首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By complementation of an alpha-isopropylmalate synthase-negative mutant of Saccharomyces cerevisiae (leu4 leu5), a plasmid was isolated that carried a structural gene for alpha-isopropylmalate synthase. Restriction mapping and subcloning showed that sequences sufficient for complementation of the leu4 leu5 strain were located within a 2.2-kilobase SalI-PvuII segment. Southern transfer hybridization indicated that the cloned DNA was derived intact from the yeast genome. The cloned gene was identified as LEU4 by integrative transformation that caused gene disruption at the LEU4 locus. When this transformation was performed with a LEU4fbr LEU5 strain, the resulting transformants had lost the 5',5',5'-trifluoro-D,L-leucine resistance of the recipient strain but were still Leu+. When it was performed with a LEU4 leu5 recipient, the resulting transformants were Leu-. The alpha-isopropylmalate synthase of a transformant that carried the LEU4 gene on a multicopy plasmid (in a leu5 background) was characterized biochemically. The transformant contained about 20 times as much alpha-isopropylmalate synthase as wild type. The enzyme was sensitive to inhibition by leucine and coenzyme A, was inactivated by antibody generated against alpha-isopropylmalate synthase purified from wild type and was largely confined to the mitochondria. The subunit molecular weight was 65,000-67,000. Limited proteolysis generated two fragments with molecular weights of about 45,000 and 23,000. Northern transfer hybridization showed that the transformant produced large amounts of LEU4-specific RNA with a length of about 2.1 kilonucleotides. The properties of the plasmid-encoded enzyme resemble those of a previously characterized alpha-isopropylmalate synthase that is predominant in wild-type cells. The existence in yeast of a second alpha-isopropylmalate synthase activity that depends on the presence of an intact LEU5 gene is discussed.  相似文献   

2.
3.
We identified a new mutation, Asp578Tyr, in alpha-isopropylmalate synthase (a LEU4 gene product) that releases leucine feedback inhibition and causes hyperproduction of isoamyl alcohol (i-AmOH) in sake yeast. Spontaneous sake yeast mutants that express resistance to 5,5,5-trifluoro-DL-leucine (TFL) were isolated, and a mutant strain, TFL20, was characterized at the genetic and biochemical levels. An enzyme assay for alpha-isopropylmalate synthase showed that strain TFL20 was released from feedback inhibition by L-leucine. Furthermore, DNA sequencing of the LEU4 gene for a haploid of the mutant TFL20 revealed that aspartic acid in position 578 changes to tyrosine. A comparison of the three-dimensional structures of wild-type LEU4p and mutant LEU4D578Yp by the homology modeling method showed that Asp578 is important for leucine feedback inhibition. We conclude that the mutation from Asp to Tyr in 578 is a novel change causing release from leucine feedback inhibition.  相似文献   

4.
The three enzymes in the leucine biosynthetic pathway of yeast do not exhibit coordinate repression and derepression in response to the carbon source available in the culture medium. Growth in an acetate medium results in derepression of the first enzyme in the pathway, alpha-isopropylmalate synthase, and repression of the second two enzymes, alpha-isopropylmalate isomerase and beta-isopropylmalate dehydrogenase, relative to the levels found in glucose-grown cells. The role of endogenous leucine pools as a mediator of these differences was investigated. The leucine pools did not differ significantly between acetate-grown and glucose-grown cells. However, an elevated endogenous leucine pool, caused by exogenous leucine in the growth medium, did decrease the rate of decay of alpha-isopropylmalate synthase activity observed when acetate-grown cells were shifted to glucose. Evidence is provided suggesting that an elevated endogenous leucine pool may increase the in vivo stability of alpha-isopropylmalate synthase under several different conditions. Studies on the kinetics of alpha-isopropylmalate synthase decay in vivo and sensitivity to leucine inhibition indicate that there are two classes of the enzyme in acetate-grown yeast cells.  相似文献   

5.
6.
7.
8.
9.
L F Chang  P R Gatzek  G B Kohlhaw 《Gene》1985,33(3):333-339
Using a combination of restriction endonuclease digestion, nuclease BAL 31 treatment, and standard ligation procedures, a 4.4-kb DNA segment that carried the yeast LEU4 gene [encoding alpha-isopropylmalate synthase (IPMS) I] and adjoining sequences was excised from an appropriate plasmid and replaced with the yeast HIS3 gene. The new plasmid was digested to obtain a linear HIS3-carrying fragment flanked by remnants of the LEU4 region. Integrative transformation of a LEU4fbr LEU5+ his3- strain with this fragment resulted in the deletion of the LEU4 gene from the genome of some recipients, as demonstrated by transformant phenotype, genetic analysis and the absence of RNA capable of hybridizing to a LEU4 probe. The leu4 deletion strains remained Leu+. The extract of one such strain contained about 18% of the IPMS activity of wild-type cells. It is concluded that the residual activity is that of a second IPMS (IPMS II) that depends on an intact LEU5 locus. IPMS II was inhibited by leucine, but its sensitivity was about an order of magnitude lower than that of IPMS I. Deletion of the LEU4 region by the method utilized here resulted in an amino acid auxotrophy that could be satisfied by methionine, homocysteine, or cysteine. Complementation tests and genetic analysis demonstrated that the affected gene was MET4. Linkage to MET4 would place the LEU4 gene on the left arm of chromosome XIV.  相似文献   

10.
Subcellular localization of the leucine biosynthetic enzymes in yeast   总被引:12,自引:3,他引:9  
When baker's yeast spheroplasts were lysed by mild osmotic shock, practically all of the isopropylmalate isomerase and the beta-isopropylmalate dehydrogenase was released into the 30,000 x g supernatant fraction, as was the cytosol marker enzyme, glucose-6-phosphate dehydrogenase. alpha-Isopropylmalate synthase, however, was not detected in the initial supernatant, but could be progressively solubilized by homogenization, appearing more slowly than citrate synthase but faster than cytochrome oxidase. Of the total glutamate-alpha-ketoisocaproate transaminase activity, approximately 20% was in the initial soluble fraction, whereas solubilization of the remainder again required homogenization of the spheroplast lysate. Results from sucrose density gradient centrifugation of a cell-free particulate fraction and comparison with marker enzymes suggested that alpha-isopropylmalate synthase was located in the mitochondria. It thus appears that, in yeast, the first specific enzyme in the leucine biosynthetic pathway (alpha-isopropylmalate synthase) is particulate, whereas the next two enzymes in the pathway (isopropylmalate isomerase and beta-isopropylmalate dehydrogenase) are "soluble," with glutamate-alpha-ketoisocaproate transaminase activity being located in both the cytosol and particulate cell fractions.  相似文献   

11.
P. Drain  P. Schimmel 《Genetics》1988,119(1):13-20
The first step in the biosynthesis of leucine is catalyzed by α-isopropylmalate (α-IPM) synthase. In the yeast Saccharomyces cerevisiae, LEU4 encodes the isozyme responsible for the majority of α-IPM synthase activity. Yeast strains that bear disruption alleles of LEU4, however, are Leu(+) and exhibit a level of synthase activity that is 20% of the wild type. To identify the gene or genes that encode this remaining activity, a leu4 disruption strain was mutagenized. The mutations identified define three new complementation groups, designated leu6, leu7 and leu8. Each of these new mutations effect leucine auxotrophy only if a leu4 mutation is present and each results in loss of α-IPM synthase activity. Further analysis suggests that LEU7 and LEU8 are candidates for the gene or genes that encode an α-IPM synthase activity. The results demonstrate that multiple components determine the residual α-IPM synthase activity in leu4 gene disruption strains of S. cerevisiae.  相似文献   

12.
The wild-type yeast nuclear gene MST1 complements mutants defective in mitochondrial protein synthesis. The gene has been sequenced and shown to code for a protein of 54,030 kDa. The predicted product of MST1 is 36% identical over its 462 residues to the Escherichia coli threonyl-tRNA synthetase. Amino-acylation of wild-type mitochondrial tRNAs with a mitochondrial extract from mst1 mutants fail to acylate tRNAThr1 (anticodon: 3'-GAU-5') but show normal acylation of tRNAThr2 (anticodon: 3'-UGU-5'). These data suggest the presence of two separate threonyl-tRNA synthetases in yeast mitochondria. Antibodies were prepared against a trpE/MST1 fusion protein containing the 321 residues from the amino-terminal region of the E. coli anthranilate synthetase and 118 residues of the mitochondrial threonyl-tRNA synthetase. Antibodies to the fusion protein detect a 50-55-kDa protein in wild type yeast mitochondria but not in mitochondria of a strain in which the chromosomal MST1 gene was replaced by a copy of the same gene disrupted by insertion of the yeast LEU2 gene. The ability of the mutant with the inactive MST1 gene to charge tRNAThr2 argues strongly for the existence of a second threonyl-tRNA synthetase gene.  相似文献   

13.
The LEU3 gene of the yeast Saccharomyces cerevisiae, which is involved in the regulation of at least two LEU structural genes (LEU1 and LEU2), has been cloned by complementation of leu3 mutations and shown to reside within a 5.6-kb fragment. Transformation of leu3 mutants with LEU3-carrying multicopy plasmids restored normal, leucine-independent growth behavior in the recipients. It also restored approximately wild-type levels of isopropylmalate isomerase (LEU1) and beta-isopropylmalate dehydrogenase (LEU2), which were strongly reduced when exogenous leucine was supplied. Strains containing a disrupted leu3 allele were constructed by deleting 0.7-kb of LEU3 DNA and inserting the yeast HIS3 gene in its place. Like other leu3 mutants, these strains were leaky leucine auxotrophs, owing to a basal level of expression of LEU1 and LEU2. Southern transfer and genetic analyses of strains carrying a disrupted leu3 allele demonstrated that the cloned gene was LEU3, as opposed to a suppressor. Disruption of LEU3 was performed also with a diploid and shown to be nonlethal by tetrad analysis. Northern transfer experiments showed that the LEU3 gene produces mRNA approximately 2.9 kilonucleotides in length. The leu3 marker was mapped to chromosome XII by the spo11 method. Linkage to ura4 by about 44 centiMorgans places leu3 on the right arm of this chromosome.  相似文献   

14.
15.
16.
Adenylate kinases participate in maintaining the homeostasis of cellular nucleotides. Depending on the yeast strains, the GTP:AMP phosphotransferase is encoded by the nuclear gene ADK2 with or without a single base pair deletion/insertion near the 3' end of the open reading frame, and the corresponding protein exists as either Adk2p (short) or Adk2p (long) in the mitochondrial matrix. These two forms are identical except that the three C-terminal residues of Adk2p (short) are changed in Adk2p (long), and the latter contains an additional nine amino acids at the C terminus of the protein. The short form of Adk2p has so far been considered to be inactive (Schricker, R., Magdolen, V., Strobel, G., Bogengruber, E., Breitenbach, M., and Bandlow, W. (1995) J. Biol. Chem. 270, 31103-31110). Using purified proteins, we show that at the physiological temperature for yeast growth (30 degrees C), both short and long forms of Adk2p are enzymatically active. However, in contrast to the short form, Adk2p (long) is quite resistant to thermal inactivation, urea denaturation, and degradation by trypsin. Unfolding of the long form by high concentrations of urea greatly stimulated its import into isolated mitochondria. Using an integration-based gene-swapping approach, we found that regardless of the yeast strains used, the steady state levels of endogenous Adk2p (long) in mitochondria were 5-10-fold lower compared with those of Adk2p (short). Together, these results suggest that the modified C-terminal domain in Adk2p (long) is not essential for enzyme activity, but it contributes to and strengthens protein folding and/or stability and is particularly important for maintaining enzyme activity under stress conditions.  相似文献   

17.
Yeast regulatory protein LEU3: a structure-function analysis.   总被引:6,自引:1,他引:5       下载免费PDF全文
Eleven mutations resulting in partially deleted or truncated LEU3 protein were generated by linker insertion or other modifications at restriction sites, deletion of restriction fragments, or oligonucleotide-directed mutagenesis. Functional studies of these mutants showed the following: (i) A specific DNA binding region is contained within the 173 N-terminal residues, but other regions of the protein are required for optimal binding. (ii) Activation of LEU2 expression depends on the C-terminal 113 residues of the LEU3 protein. (iii) Deletion of part or all of a central section of LEU3 eliminates the ability of the LEU3 protein to respond to the co-activator alpha-isopropylmalate, i.e. creates an unmodulated activator. (iv) Overproduction of unmodulated activator slows down cell growth. (v) Specific deletion of two short acidic regions, including one with net charge - 19, has only minor effects on activation and modulation.  相似文献   

18.
We cloned two autonomously replicating sequences from a short segment of mtDNA of an oligomycin-resistant petite yeast, O-111, into a vector pYleu 12 constructed from yeast LEU 2 gene and pBR 322. These plasmids, pYmit 4 and pYmit 1, had frequencies of transformation of yeast as high as that of YEp 13, having a replicator of 2 mu DNA. They were maintained as plasmids in yeast under selective conditions and shuttled from yeast to E. coli. No evidence was obtained that these plasmids were incompatible with the wild-type mitochondrial genome. These sequences were located in intergenic regions.  相似文献   

19.
Production of α-isopropylmalate (α-IPM) is critical for leucine biosynthesis and for the global control of metabolism. The budding yeast Saccharomyces cerevisiae has two paralogous genes, LEU4 and LEU9, that encode α-IPM synthase (α-IPMS) isozymes. Little is known about the biochemical differences between these two α-IPMS isoenzymes. Here, we show that the Leu4 homodimer is a leucine-sensitive isoform, while the Leu9 homodimer is resistant to such feedback inhibition. The leu4Δ mutant, which expresses only the feedback-resistant Leu9 homodimer, grows slowly with either glucose or ethanol and accumulates elevated pools of leucine; this phenotype is alleviated by the addition of leucine. Transformation of the leu4Δ mutant with a centromeric plasmid carrying LEU4 restored the wild-type phenotype. Bimolecular fluorescent complementation analysis showed that Leu4-Leu9 heterodimeric isozymes are formed in vivo. Purification and kinetic analysis showed that the hetero-oligomeric isozyme has a distinct leucine sensitivity behavior. Determination of α-IPMS activity in ethanol-grown cultures showed that α-IPM biosynthesis and growth under these respiratory conditions depend on the feedback-sensitive Leu4 homodimer. We conclude that retention and further diversification of two yeast α-IPMSs have resulted in a specific regulatory system that controls the leucine–α-IPM biosynthetic pathway by selective feedback sensitivity of homomeric and heterodimeric isoforms.  相似文献   

20.
It has been known that enzyme activity associated with the yeast LEU1 and LEU2 gene product (beta-isopropylmalate dehydrogenase) drops sharply when yeast is grown in the presence of leucine. RNA blot hybridizations with LEU2-specific probes establish that this is accompanied by a 5-fold repression in LEU2 mRNA levels. A similar repression was noted recently for LEU1 mRNA levels (Hsu, Y.-P., and Schimmel, P. (1984) J. Biol. Chem. 259, 3714-3719). Nuclease mapping of the 5'-end of the LEU2 mRNA shows a major start at approximately 16 nucleotides upstream of the AUG initiation codon. This initiation site in the gene is retained in an extensive LEU2 5'-noncoding region deletion which still expresses the LEU2 gene product (Erhart, E., and Hollenberg, C. P. (1983) J. Bacteriol. 156, 625-635). The primary structure of the LEU2 gene product was established from the nucleotide sequence of the gene-coding region and from fitting amino acid sequences of scattered internal peptides to the nucleotide sequence. The 364-amino acid protein has a 13-amino acid stretch which is highly homologous to the partially sequenced yeast LEU1 gene product (isopropylmalate isomerase). The homology occurs about 290 amino acids from the respective NH2 termini of the two proteins. The homology may represent residues which interact with beta-isopropylmalate, a common ligand for the enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号