首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L F Chang  P R Gatzek  G B Kohlhaw 《Gene》1985,33(3):333-339
Using a combination of restriction endonuclease digestion, nuclease BAL 31 treatment, and standard ligation procedures, a 4.4-kb DNA segment that carried the yeast LEU4 gene [encoding alpha-isopropylmalate synthase (IPMS) I] and adjoining sequences was excised from an appropriate plasmid and replaced with the yeast HIS3 gene. The new plasmid was digested to obtain a linear HIS3-carrying fragment flanked by remnants of the LEU4 region. Integrative transformation of a LEU4fbr LEU5+ his3- strain with this fragment resulted in the deletion of the LEU4 gene from the genome of some recipients, as demonstrated by transformant phenotype, genetic analysis and the absence of RNA capable of hybridizing to a LEU4 probe. The leu4 deletion strains remained Leu+. The extract of one such strain contained about 18% of the IPMS activity of wild-type cells. It is concluded that the residual activity is that of a second IPMS (IPMS II) that depends on an intact LEU5 locus. IPMS II was inhibited by leucine, but its sensitivity was about an order of magnitude lower than that of IPMS I. Deletion of the LEU4 region by the method utilized here resulted in an amino acid auxotrophy that could be satisfied by methionine, homocysteine, or cysteine. Complementation tests and genetic analysis demonstrated that the affected gene was MET4. Linkage to MET4 would place the LEU4 gene on the left arm of chromosome XIV.  相似文献   

2.
The COQ4 gene coding for a component of the coenzyme Q biosynthetic pathway in the yeast Saccharomyces cerevisiae was cloned by a functional complementation of a Q-deficient mutant strain. Yeast coq4 mutant strains harboring the COQ4 gene on either single- or multicopy plasmids acquired the ability to grow on media containing a nonfermentable carbon source, synthesize Q(6), and respire. COQ4 encodes a polypeptide containing 335 amino acids with a calculated molecular mass of 38.6 kDa. By Western blot analysis with a specific antiserum, Coq4p was shown to peripherally associate with the matrix face of the mitochondrial inner membrane. The putative mitochondrial-targeting sequence present at the amino-terminus of the polypeptide efficiently imported it to mitochondria in a membrane-potential-dependent manner. Steady-state levels of COQ4 mRNA were increased during growth on glycerol-containing medium, in accordance with a function in Q biosynthesis. The function of Coq4p is unknown, although its presence is required to maintain a steady-state level of Coq7p, another component of the Q biosynthetic pathway. The results presented here, along with those available from literature, are discussed in light of the recently proposed existence of a multisubunit complex functioning in Q biosynthesis (A. Y. Hsu, T. Q. Do, P. T. Lee, and C. F. Clarke, 2000, Biochim. Biophys. Acta 1484, 287-297).  相似文献   

3.
Mycobacterium tuberculosis alpha-isopropylmalate synthase (MtIPMS) catalyzes the condensation of acetyl-coenzyme A (AcCoA) with alpha-ketoisovalerate (alpha-KIV) and the subsequent hydrolysis of alpha-isopropylmalyl-CoA to generate the products CoA and alpha-isopropylmalate (alpha-IPM). This is the first committed step in l-leucine biosynthesis. We have purified recombinant MtIPMS and characterized it using a combination of steady-state kinetics, isotope effects, isotopic labeling, and (1)H-NMR spectroscopy. The alpha-keto acid specificity of the enzyme is narrow, and the acyl-CoA specificity is absolute for AcCoA. In the absence of alpha-KIV, MtIPMS does not enolize the alpha protons of AcCoA but slowly hydrolyzes acyl-CoA analogues. Initial velocity studies, product inhibition, and dead-end inhibition studies indicate that MtIPMS follows a nonrapid equilibrium random bi-bi kinetic mechanism, with a preferred pathway to the ternary complex. MtIPMS requires two catalytic bases for maximal activity (both with pK(a) values of ca. 6.7), and we suggest that one catalyzes deprotonation and enolization of AcCoA and the other activates the water molecule involved in the hydrolysis of alpha-isopropylmalyl-CoA. Primary deuterium and solvent kinetic isotope effects indicate that there is a step after chemistry that is rate-limiting, although, with poor substrates such as pyruvate, hydrolysis becomes partially rate-limiting. Our data is inconsistent with the suggestion that a metal-bound water is involved in hydrolysis. Finally, our results indicate that the hydrolysis of alpha-isopropylmalyl-CoA is direct, without the formation of a cyclic anhydride intermediate. On the basis of these results, a chemical mechanism for the MtIPMS-catalyzed reaction is proposed.  相似文献   

4.
Yeast alpha-isopropylmalate isomerase was found to be markedly stabilized by high concentrations of glycerol and (NH4)2SO4. Such conditions of high ionic strength inhibited the enzyme, stabilized the enzyme to heat, and affected kinetic parameters. The isomerase was found to exhibit ionic strength-dependent hysteresis when enzyme, totally but reversibly inhibited by storage under conditions of high ionic strength of (NH4)2SO4, was transferred to a lower concentration of (NH4)2SO4. Alpha-Isopropylmalate isomerase was found to be sensitive to KCN and certain other chelators. The inactivation by KCN was prevented by high concentrations of (NH4)2SO4. These observations implicated a metal involvement but the nature of the metal was not revealed. The metal involvement and some of the other properties of alpha-isopropylmalate isomerase reveal a similarity to aconitase. The similarities in properties between the isomerase and aconitase are summarized. Studies of yeast alpha-isopropylmalate isomerase indicated that it is a single polypeptide of about Mr = 90,000.  相似文献   

5.
We have cloned a gene encoding a mitochondrial inorganic pyrophosphatase (PPase) in the yeast Saccharomyces cerevisiae by low stringency hybridization to PPA1, the yeast gene for cytoplasmic PPase. The new gene, PPA2, is located on chromosome 13 and encodes a protein whose sequence is 49% identical to the cytoplasmic enzyme. The protein differs from cytoplasmic PPase in that it has a leader sequence enriched in basic and hydroxylated residues, which is typically found in mitochondrial proteins. Yeast cells overproducing PPA2 had a 47-fold increase in mitochondrial PPase activity. This activity was further stimulated 3-fold by the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone, which suggests that PPA2 is part of an energy-linked enzyme. Using gene disruptions, we found that PPA1 is required for cell growth. In contrast, cells disrupted for PPA2 are viable, but unable to grow on respiratory carbon sources. Fluorescence microscopy revealed that these cells have lost their mitochondrial DNA. We conclude that the mitochondrial PPase encoded by PPA2 is essential for mitochondrial function and maintenance of the mitochondrial genome.  相似文献   

6.
7.
One of the major evolutionary events that transformed an endosymbiotic bacterium into a mitochondrion was the acquisition of the ATP/ADP carrier (AAC) in order to supply the host with respiration-derived ATP. Along with the mitochondrial carrier, an unrelated carrier is known, which is characteristic of intracellular chlamydiae, plastids, parasitic intracellular eukaryote Encephalitozoon cuniculi, and the genus Rickettsia of obligate endosymbiotic α-proteobacteria. This nonmitochondrial carrier was recently described in rickettsia-like endosymbionts (RLE), a group of obligate intracellular bacteria classified with the order Rickettsiales, which have diverged after free-living α-proteobacteria but before sister groups of the Rickettsiaceae assemblage (true rickettsiae) and mitochondria. Published controversial phylogenetic data on nonmitochondrial AAC were re-analyzed in the present work, using both DNA and protein sequences and various methods including Bayesian analysis. The data presented are consistent with the classic endosymbiont theory for the origin of mitochondria and suggest that even the last but one common ancestor of rickettsiae and organelles was an endosymbiotic bacterium, in which AAC first originated.  相似文献   

8.
Plasmid RP4 encodes two forms of a DNA primase   总被引:10,自引:0,他引:10  
  相似文献   

9.
10.
11.
We have identified a third citrate synthase gene in Saccharomyces cerevisiae which we have called CIT3 Complementation of a citrate synthase-deficient strain of Escherichia coli by lacZ  :: CIT3 gene fusions demonstrated that the CIT3 gene encodes an active citrate synthase. The CIT3 gene seems to be regulated in the same way as CIT1 , which encodes the mitochondrial isoform of citrate synthase. Deletion of the CIT3 gene in a Δ cit1 background severely reduced growth on the respiratory substrate glycerol, whilst multiple copies of the CIT3 gene in a Δ cit1 background significantly improved growth on acetate. In vitro import experiments showed that cit3p is transported into the mitochondria. Taken together, these data show that the CIT3 gene encodes a second mitochondrial isoform of citrate synthase.  相似文献   

12.
13.
Mitochondria are semiautonomous organelles which contain their own genome. Both maintenance and expression of mitochondrial DNA require activity of RNA and DNA helicases. In Saccharomyces cerevisiae the nuclear genome encodes four DExH/D superfamily members (MSS116, SUV3, MRH4, IRC3) that act as helicases and/or RNA chaperones. Their activity is necessary for mitochondrial RNA splicing, degradation, translation and genome maintenance. In humans the ortholog of SUV3 (hSUV3, SUPV3L1) so far is the best described mitochondrial RNA helicase. The enzyme, together with the matrix-localized pool of PNPase (PNPT1), forms an RNA-degrading complex called the mitochondrial degradosome, which localizes to distinct structures (D-foci). Global regulation of mitochondrially encoded genes can be achieved by changing mitochondrial DNA copy number. This way the proteins involved in its replication, like the Twinkle helicase (c10orf2), can indirectly regulate gene expression. Here, we describe yeast and human mitochondrial helicases that are directly involved in mitochondrial RNA metabolism, and present other helicases that participate in mitochondrial DNA replication and maintenance. This article is part of a Special Issue entitled: The Biology of RNA helicases — Modulation for life.  相似文献   

14.
The 57-bp tandem repeats located in the Mycobacterium tuberculosis leuA gene code for the alpha-isopropylmalate synthase (alpha-IPMS). It is unique to this pathogen. It was previously demonstrated that the leuA-coding sequence Rv3710, containing the tandem repeats, can be translated to an active alpha-IPMS. The objective of the present study was to investigate the significance and effect of the two 57-bp tandem repeats upon gene expression and the general properties of alpha-IPMS. The putative M. tuberculosis H37Rv leuA gene with and without the tandem repeats was cloned by PCR and expressed in an Escherichia coli host. The enzyme product was studied for general properties, comparing that from a native leuA gene containing two repeats and that from the 57-bp tandem repeats deletion mutant. Upon deletion of the two 57-bp tandem repeats, the expression level of leuA from M. tuberculosis H37Rv was comparable with that of the native form. The general properties of the two types of enzymes were similar. They were both functional with the same range of optimal temperature and optimal pH for activity and with similar enzyme stability. Deletion of the repeats had no detectable effect on leuA expression level or the general properties of the enzyme product.  相似文献   

15.
The LEU3 gene of the yeast Saccharomyces cerevisiae, which is involved in the regulation of at least two LEU structural genes (LEU1 and LEU2), has been cloned by complementation of leu3 mutations and shown to reside within a 5.6-kb fragment. Transformation of leu3 mutants with LEU3-carrying multicopy plasmids restored normal, leucine-independent growth behavior in the recipients. It also restored approximately wild-type levels of isopropylmalate isomerase (LEU1) and beta-isopropylmalate dehydrogenase (LEU2), which were strongly reduced when exogenous leucine was supplied. Strains containing a disrupted leu3 allele were constructed by deleting 0.7-kb of LEU3 DNA and inserting the yeast HIS3 gene in its place. Like other leu3 mutants, these strains were leaky leucine auxotrophs, owing to a basal level of expression of LEU1 and LEU2. Southern transfer and genetic analyses of strains carrying a disrupted leu3 allele demonstrated that the cloned gene was LEU3, as opposed to a suppressor. Disruption of LEU3 was performed also with a diploid and shown to be nonlethal by tetrad analysis. Northern transfer experiments showed that the LEU3 gene produces mRNA approximately 2.9 kilonucleotides in length. The leu3 marker was mapped to chromosome XII by the spo11 method. Linkage to ura4 by about 44 centiMorgans places leu3 on the right arm of this chromosome.  相似文献   

16.
17.
Mutations in the brown midrib4 (bm4) gene affect the accumulation and composition of lignin in maize. Fine‐mapping analysis of bm4 narrowed the candidate region to an approximately 105 kb interval on chromosome 9 containing six genes. Only one of these six genes, GRMZM2G393334, showed decreased expression in mutants. At least four of 10 Mu‐induced bm4 mutant alleles contain a Mu insertion in the GRMZM2G393334 gene. Based on these results, we concluded that GRMZM2G393334 is the bm4 gene. GRMZM2G393334 encodes a putative folylpolyglutamate synthase (FPGS), which functions in one‐carbon (C1) metabolism to polyglutamylate substrates of folate‐dependent enzymes. Yeast complementation experiments demonstrated that expression of the maize bm4 gene in FPGS‐deficient met7 yeast is able to rescue the yeast mutant phenotype, thus demonstrating that bm4 encodes a functional FPGS. Consistent with earlier studies, bm4 mutants exhibit a modest decrease in lignin concentration and an overall increase in the S:G lignin ratio relative to wild‐type. Orthologs of bm4 include at least one paralogous gene in maize and various homologs in other grasses and dicots. Discovery of the gene underlying the bm4 maize phenotype illustrates a role for FPGS in lignin biosynthesis.  相似文献   

18.
The α-isopropylmalate synthase (EC 4.1.3.12) from AlcaligeneseutrophusH 16 was inactivated by EDTA in a time-dependent reaction. Only the addition of Mn++ plus dithiothreitol could restore the activity. The substrate, α-ketoisovalerate, prevented the inactivation; the feedback inhibitor, leucine, and it's antagonist, valine, increased the rate of inactivation. Except for α,α′-bipyridyl, chelating reagents, other than EDTA had no effect on the enzyme stability. It is suggested that the α-isopropylmalate synthase is a metallo enzyme - the evidence points to Mn++ as the metal ion - and that this enzyme uses a mechanism of catalysis which differs from that of the analogous malate synthase (EC 4.1.3.2) and citrate synthase (EC 4.1.3.4).  相似文献   

19.
A yeast genomic library in the bacteriophage expression vector lambda gt11 was screened with a polyclonal anti-holo-ATPase antiserum resulting in the isolation of 54 immunoreactive clones. Four of these phage clones express in bacteria a polypeptide antigenically related to an 18 kDa subunit (P18) of the yeast mitochondrial ATPase complex. Molecular analysis of the yeast DNA inserts in these phage clones revealed two classes of yeast DNA that share little homology at the nucleotide sequence level and therefore may represent distinct separate genes. The polypeptides potentially encoded by these yeast DNA segments do show scattered short blocks of strong amino acid sequence homology, which may underlie the observed immunochemical relatedness between the proteins expressed in bacteria.  相似文献   

20.
Yeast mitochondrial tRNA synthetase has been partially purified and chromatographic, catalytic and antigenic properties have been compared to the cytoplasmic homologous enzyme from yeast. No significant differences could be observed between the two enzymes with respect to their behaviour during ammonium sulfate precipitation or in chromatographic separation on DEAE cellulose, hydroxylapatite and Sephadex G 200. The Km of the two enzymes toward tRNAs from yeast mitochondria, yeast cytoplasm or E. coli are pratically identical. The antigenic properties of the two enzymes are very similar; antisera against either the mitochondria or the cytoplasmic enzyme lead to the inhibition of their catalytic properties. The mitochondrial ValRS is formed by a single polypeptide chain whose molecular weight is 125,000 daltons, a value very close to that of the yeast cytoplasmic enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号