) reporter gene (gusA). Co-cultivation was carried out for 4 d in the dark on callus induction medium (CIM): Gamborg B5 + 2.79 μM kinetin + 2.26 μM 2,4-dichlorophenoxyacetic acid (2,4-D) supplemented with 100 μM acetosyringone. Embryogenic calluses resistant to kanamycin (Km) were then recovered on CIM + 25 mg l−1 Km + 250 mg l−1 timentin after 12 weeks. Subsequently, a large number of Km-resistant and GUS-positive transformants, tens to hundreds per explant were regenerated via somatic embryogenesis on Gamborg B5 + 4.92 μM 6 (γ,γ-dimethylallylamino)-purine (2iP) + 1.93 μM α-naphthaleneacetic acid (NAA) + 25 mg l−1 Km + 250 mg l−1 timentin after 8 weeks. Using this protocol, the transformation frequency was 5.0% and 5.0% for leaf sections, 17.8% and 18.3% for cotyledons, and 15.9% and 16.7% for hypocotyl explants of cvs. XP85 and XP166, respectively. Stable integration of the model transgenes with 1–3 copy numbers was confirmed in all ten randomly selected transgenic events by Southern blot analysis of gusA. Progeny analysis by histochemical GUS assay showed stable Mendelian inheritance of the transgenes. Thus, A. tumefaciens-mediated transformation of cotyledons or hypocotyls provides an effective and reproducible protocol for large-scale production of transgenic celery plants.  相似文献   

20.
A particle inflow gun was used to transfer the plasmid pAHC25 containing the bar gene conferring resistance to glufosinate and the gusA reporter gene, each driven by the maize ubiquitin promoter, to mature embryos of Pinus roxburghii (chir pine). High levels of transient expression were obtained when embryos were cultured for 6 days on 10 μM benzyl adenine-containing medium and then exposed to high osmoticum (0.5 M sucrose) before and after bombardment. Selection on medium containing Basta enabled recovery of stably transformed shoots, both from the epicotyl and from adventitious buds. The primary transformed shoots from the epicotyl were multiplied via axillary shoots. Transformation was confirmed by histochemical staining for β-glucuronidase (GUS) activity, by polymerase chain reaction (PCR) amplification of fragments of gusA and nos terminator, and by the resistance of needles to Basta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号