首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transmissible murine colonic hyperplasia, cuased by a variant of Citrobacter freundii (4280). was shown to be modified by diet and by host strain and species. Four different diets fed to mice inoculated with C frundii 4280 were found to have a significant but varying influence on the severity of hyperplasia. Diet also influenced the colonic crypt height of uninoculated, control mice. F344 rats, Syrian hamsters, and NIH Swiss [N:(S)], C57BL/6J, C3H/HeJ, and DBA/2J mice were inoculated with C freundii 4280. Marked strain differences were noted in the mice in mortality and severity of the colonic hyperplasia. The NIH Swiss mice had the greatest and the C57BL/6J mice had the least mucosal hyperplasia. The rats and hamsters did not develop disease or maintain infection after inoculation with the organism. Twenty isolates of Citrobacter from a range of biologic sources were inoculated into susceptible mice, but only mice inoculated with C freundii 4280 developed the disease.  相似文献   

2.
  1. Download : Download high-res image (292KB)
  2. Download : Download full-size image
  相似文献   

3.
Transmissible murine colonic hyperplasia was diagnosed in 6-month-old A/J mice kept under standard laboratory conditions. Bacterial cultures revealed the presence of Citrobacter freundii (4280). Clinical signs included rough coats, feces adhering to the anus, slight dehydration and rectal prolapses. A nonclotting sanquinous intestinal fluid and gross colonic thickening were frequently seen at necropsy. Morbidity was approximately 50%; mortality approximately 25%. Tetracycline appeared to be effective in controlling the disease.  相似文献   

4.
The major classes of enteric bacteria harbour a conserved core genomic structure, common to both commensal and pathogenic strains, that is most likely optimized to a life style involving colonization of the host intestine and transmission via the environment. In pathogenic bacteria this core genome framework is decorated with novel genetic islands that are often associated with adaptive phenotypes such as virulence. This classical genome organization is well illustrated by a group of extracellular enteric pathogens, which includes enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli (EHEC) and Citrobacter rodentium, all of which use attaching and effacing (A/E) lesion formation as a major mechanism of tissue targeting and infection. Both EHEC and EPEC are poorly pathogenic in mice but infect humans and domestic animals. In contrast, C. rodentium is a natural mouse pathogen that is related to E. coli, hence providing an excellent in vivo model for A/E lesion forming pathogens. C. rodentium also provides a model of infections that are mainly restricted to the lumen of the intestine. The mechanism's by which the immune system deals with such infections has become a topic of great interest in recent years. Here we review the literature of C. rodentium from its emergence in the mid-1960s to the most contemporary reports of colonization, pathogenesis, transmission and immunity.  相似文献   

5.
Citrobacter rodentium infection of mice serves as a relevant small animal model to study enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) infections in man. Enteropathogenic E. coli and EHEC translocate Tir into the host cytoplasmic membrane, where it serves as the receptor for the bacterial adhesin intimin and plays a central role in actin condensation beneath the adherent bacterium. In this report, we examined the function of C. rodentium Tir both in vitro and in vivo. Similar to EPEC, C. rodentium Tir is tyrosine phosphorylated and is essential for actin condensation. Citrobacter Tir and EPEC Tir are functionally interchangeable and both require tyrosine phosphorylation to mediate actin rearrangements. In contrast, Citrobacter Tir supports actin nucleation in EHEC independent of tyrosine phosphorylation, while EHEC Tir cannot replace Citrobacter Tir for this function. This indicates that C. rodentium and EPEC use an actin nucleating mechanism different from EHEC. We also found that Tir is expressed and translocated into mouse enterocytes in vivo by C. rodentium during infections. This represents the first direct demonstration of a type III effector translocated in vivo into a natural host by any pathogen. In addition, we showed that Tir, but not its tyrosine phosphorylation, is essential for C. rodentium to colonize the large bowel and induce attaching/effacing (A/E) lesions and colonic hyperplasia in mice, and that both EPEC Tir and EHEC Tir can substitute for Citrobacter Tir for these activities in vivo. These results thus demonstrate that Tir is an essential virulence factor in this infection model. The data also show that the function of Tir tyrosine phosphorylation and its subsequent actin nucleating activity are not essential for C. rodentium colonization of the mouse gut nor for inducing A/E lesions and colonic hyperplasia, thereby uncoupling colonization and disease from actin condensation for this A/E pathogen.  相似文献   

6.
Western-style diet (WSD), which is high in fat and low in fiber, lacks nutrients to support gut microbiota. Consequently, WSD reduces microbiota density and promotes microbiota encroachment, potentially influencing colonization resistance, immune system readiness, and thus host defense against pathogenic bacteria. Here we examined the impact of WSD on infection and colitis in response to Citrobacter rodentium. We observed that, relative to mice consuming standard rodent grain-based chow (GBC), feeding WSD starkly altered the dynamics of Citrobacter infection, reducing initial colonization and inflammation but frequently resulting in persistent infection that associated with low-grade inflammation and insulin resistance. WSD’s reduction in initial Citrobacter virulence appeared to reflect that colons of GBC-fed mice contain microbiota metabolites, including short-chain fatty acids, especially acetate, that drive Citrobacter growth and virulence. Citrobacter persistence in WSD-fed mice reflected inability of resident microbiota to out-compete it from the gut lumen, likely reflecting the profound impacts of WSD on microbiota composition. These studies demonstrate potential of altering microbiota and their metabolites by diet to impact the course and consequence of infection following exposure to a gut pathogen.  相似文献   

7.
Acute and chronic forms of inflammation are known to affect liver responses and susceptibility to disease and injury. Furthermore, intestinal microbiota has been shown critical in mediating inflammatory host responses in various animal models. Using C. rodentium, a known enteric bacterial pathogen, we examined liver responses to gastrointestinal infection at various stages of disease pathogenesis. For the first time, to our knowledge, we show distinct liver pathology associated with enteric infection with C. rodentium in C57BL/6 mice, characterized by increased inflammation and hepatitis index scores as well as prominent periportal hepatocellular coagulative necrosis indicative of thrombotic ischemic injury in a subset of animals during the early course of C. rodentium pathogenesis. Histologic changes in the liver correlated with serum elevation of liver transaminases, systemic and liver resident cytokines, as well as signal transduction changes prior to peak bacterial colonization and colonic disease. C. rodentium infection in C57BL/6 mice provides a potentially useful model to study acute liver injury and inflammatory stress under conditions of gastrointestinal infection analogous to enteropathogenic E. coli infection in humans.  相似文献   

8.
9.
Citrobacter rodentium belongs to a family of human and animal enteric pathogens that includes the clinically significant enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). These pathogens use attaching and effacing (A/E) lesions to colonize the host gastrointestinal tract. In this study we have used bioluminescence imaging (BLI) to investigate the organ specificity, dynamics of colonization and clearance of mice by C. rodentium in situ and in real time. The bioluminescent C. rodentium derivative, strain ICC180, expresses the luxCDABE operon from the entemopathogenic nematode symbiont Photorhabdus luminescens and light levels accurately reflect bacterial numbers both in vitro and in vivo. We have demonstrated that primary colonization of the mouse by C. rodentium takes place within the caecum, specifically within the specialized patch of lymphoid tissue known as the caecal patch. Following colonization of the caecum C. rodentium established a colonic infection. Clearance of C. rodentium ICC180 parallels the colonization dynamics, i.e. the caecum was first to be cleared followed by the colon. A bioluminescent eae (encoding the outer membrane adhesin intimin) C. rodentium mutant failed to establish long-term colonization, although low levels of bacteria could be recovered for up to 3 days post challenge from the caecum.  相似文献   

10.
The transmissible spongiform encephalopathies (TSE), or prion diseases, are a group of rare, fatal, and transmissible neurodegenerative diseases of mammals for which there are no known viral or bacterial etiological agents. The bovine form of these diseases, bovine spongiform encephalopathy (BSE), has crossed over into humans to cause variant Creutzfeldt-Jakob disease. As a result, BSE and the TSE diseases are now considered a significant threat to human health. Understanding the basic mechanisms of TSE pathogenesis is essential for the development of effective TSE diagnostic tests and anti-TSE therapeutic regimens. This review provides an overview of the molecular mechanisms that underlie this enigmatic group of diseases.  相似文献   

11.
12.
13.
14.
15.
Citrobacter rodentium belongs to a family of extracellular enteric pathogens that include enterohaemorrhagic and enteropathogenic Escherichia coli, which colonises the gastrointestinal mucosa by the attaching and effacing (A/E) mechanism. We previously described the appearance of a 'hyper-infectious' state after passage of C. rodentium through the murine gastrointestinal tract. Here we report that host-adapted C. rodentium is able to efficiently adhere and trigger actin polymerisation on cultured epithelial cells. Consistent with these observations we recorded higher levels of expression of genes carried on the LEE pathogenicity island and type III secretion system effector genes carried on prophages compared with in vitro-grown bacteria; importantly, the level of ler gene expression was unchanged. These phenotypes were lost after shed C. rodentium was adapted to the external environment. Upon exposure of C57Bl/6 mice, environmentally adapted C. rodentium was no longer infectious at the low doses associated with host-adapted bacteria and the bacteria were found to be localised in the caecal patch in a similar way to C. rodentium cultured in laboratory media. Thus, the 'hyper-infectious' host-adapted state, allowing efficient transmission and colonisation of naive hosts, is transient in nature and gradually lost after shedding into the environment.  相似文献   

16.
Citrobacter rodentium is an enteric bacterial pathogen of the mouse intestinal tract that triggers inflammatory responses resembling those of humans infected with enteropathogenic and enterohemorrhagic Escherichia coli. Inflammasome signaling is emerging as a central regulator of inflammatory and host responses to several pathogens, but the in vivo role of inflammasome signaling in host defense against C. rodentium has not been characterized. Here, we show that mice lacking the inflammasome components Nlrp3, Nlrc4, and caspase-1 were hypersusceptible to C. rodentium-induced gastrointestinal inflammation. This was due to defective interleukin (IL)-1β and IL-18 production given that il-1β(-/-) and il-18(-/-) mice also suffered from increased bacterial burdens and exacerbated histopathology. C. rodentium specifically activated the Nlrp3 inflammasome in in vitro-infected macrophages independently of a functional bacterial type III secretion system. Thus, production of IL-1β and IL-18 downstream of the Nlrp3 and Nlrc4 inflammasomes plays a critical role in host defense against enteric infections caused by C. rodentium.  相似文献   

17.
18.
Inflammatory bowel disease arises from the interplay between luminal bacteria and the colonic mucosa. Targeted inhibition of pro-inflammatory pathways without global immunosuppression is highly desirable. Apolipoprotein (apo) E has immunomodulatory effects and synthetically derived apoE-mimetic peptides are beneficial in models of sepsis and neuroinflammation. Citrobacter rodentium is the rodent equivalent of enteropathogenic Escherichia coli, and it causes colitis in mice by colonizing the surface of colonic epithelial cells and inducing signaling events. We have reported that mice deficient in inducible nitric-oxide (NO) synthase (iNOS) have attenuated C. rodentium-induced colitis. We used young adult mouse colon (YAMC) cells that mimic primary colonic epithelial cells to study effects of an antennapedia-linked apoE-mimetic peptide, COG112, on C. rodentium-activated cells. COG112 significantly attenuated induction of NO production, and iNOS mRNA and protein expression, in a concentration-dependent manner. COG112 inhibited the C. rodentium-stimulated induction of iNOS and the CXC chemokines KC and MIP-2 to the same degree as the NF-kappaB inhibitors MG132 or BAY 11-7082, and there was no additive effect when COG112 and these inhibitors were combined. COG112 significantly reduced nuclear translocation of NF-kappaB, when assessed by electromobility shift assay, immunoblotting, and immunofluorescence for p65. This correlated with inhibition of both C. rodentium-stimulated IkappaB-alpha phosphorylation and degradation, and IkappaB kinase activity, which occurred by inhibition of IkappaB kinase complex formation rather than by a direct effect on the enzyme itself. These studies indicate that apoE-mimetic peptides may have novel therapeutic potential by inhibiting NF-kappaB-driven proinflammatory epithelial responses to pathogenic colonic bacteria.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号