首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An integrated biological process was developed for the conversion of whey lactose to lactic acid. We report about the achievement of maximum COD reduction and thus a substantial unburdening of the environment, combined with the economic production of lactic acid, appropriate for industrial scale. The process – designed for continuous operation – consists of four main steps: (i) Protein recovery by ultrafiltration leading to the first product: protein concentrate. The resulting filtrate is the fermentation substrate acid whey permeate. (ii) Adjustment of the composition of the permeate in the medium preparation step in order to ensure the proper function of the following process steps. (iii) Conversion of the lactose to lactate by fermentation with lactic acid bacteria in a cell recycle reactor, using ceramic microfiltration membranes. (iiii) Conversion of the lactate in the cell-free permeate stream of the fermentation to free lactic acid by bipolar electrodialysis. A stable operation of the process was attained up to more than 2000?hours. Using a new selected strain of lactic acid bacteria, a lactic acid productivity of 17?g?l?1?h?1 is achieved at total lactose conversion without any nitrogen supplements like yeast extract. A lactic acid concentration of 190?g?l?1 is obtained in the acidic cell of the electrodialysis unit and the COD of the remaining sewage is diminished by 92%. As an additional cost reduction item, the neutralization agent of the fermentation is recovered in the caustic cell of the bipolar electrodialysis unit. A cost evaluation for an industrial scale process (100?000?t of whey per year) resulted in a price of 0.66 $ per kg of lactic acid, which under present terms hits the goal of making this process economic for the large scale production of lactic acid as an attractive building block for various purposes in chemical industry.  相似文献   

2.
Biomass and lactic acid production by a Lactobacillus plantarum strain isolated from Serrano cheese, a microorganism traditionally used in foods and recognized as a potent probiotic, was optimized. Optimization procedures were carried out in submerged batch bioreactors using cheese whey as the main carbon source. Sequential experimental Plackett–Burman designs followed by central composite design (CCD) were used to assess the influence of temperature, pH, stirring, aeration rate, and concentrations of lactose, peptone, and yeast extract on biomass and lactic acid production. Results showed that temperature, pH, aeration rate, lactose, and peptone were the most influential variables for biomass formation. Under optimized conditions, the CCD for temperature and aeration rate showed that the model predicted maximal biomass production of 14.30 g l−1 (dw) of L. plantarum. At the central point of the CCD, a biomass of 10.2 g l−1 (dw), with conversion rates of 0.10 g of cell g−1 lactose and 1.08 g lactic acid g−1 lactose (w/w), was obtained. These results provide useful information about the optimal cultivation conditions for growing L. plantarum in batch bioreactors in order to boost biomass to be used as industrial probiotic and to obtain high yields of conversion of lactose to lactic acid.  相似文献   

3.
Lactic acid is a versatile organic acid, which finds major application in the food, pharmaceuticals, and chemical industries. Microbial fermentation has the advantage that by choosing a strain of lactic acid bacteria producing only one of the isomers, an optically pure product can be obtained. The production of l(+) lactic acid is of significant importance from nutritional viewpoint and finds greater use in food industry. In view of economic significance of immobilization technology over the free-cell system, immobilized preparation of Lactobacillus casei was employed in the present investigation to produce l(+) lactic acid from whey medium. The process conditions for the immobilization of this bacterium using calcium pectate gel were optimized, and the developed cell system was found stable during whey fermentation to lactic acid. A high lactose conversion (94.37%) to lactic acid (32.95 g/l) was achieved with the developed immobilized system. The long-term viability of the pectate-entrapped bacterial cells was tested by reusing the immobilized bacterial biomass, and the entrapped bacterial cells showed no decrease in lactose conversion to lactic acid up to 16 batches, which proved its high stability and potential for commercial application.  相似文献   

4.
Summary Investigations have been carried out on lactic acid production by Lactobacillus helveticus CNRZ 303 in whey ultrafiltrate. Addition of beet molasses was investigated with good results, although yeast extract proved to be more effective. The size of inoculum and the preculture medium also played a significant role in determining the amount of lactic acid produced during the fermentation process. High lactose consumption (94.09%), together with good lactic acid production (26.09 g/l) and yield (0.90%), were obtained in whey ultrafiltrate supplemented with 1% (w/v) beet molasses (WUM), with a 10% (w/v) inoculum and peptonized milk as preculture medium. Although these results were similar to those obtained when yeast extract was used as supplement, the maximum volumetric productivities proved to be quite different, and were definitely higher with yeast extract. Offprint requests to: L. Chiarini  相似文献   

5.
Solid-state fermentation (SSF) was evaluated to produce gluconic acid by metal resistant Aspergillus niger (ARNU-4) strain using tea waste as solid support and with molasses based fermentation medium. Various crucial parameters such as moisture content, temperature, aeration and inoculum size were derived; 70% moisture level, 30 degrees C temperature, 3% inoculum size and an aeration volume of 2.5l min(-1) was suited for maximal (76.3 gl(-1)) gluconic acid production. Non-clarified molasses based fermentation media was utilized by strain ARNU-4 and maximum gluconic acid production was observed following 8-12 days of fermentation cycle. Different concentrations of additives viz. oil cake, soya oil, jaggary, yeast extract, cheese whey and mustard oil were supplemented for further enhancement of the production ability of microorganism. Addition of yeast extract (0.5%) was observed inducive for enhanced (82.2 gl(-1)) gluconic acid production.  相似文献   

6.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

7.
Lactic acid fermentation includes several reactions in association with the microorganism growth. A kinetic study was performed of the conversion of multiple substrates to lactic acid using Lactobacillus bulgaricus. Batch experiments were performed to study the effect of different substrates (lactose, glucose, and galactose) on the overall bioreaction rate. During the first hours of fermentation, glucose and galactose accumulated in the medium and the rate of hydrolysis of lactose to glucose and galactose was faster than the convesion of these substrates. Once the microorganism built the necessary enzymes for the substrate conversion to lactic acid, the conversion rate was higher for glucose than for galactose. The inoculum preparation was performed in such a way that healthy young cells were obtained. By using this inoculum, shorter fermentation times with very little lag phase were observed. The consumption patterns of the different substrates converted to lactic acid were studied to determine which substrate controls the overall reaction for lactic acid production. A mathematical model (unstructured Monod type) was developed to describe microorganism growth and lactic acid production. A good fit with a simple equation was obtained. It was found experimentally that the approximate ratio of cell to substrate was 1 to 10, the growth yield coefficient (Y(XS)) was 0.10 g cell/g substrate, the product yield (Y(PS)) was 0.90 g lactic acid/g substrate, and the alpha parameter in the Luedeking-Piret equation was 9. The Monod kinetic parameters were obtained. The saturation constant (K(S)) was 3.36 g/L, and the specific growth rate (microm ) was 1.14 l/h.  相似文献   

8.
Summary Cheese whey ultrafiltrate (WU) was used as the carbon source for the production of lactic acid by batch fermentation with Lactobacillus helveticus strain milano. The fermentation was conducted in a 400 ml fermentor at an agitation rate of 200 rpm and under conditions of controlled temperature (42° C) and pH. In the whey ultrafiltrate-corn steep liquor (WU-CSL) medium, the optimal pH for fermentation was 5.9. Inoculum propagated in skim milk (SM) medium or in lactose synthetic (LS) medium resulted in the best performance in fermentation (in terms of growth, lactic acid production, lactic acid yield and maximum productivity of lactic acid), as compared to that propagated in glucose synthetic (GS) medium. The yeast extract ultrafiltrate (YEU) used as the nitrogen/growth factor source in the WU medium at 1.5% (w/v) gave the highest maximum productivity of lactic acid of 2.70 g/l-h, as compared to the CSL and the tryptone ultrafiltrate (TU). L. helveticus is more advantageous than Streptococcus thermophilus and Lactobacillus delbrueckii for the production of lactic acid from WU. The L. helveticus process will provide an alternative solution to the phage contamination in dairy industries using Lactobacillus bulgaricus.  相似文献   

9.
Batch and continuous fermentation studies were performed to optimize the production of ammonium lactate from whey to optimize the production of ammonium lactate from whey permeate. The product known as fermented ammoniated condensed whey permeate (FACWP) is a very promising animal feed. After an initial screening of four strains which produce predominantly L(+)- lactic acid, the desired isomer [D(-)-lactic acid is toxic], Streptococcus cremoris 2487 was chosen for further study. In batch mode, pH between 6.0 and 6.5 and 35 degrees C provided optimum incubation conditions. To stimulate a plug flow reactor, three CSTRs (continuous stirred tank reactors) were connected in tandem. For a 7.5-h retention time, 1.6-fold and 1.3-fold higher productivities were obtained for three-stage than for the single- and two-stage reactors, respectively. Various retentions times were examined (5, 7.5, and 10 h; 5g/L yeast extract). Although maximum lactate productivity occurred at a 5-h residence time (5.38 g/L H. 75% lactose utilization), lactose utilization was more complete at 7.5 h (4.38 g/L h productivity, 91% lactose utilization and a productivity, 91% lactose utilization). Retention time was increased to 15 h to obtain 95.9% lactose utilization and a productivity of 2.42g/L h for 2g/L yeast extract. Based on this lower yeast extract concentration, it was determined that ammonium lactate production and subsequent concentration by 11-fold would yield a product (FACWP) 17% more than soybean meal (crude protein contents are equivalent, 44%) at current market prices.  相似文献   

10.
Two matrices have been assessed for their ability to immobilize Lactobacillus casei cells for lactic acid fermentation in whey permeate medium. Agar at 2% concentration was found to be a better gel than polyacrylamide in its effectiveness to entrap the bacterial cells to carry out batch fermentation up to three repeat runs. Of the various physiological parameters studied, temperature and pH were observed to have no significant influence on the fermentation ability of the immobilized organism. A temperature range of 40–50°C and a pH range of 4.5–6.0 rather than specific values, were found to be optimum when fermentation was carried out under stationary conditions. In batch fermentation ~90% conversion of the substrate (lactose) was achieved in 48 h using immobilized cell gel cubes of 4 × 2 × 2 mm size, containing 400 mg dry bacterial cells per flask and 4.5% w/v (initial) whey lactose content as substrate. However, further increase in substrate levels tested (>4.5% w/v) did not improve the process efficiency. Supplementation of Mg2+ (1 mM) and agricultural by-products (mustard oil cake, 6%) in the whey permeate medium further improved the acid production ability of the immobilized cells under study.  相似文献   

11.
Propionate and acetate salts are environmentally friendly, effective road deicer substitutes for widely used sodium chloride. A low-cost medium, using raw cheese whey and hydrolyzed whey permeate/whey permeate powder as substrates, and corn-steep liquor as a nutrient supplement, was studied for lactic acid production, replacing synthetic lactose and other high-cost nutrients. A non-sterile stage-I fermentation process for improved lactate productivity using an inexpensive commercial medium was performed at a 20-L fermenter level. A lactate yield of 0.98 g/g lactose and a productivity of 1.1 g/L/h was obtained with complete lactose utilization. When synthetic lactate and glucose were used as substrates in propionate and acetate fermentation, a total acid yield of 0.55 g/g glucose and lactate consumed and a batch productivity of 0.22 g/L/h was obtained. A stage-II fermentation process to produce propionate and acetate salts from cheese whey-derived lactate (stage-I fermentation broth) resulted in 1.6%( w/v) propionate after a total of 161 h (stages I and II).  相似文献   

12.
A 5 l packed bed bioreactor was used to study the effect of initial lactose concentration and hydraulic retention time (HRT) on cell growth, lactose utilization and lactic acid production. Up to 95% of the initial lactose concentration was utilized at longer HRTs (30-36 h). The study showed that lactic acid production increased with increases in HRT (12-36 h) and initial lactose concentrations. The highest lactic acid production rate (3.90 g l(-1) h(-1)) was obtained with an initial lactose concentration of 100 g/l and an HRT of 18 h, whereas the lowest lactic acid production rate (1.35 g l(-1) h(-1)) was obtained with an initial lactose concentration of 50 g/l and an HRT of 36 h. This suggested that optimal lactic acid production can be achieved at an HRT of 18 h and initial lactose concentration of 100 g/l.  相似文献   

13.
A simple and efficient process for the production of a ruminant feed supplement, rich in crude protein (defined as total N X 6.25), by bacterial fermentation of cheese whey has been developed. The lactose in unpasteurized whey is fermented to lactate acid by Lactobacillus bulgaricus at a temperature of 43 degrees C and pH 5.5. The lactic acid produced is continually neutralized with ammonia to form ammonium lactate. The fermented product is concentrated by evaporation to a solids content of about 70% and adjusted to pH 6.8 with additional ammonia. The concentrated product contains about 55% crude protein. Approximately 6 to 8% of the crude protein is derived from bacterial cells. 17% from whey proteins, and 75 to 77% from ammonium lactate. The efficiency of conversion of lactose to lactic acid usually exceeds 95%. The fermentation time is greatly reduced upon the addition of 0.2% yeast extract or 0.1% corn steep liquor as a source of growth factors. Whey containing lactose at concentrations up to 7% can be fermented efficiently, but at higher concentrations lactose is fermented incompletely. The process has been scaled up to a pilot plant level, and 40 tons of concentrated product were produced fro animal feeding trials, without ever encountering putrefactive spoilage.  相似文献   

14.
A simple and efficient process for the production of a ruminant feed supplement, rich in crude protein (defined as total N X 6.25), by bacterial fermentation of cheese whey has been developed. The lactose in unpasteurized whey is fermented to lactate acid by Lactobacillus bulgaricus at a temperature of 43 degrees C and pH 5.5. The lactic acid produced is continually neutralized with ammonia to form ammonium lactate. The fermented product is concentrated by evaporation to a solids content of about 70% and adjusted to pH 6.8 with additional ammonia. The concentrated product contains about 55% crude protein. Approximately 6 to 8% of the crude protein is derived from bacterial cells. 17% from whey proteins, and 75 to 77% from ammonium lactate. The efficiency of conversion of lactose to lactic acid usually exceeds 95%. The fermentation time is greatly reduced upon the addition of 0.2% yeast extract or 0.1% corn steep liquor as a source of growth factors. Whey containing lactose at concentrations up to 7% can be fermented efficiently, but at higher concentrations lactose is fermented incompletely. The process has been scaled up to a pilot plant level, and 40 tons of concentrated product were produced fro animal feeding trials, without ever encountering putrefactive spoilage.  相似文献   

15.
Summary Unlike sterilization by autoclave (Anderson et al. 1986) high concentrations of cheese whey sterilized by ultra high temperature (UHT) resulted in a medium conducive to microbial growth and propionic acid production. Propionibacterium freudenreichii ss. shermanii, grown with pH control in 12% whey solids and 1% yeast extract sterilized by UHT, produced about 1.9% propionic acid within 70 h; more than 50% of the lactose was not used. Under similar conditions, mixed cultures of P. shermanii and Lactobacillus casei produced more than 3.0% propionic acid. Acclimating the mixed culture to the whey medium resulted in 4.5% propionic acid. The amount of propionic acid produced was further increased to about 6.5% by raising the concentration of whey solids to about 18%. Using the mixed culture, all the lactose was consumed and lactic acid did not accumulate.  相似文献   

16.
The defined microbial cultures for methane generation from lactose were investigated. A mixed culture consisting of homolactic (Streptococcus lactis), homoacetic (Clostridium formicoaceticum), and acetate-utilizing methanogenic (Methanococcus mazei) bacteria was used to convert lactose and whey permeate to methane at mesophilic temperatures (35-37 degrees C) and a pH around 7.0. Lactose was first converted to lactic acid by S. lactis, then to acetic acid by C. formicoaceticum, and finally to methane and CO(2) by M. mazei. About 5.3 mol methane were obtained from each mole of lactose consumed, and the conversion of acetate to methane was the rate-limiting step for this mixed-culture fermentation.  相似文献   

17.
In the course of exploring new microbial sources of extracellular beta-d-galactosidase (EC. 3.2.1.23), Alternaria alternata was found to excrete elevated quantities of a thermostable form of the enzyme when cultivated in whey growth medium. Optimum cultural conditions for maximum enzyme production were a whey lactose concentration of 6%, supplementation of the medium with 0.050 M (NH(4))(2)SO(4), an inoculum size of 10 conidia per ml, and a cultivation time at 28 to 30 degrees C of 5 days. The fungus utilized whey lactose for the production of the enzyme most efficiently, and the observed maximum yield, 280 nanokatals of hydrolyzed o-nitrophenyl-beta-d-galactopyranoside per g of whey lactose, was comparable to maximum yields reported for certain commercial fungi. The optimum pH and temperature of the enzymatic reaction were 4.5 to 5.5 and 60 to 70 degrees C, respectively, and the enzyme lost half of its activity when heated at 65 degrees C for 84 min. These properties make the enzyme particularly suitable for processing acid and less-acid (pH 5 to 6) dairy products and by-products.  相似文献   

18.
Casein whey permeate (CWP), a lactose-enriched dairy waste effluent, is a viable feed stock for the production of value-added products. Two lactic acid bacteria were cultivated in a synthetic casein whey permeate medium with or without pH control. Lactobacillus lactis ATCC 4797 produced d-lactic acid (DLA) at 12.5 g l?1 in a bioreactor. The values of Leudking–Piret model parameters suggested that lactate was a growth-associated product. Batch fermentation was also performed employing CWP (35 g lactose l?1) with casein hydrolysate as a nitrogen supplement in a bioreactor. After 40 h, L. lactis produced 24.3 g lactic acid l?1 with an optical purity >98 %. Thus CWP may be regarded as a potential feed-stock for DLA production.  相似文献   

19.
In this study, a novel generic feedstock production strategy based on solid-state fermentation (SSF) has been developed and applied to the fermentative production of succinic acid. Wheat was fractionated into bran, gluten and gluten-free flour by milling and gluten extraction processes. The bran, which would normally be a waste product of the wheat milling industry, was used to produce glucoamylase and protease enzymes via SSF using Aspergillus awamori and Aspergillus oryzae, respectively. The resulting solutions were separately utilised for the hydrolysis of gluten-free flour and gluten to generate a glucose-rich stream of over 140gl(-1) glucose and a nitrogen-rich stream of more than 3.5gl(-1) free amino nitrogen. A microbial feedstock consisting of these two streams contained all the essential nutrients required for succinic acid fermentations using Actinobacillus succinogenes. In a fermentation using only the combined hydrolysate streams, around 22gl(-1) succinic acid was produced. The addition of MgCO(3) into the wheat-derived medium improved the succinic acid production further to more than 64gl(-1). These results demonstrate the SSF-based strategy is a successful approach for the production of a generic feedstock from wheat, and that this feedstock can be efficiently utilised for succinic acid production.  相似文献   

20.
Aiming at to enhance the production of penicillin G acylase (PGA) by Bacillus megaterium, we have performed flasks experiments using different medium composition. Using 51 g/L of casein hydrolyzed with Alcalase and 2.7 g/L of phenylacetic acid (PhAc), the following carbon substrates were tested, individually and combined: glucose, glycerol, and lactose (present in cheese whey). Glycerol and glucose showed to be effective nutrients for the microorganism growth but delayed the PGA production. Cheese whey always increased enzyme production and cell mass. However, lactose (present in cheese whey) was not a significant carbon source for B. megaterium. PhAc, amino acids, and small peptides present in the hydrolyzed casein were the actual carbon sources for enzyme production. Replacement of hydrolyzed casein by free amino acids, 10.0 g/L, led to a significant increase in enzyme production (app. 150%), with a preferential consumption of alanine, aspartic acid, glycine, serine, arginine, threonine, lysine, and glutamic acid. A decrease of the enzyme production was observed when 20.0 g/L of amino acids were used. Using the single omission technique, it was shown that none of the 18 tested amino acids was essential for enzyme production. The use of a medium containing eight of the preferentially consumed amino acids lead to similar enzyme production level obtained when using 18 amino acids. PhAc, up to 2.7 g/L, did not inhibit enzyme production, even if added at the beginning of the cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号